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Discovery and verification of BPM processes

event logs automatic discovery experts model
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Motivation

Discovery and verification of BPM processes equivalent to other model?
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. compliant?

in Petri nets for typical BPM processes, verification tasks can be effectively decided
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Discovery and verification of data-aware BPM processes

Xcost» Xpaid»
Xorder typer - - -

Assumption
data is represented by numeric variables, can be read and written by transitions
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State Space Jungle

The Infinite

order type =7

order type =1 order type =1 order type =3 order type =3
cost =10 e cost =11 cost =100 cost =100 cost=0
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paid = paid =20 paid =10 paid =2 paid =2 paid =2 paid =10
Checked checked checked checked checked checked declined
order type =1 order type =2 order type = order type =7
cost =10 cost=2 cost = 100 .. cost=0
paid =0 paid =0 paid =0 paid =0
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The Infinite State Space Jungle
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The Infinite State Space Jungle
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The Infinite State Space Jungle
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The Infinite State Space Jungle

partition infinite state space
using (finitely many) formulas
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Motivation

Discovery and verification of data-aware BPNV equivalent to other model?

. compliant?

@ . data-aware sound?

Xcost» Xpaid»
®) Xorder typer - - -

This talk
identify classes of data-aware models where verification tasks are decidable
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Data Petri net (DPN) Example (Auction model)

» based on Petri net
» initial and final markings M, and Mg
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with numeric domain (Q or Z)

Example (Auction model)

t timer Q
o last offer Q

6/100




Data Petri net (DPN)

v

based on Petri net

initial and final markings M, and Mg
data: set of “global” variables V

with numeric domain (Q or Z)

initial values of V are fixed by valuation

Qo

Example (Auction model)

t timer Q
o last offer Q

6/100




Data Petri net (DPN) Example (Auction model)

» based on Petri net

initial and final markings M, and Mg init
[t'>0A o =0]

v

» data: set of “global” variables V
with numeric domain (Q or Z) [t>0A0 >0l
» initial values of V are fixed by valuation ag

» transitions have guards that read and write variables: [t<0A 0> 0]

t timer Q

linear arithmetic expressions over V and V’
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6/100
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Data Petri net (DPN) Example (Auction model)

» based on Petri net

» initial and final markings M, and Mg init
» data: set of “global” variables * requires that t positive, increases o| |0/ =0
with numeric domain (Q or Z) [t>0n0 >b'o‘1

[t>0At <t

» initial values of V are fixed by valuation ag
» transitions have guards that read and write variables:

L] sell
[t<0A0>0]

t timer Q

linear arithmetic expressions over V and V’
o last offer Q
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Data Petri net (DPN) Example (Auction model)

set o to 0 and t to positive value‘

» based on Petri net

initial and final markings M, and Mg init
[t'>0A o =0]

v

» data: set of “global” variables V
with numeric domain (Q or Z) [£>0A0 > 0]

» initial values of V are fixed by valuation ag

» transitions have guards that read and write variables:

[t>0At <t

sell
[t<0A0>0]

t timer Q

linear arithmetic expressions over V and V’
o last offer Q
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Data Petri net (DPN) Example (Auction model)

» based on Petri net

initial and final markings M, and Mg init
[t'>0A o =0]

v

» data: set of “global” variables V
with numeric domain (Q or Z) [t>0A0 >0l
» initial values of V are fixed by valuation ag

» transitions have guards that read and write variables: [t<0A0>0]

t timer Q

linear arithmetic expressions over V and V’ ‘
o last offer Q

Background logic

» propositional logic + theory of linear arithmetic over integers and rationals

» satisfiability is decidable (SMT solvers), quantifiers can be eliminated

6/100




Data Petri net (DPN) Example (Auction model)

» based on Petri net

initial and final markings M, and Mg init
[t'>0A o =0]

v

» data: set of “global” variables V
with numeric domain (Q or Z) [t>0A0 >0l
» initial values of V are fixed by valuation ag

» transitions have guards that read and write variables: [t<0A0>0]

t timer Q

linear arithmetic expressions over V and V’ ‘
o last offer Q

Remark
» DPNs can be mined automatica”y from data [Mannhardt et al 2016, de Leoni 2013]
» used to model BPM processes from various domains [Mannhardt et al 2016, Mannhardt 2018]
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Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded
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Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)
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Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

timer t=0| init t=2| bid
[t>0At <t 070‘ )‘plz 070‘ ?

t=2
0=10

time t=0
P12 —5 P12 0—10

—>|p3
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> state of DDSA is tuple (s, «) of control state s and assignment « to data variables V

Example
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State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V

> abstract state is tuple (s, ) of control state s and formula ¢ with free variables V/
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<
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describes how formula ¢ changes after transition a

Definition (Update) 7

for formula ¢ and transition a in DDSA

update(p, a) =

9/100



Definition (Update)

for formula © and transition g il rename variables in formula to auxiliary V= {V| S V}

e

update(p,a) = (V)
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Definition (Update)

for formula ¢ and transition a in DDSA ’guard must hold, propagate variables that are not written

update(p, a) = (V) A guard ,(V, V) A //V: v

v&write(a)
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Definition (Update) ’3 quantification to get formula with free variables V‘
for formula ¢ and transition a in DDSA /

update(p,a) = V. (o(V) A guard ,(V, V) A /\ v=yv)

v write(a)
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Definition (Update)
for formula ¢ and transition a in DDSA

can get equivalent quantifier-free formula by quantifier elimination

update(p,a) = V. (p(V) A guard (V,V) A" J\ V=v)

v write(a)
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Definition (Update)
for formula ¢ and transition a in DDSA

update(p,a) = IV. (p(V) A guard (V,V)A  \ T=v)

v write(a)

Definition (Constraint graph)
is graph with node set of abstract states such that
» initial node is (so, o), with g = A\ v = ao(v)
» for every node (s, ) where s 2, s’ and update(p, a) is satisfiable
there is node (s’, ') such that ¢’ = update(p, a), and edge (s,¢) 25 (s',¢')
> (s,...) € Nis final if s is final in DDSA
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Example (Constraint graph for auction model)

bid
[t>0A0 > 0] =

sell [t <OAo0>0]

unreachable transition

Key Lemma

3 DDSA run (sp, ) 25 (s, ) — 3 pathin CG (sp,0) X (s, ) with o = ¢

’if CG is finite, reachability is decidable‘

Observation
control state or transition of DDSA are reachable iff they appear in the constraint graph



Example (Constraint graph for auction model)

bid
[t>0A0 >0]

sell [t <OAo0>0]

unreachable transition

Key Lemma

3 DDSA run (sp, ) 25 (s, ) — 3 pathin CG (sp,0) X (s, ) with o = ¢

Caveat

constraint graph can be infinite



Decidability Conditions formulas in CG are history constraints:
3...3 (conjunctions of renamed transition guards)

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite
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Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]
» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x%% Y =0 [Demri & de Souza 2006]

} applies to all DPNs mined according to [Mannhardt et al 2016] ‘

init
[t'>0A 0" =0]

[t<0A0>0]
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Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary ‘capture wide range of DPNs from literature L]
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Linear-Time Model Checking

Verification problem: Compliance
given DDSA and LTL¢ formula % with arithmetic constraints:

constraint | control state | Yy A | Y Vp | (action)yp | Xip | Fyp | Gy | p U
is there a witness run of DDSA that satisfies 7

Example
reset [0 =0]
?- '50n0'=0 » F((0=100) A G (ps — o # 100)): witness exists
bid it is possible that bid of 100€ does not win
[t>0A0">0]
» F ((bid)(sell)T): no witness exists

sell [t <0 A o0>0]

it is possible that a sell happens right after a bid

Fact

can construct finite automaton (NFA) accepting exactly those runs that satisfy LTL; property
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bar: [y’ > x]
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DDSA NFA for v product automaton N

Product automaton

» nodes are triples (DDSA state, NFA state, formula)
» construction is similar as for constraint graph, but edges combine DDSA and NFA steps
» final nodes are those that combine final DDSA and NFA state

Theorem can use SMT solver to extract witness from accepting path

» product automaton has final node iff DDSA admits Wit@ for 1

[Felli, Montali & W, AAAI 2022]
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Model checking approach

o foo: [x' > y] @
+ D=L @e
bar: [y’ > x]

(2[11;[x>y/\y:0)%)(a'51[T[x>0/\y>x/\y>@
DDSA NFA for ¢ product automaton N

Product automaton

» nodes are triples (DDSA state, NFA state, formula)
» construction is similar as for constraint graph, but edges combine DDSA and NFA steps
» final nodes are those that combine final DDSA and NFA state

Theorem

» product automaton has final node iff DDSA admits witness for 1)
» LTLs model checking is decidable if DDSA has finite summary with respect to

[Felli, Montali & W, AAAI 2022]
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Definition

DPN is data-aware sound if
from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)

’can be checked on corresponding DDSA‘

B all transitions are reachable

Soundness checking approach [Felli, Montali & W, CAISE 2022]
‘ if DDSA has finite summary, data-aware soundness is decidable

» can check B and H directly on CG
» for fl: for each non-final CG node (s, ¢):

» compute CG; starting from s and unknown initial values V4
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init [/ >0 A o/ = 0]

[t>0A 0" >0]

not data-aware sound because
» transition reset is unreachable

=g
(t >0)

» deadlocks exist, e.g. after ‘po

have reach _final(p12) =

timer,

=

o=og ANt=tg
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timer [(P3[[o=00 >0 t=1>0)

(Pr2[o=0p At <ty A to> 0], timer
\sell

(Ps]lo=n>0At<to At<OAt>0)

Pr2[o>o00 At=tg At>0]
bid tlmer\L

( Plz‘o\oo/\t0>0/\t0>t]
tim timer
sell o>oO Ato>t >0 bid

(P3]lo>00n0>0At>tAtSOA L >0)

20/100



Example (Auction)

reset [0 =0]

init [/ >0 A o/ = 0]

[t>0A 0" >0]

not data-aware sound because
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» deadlocks exist, e.g. after ‘ _init o ‘

have reach _final(p12) =

20/100
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Example (Auction)

< sell
timer |(P3][o=00 >0 A t =1, >0)

[Plz ‘ o=o0g At<tgA to> O]D timer
A\sell

(Pso=c0>0At<to At<OAt>0]

Pr2[o>o00 At=tg At>0]
bid timer\L

( Plz‘o/\oo/\to/\o/'\to/\t]
time bid timer

sell

(pslo>0nt>0

not data-aware sound because (Palo>onn0>0Ato>tAL<ON >0

éig‘ init ‘Pu 52(1)‘ timer,
have reach _final(pi2) = (t > 0), and (o = 0) - (t > 0)

bid

» transition reset is unreachable

» deadlocks exist, e.g. after ‘po

Branching-time model checking
use similar approach to obtain CTL* model checking procedure

[Felli, Montali & W, 1JCAR 2022]
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Example (Road fine management process)

®

d#0V (p=0At=>a)

o

add penalty
payment payment payment 2 =?
t =7 t =7
) i t' =7

L] 7
- . . [
create fine send fine insert notification LTV
\l \ \l \l d =nil

L N , 1 appeal to judge
a,t',d\p =7 0>ds' >2160 A e =7 7 g

1

0>dj' >1440 A d' >0
t>ate

credit collection

Vi
A

appeal to prefecture

|
[4 .
0>dp' > 1440

send to prefecture
[ 1

LN
d =?

[Mannhardt et al 2016]
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Example (Road fine management process) not data-aware sound

add penalty
pay,ment pa;iment payment 2 =?
t' =7 W =7 t =7

L] L]
) ) ) [
create fine send fine insert notification LTV
@ ] \, N \] d = nil

e n_J U 7L appeal to judge
a,t',d,p' =7 0>ds' >2160 A e =? s ]

0>dj' >1440 A d' >0
t>ate

credit collection

Vi
A

appeal to prefecture
1

d#0V (p=0At=>a)

AT
t<a+t+e [4 .

N N ) 1440
process is stuck if d ¢ {ml,#}r
s \/
result prefecture send to prefecture
iV f\( B(
d =nil )J d =?
T4
| Vi J
LS
d=1

[Mannhardt et al 2016]
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Monitoring Arithmetic Temporal Properties

given a trace of values, check current and possible future satisfaction of LTL; properties like
p t1=(20)U(x>yAG(x>y))

— / = o o .
p P2=G>x)AF(x=2) x" is value of x looking one trace instant ahead
x=0 x=1 x=4 x=5 x= 6
y=0 y=3 y=3 y=4 y==4

11 holds but could get violated in the future! /

1, does not hold and will never hold in the future!
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— / = o o .
p P2=G>x)AF(x=2) x" is value of x looking one trace instant ahead
x=0 x=1 x=4 x=5 x= 6
y=0 y=3 y=3 y=4 y==4

11 holds but could get violated in the future! /

1, does not hold and will never hold in the future!

Results

» developed monitoring procedure
» use finite summary approach to identify classes of properties where problem is decidable

[Felli, Montali, Patrizi & W, AAAI 2023]
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Process Equivalence

Verification problem
given two DPNs, do they have the same sets of configurations, and/or the same language?

Results

» can be determined using constraint graphs

» decidable for finite summary systems
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Implementation

Arithmetic DDS Analyzer (ada)

input DPN (+ LTLf or CTL} property)

checks for decidability conditions, visualizes CG/product automaton
performs LTL¢, CTL} model checking, soundness checking, and monitoring
computes Witness/counterexample

written in Python, using Z3/Yices/CVC5 for SMT solving and quantifier elimination
https://1tl.adatool.dev https://soundness.adatool.dev
https://ctlstar.adatool.dev
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Implementation

Arithmetic DDS Analyzer (ada)

input DPN (+ LTLf or CTL} property)
checks for decidability conditions, visualizes CG/product automaton

>
>
» performs LTL¢, CTL} model checking, soundness checking, and monitoring
» computes Witness/counterexample

>

written in Python, using Z3/Yices/CVC5 for SMT solving and quantifier elimination
https://1tl.adatool.dev https://soundness.adatool.dev

https://ctlstar.adatool.dev

Experiments

» about 60 DPNs (20 from literature, 40 artificial)

» all DPNs from literature are in some decidable class for LTL¢ (but not CTL}) model checking


https://ltl.adatool.dev
https://soundness.adatool.dev
https://ctlstar.adatool.dev

Arithmetic DO

» input DPN
» checks for d
» performs LT]
» computes w
» written in P
1
Experimentsé
» about 60 Df
» all DPNs frq

process

property

0
o
-

b

road fines (1)

no deadlock

2052

x
AG (p7 — EF end) v 7.6s 7655 1987
road fines (2) no deadlock v 15m27s 247563 9 4927
AG (p7 — EFend) v 16m7s 246813 4927
road fines (3) no deadlock X 9s 9179 9 1985
AG (p7 — EFend) v 6.6s 6382 1597
EF (dS > 2160) X 1155 17680 1280
hospital billing no deadlock v 20m59s 1234928 17 23147
EF (p16 A —closed) v 10m20s 669379 10654
sepsis (1) no deadlock v 1m36s 139 301 44939
AG (sink — ter < t,p) X 30.1s 170 22724
AG (sink —> ter+60 > t) v 32s 153 22538
sepsis (2) no deadlock v 7m24 4524 301 161242
A (—lacticAcid U (diagnostic) T) v 3m53s 5734 74984
board: register no deadlock v 1.4s 12 7 27
board: transfer no deadlock v 1.4s 27 7 51
board: discharge no deadlock v 1.5s 25 6 67
AG (p2 A 03=207 — AG 03=207) v 1.5s 94 91
AG (EF (tra) T A EF (his) T) v 1.5s 27 98
—E (F (tra) T A F (his) T) v 1.4s 56 43
credit approval no deadlock v 1.7s 470 6 230
AG ((openLoan) T — ver A dec) v 13.2s 14156 645
A (F (ver A dec) — F (openLoan)T) X 3.7s 3128 316
package handling no deadlock v 2.7ss 1025 16 693
no deadlock (71) v 2.5s 1079 398
yy = EF (fetch) T X 2.6s 850 343
Wyp = EF (76) T X 2.4s 875 336
auction no deadlock X 10.8s 1683 5 186
EF (sold A d >0 A o< t) x 6.45 1180 79
EF (b=1Ao0>tAF(sold Ab>1)) | v 26.5s 4000 263



https://ltl.adatool.dev
https://soundness.adatool.dev
https://ctlstar.adatool.dev
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Future work

» further SMT theories, e.g. allow guards to refer to database
» discover more expressive transition guards for DPNs :)
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... all of this is the result of a fun collaboration with

Marco Montali Paolo Felli Fabio Patrizi
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