Lab 6: 23" April 2012

Exercises on Support Vector Machines

1. What is the goal of the SVM algorithm? When can be it successfully applied?

Solution

SVMs are linear classifiers that find a hyperplane to separate two classes of data, positive and negative.
They are successfully applicable when the two classes of data in the training set are linearly separable.
They are suitable especially for high dimensional data. The attributes of the training data need to be
real numbers.

2. What linear function is used by a SVM for classification? How is an input vector x; (instance) assigned to
the positive or negative class?

Solution

SVMs find a linear function of the form f(x) = (w - X) + b where x is the input vector, w is a vector of
weights, and b is the bias. An input vector X; is assigned to the positive (1) or negative class (-1) as
follows

(1 i (wex,)+b=0
i_{—l if(w-x;)+b<0

3. Ifthe training examples are linearly separable, how many decision boundaries can separate positive from
negative data points? Which decision boundary does the SVM algorithm calculate? Why?

Solution

There are infinite decision boundaries that separate positive from negative data points. The SVM
algorithm found the boundary (hyperplan) with maximum margin. This boundary minimizes the
upper bound of the classification error.

4. What is the margin? Which are the equations of the two margin hyperplans H, and H.?

Solution

The margin is the distance between the two margin hyperplanes H, and H..

Their equations are:

H. : <wex+>+b=1 H.: <wex->+b=-1

where x+ and x- are the data points that are closest to the hyperplane <w-x>+b=0

5. Derive the formula that calculates the margin given a set of linearly separable training examples.

Solution
See slides titled “Compute the margin” at pages 4-5 of lecture 8.



6. Illustrate the constrained minimization problem that defines the SVM learning given a set of linearly
separable training examples. What is the outcome of solving the problem?

Solution

The constrained minimization problem is illustrated in the slides titled “A optimization problem!” at
page 5 of lecture 8. By solving the problem the SVM algorithm founds the decision boundary with
maximum margin.

7. Explain why the constrained minimization problem is transformed into the Wolfe dual maximization
problem. Which input vectors (training instances) are used to calculate the solution?

Solution

The transformation is performed to easy the finding of the optimal solution (i.e., the decision boundary
with maximum margin). Only the support vectors (those data points on the margin hyperplanes H.
and H.) are used to calculate the solution. This considerably reduces the complexity of the SVM
algorithm.

8. Is the linear separable SVM always applicable in case of noise in the training data? If no, how can be
SVM be modified in order to deal with noisy training data?

Solution

With noisy data, the constraints of the optimization problem solved by the SVM algorithm may not be
satisfied. Therefore, finding optimal decision boundary might not be possible. Noisy data is taken into
consideration in SVM by relaxing the constraints and introducing slack variables in them. Details in
slides from page 9 to page 14 of lecture 8.

9. For many real life data sets the decision boundaries are not linear. How is this non-linearity dealt with by
SVMs?

Solution

The idea is to transform the non linearly separable input data into another (usually higher dimensional) space.
A linear decision boundary can separate positive and negative examples in the transformed space. The
transformed space is called the feature space. The original data space is called the input space. Details in
slides from page 14 to page 15 of lecture 8.

10. What is a kernel function? What is the kernel trick?

Solution

A kernel function K is of the form K(x, z) = (¢(x) * ¢(z)) where x and z are two input vectors, ¢ is the
transformation function from the input space to the features space, and ¢ denotes the dot product.

By kernel trick we mean that if we apply a kernel function to 2 input vectors we obtain the dot product
of their transformation. The important thing is that we don’t need to know the transformation function
and the feature vectors obtained by the transformation in order to calculate the dot product. The
kernel trick allows the SVM algorithm to be computationally tractable. Details in slides from page 17
to page 18 of lecture 8.

11. Make an example of a commonly used kernel.
Solution

A commonly used kernel is the polynomial kernel: K(x, z) = (x » Z + 8)d where 0 is a real number and d
is a natural number.



12. Summarize the main advantages and limitations of SVM.

Solution
Main advantages of SVMs:
* Hasrigorous theoretical foundation
* Performs classification more accurately than most other methods in applications, especially for
high dimensional data
* They can be applied also to non linear classification problems by using kernel functions. The
“kernel trick” allows that the these problems are computationally tractable
* Different kernels can be plugged into the same learning machinery and studied independently
of it.
Main limitations of SVM:
*  Works only in a real-valued space
o For a categorical attribute, we need to convert its categorical values to numeric values
* Does only two-class classification
o For multi-class problems, some strategies can be applied, e.g., one-against-rest
* The hyperplane produced by SVM is hard to understand by human users. The matter is made
worse by kernels
o SVM is commonly used in applications that do not required human understanding

13. Consider the three linearly separable two-dimensional input vectors in the following figure. Find the
linear SVM that optimally separates the classes by maximizing the margin.

Solution

All three data points are support vectors. The margin hyperplan H. is the line passing through the two
positive points. The margin hyperplan H. is the line passing through the negative point that is parallel
to H.. The decision boundary is the red line “half way” between H, and H. The equation of the decision
boundary is -x+2=0. The following picture illustrates the solution:
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14. Show for the polynomial kernel function
K(x,2)=(<xez> + 9)", d=2, 9=1, x=(x1,X2), 2=(21,22)
that

K(x,2)=<®(x)* ®(z)> for P(y)=(1, V2y1, V2¥2, yi’, y2°, V2y1y2)

Solution
K(x,z)=(<x*z> + 1 )2:(x121+xzzz+ 1 )2:X12212+X22222+ 142X121X220+2X121+2X2Z>

<®(x)* D(z)>=<(1, V2x;, V2x,, xlz, xzz, V2x1x2)( 1, V22, V225, 212, 222, V2z,2,)>=
= 1+V2x,V22,+V2x,V22,+ x12 212+ X22 222+\/2x1xz\/22122:

=1+ 2x; z1+2X,2,+ x12 212+ X22 222-1- 2X1 21X2Zs

QED



