Using Logic to Escape the Jungle of Data-aware Process Verification

Sarah Winkler
Free University of Bozen-Bolzano, Italy

seminar @ DTU Compute, 7.9.2023

Discovery and verification of BPM processes

event logs automatic discovery experts model

2/100

Motivation

Discovery and verification of BPM processes equivalent to other model?

5@ @b—m%m

. compliant?

sound?

e.g. every order is eventually shipped

2/100

Motivation

Discovery and verification of BPM processes equivalent to other model?

5@ @b*“%“

. compliant?

in Petri nets for typical BPM processes, verification tasks can be effectively decided

2/100

Discovery and verification of data-aware BPM processes

Xcost» Xpaid»
Xorder typer - - -

Assumption
data is represented by numeric variables, can be read and written by transitions

2/100

Motivation

Discovery and verification of data-aware BPNV equivalent to other model?

. compliant?

@ . data-aware sound?

Xcost» Xpaid»
®) Xorder typer - - -

Assumption
data is represented by numeric variables, can be read and written by transitions

2/100

State Space Jungle

The Infinite

order type =7

order type =1 order type =1 order type =3 order type =3
cost =10 e cost =11 cost =100 cost =100 cost=0
paid =22 paid =11 paid =30 paid =3 paid =10
checked checked checked checked resumed
order type =1 order type =1 order type =1 order type = order type = order type =17 order type =7
cost = lO cost =10 cost =10 cost = LOO cost = 100 cost=0 e cost=0
paid = paid =20 paid =10 paid =2 paid =2 paid =2 paid =10
Checked checked checked checked checked checked declined
order type =1 order type =2 order type = order type =7
cost =10 cost=2 cost = 100 .. cost=0
paid =0 paid =0 paid =0 paid =0
ordered ordered ordered declined

order type =0
cost =0
paid =0
init

3/100

The Infinite State Space Jungle

order type =7

order type =1 order type =1 order type =3 order type =3
cost =10 . cost =11 cost =100 cost =100 cost =0
paid =22 paid =11 paid =30 paid =3 paid =10
checked checked checked checked resumed
order type =1 order type =1 order type =1 order type = order type = order type =17 order type =7
cost = lO cost =10 cost =10 cost = LOO cost = 100 cost =0 e cost =0
paid = paid =20 paid =10 paid =2 paid =2 paid =2 paid =10
Checked checked checked checked checked checked declined
order type =1 order type =2 order type = order type =7
cost =10 cost=2 cost = 100 .. cost=0
paid =0 paid =0 paid =0 paid =0
ordered ordered ordered declined
compliant?
order type =0
cost =0 ... data-aware sound?
paid =0
init
?

3/100

The Infinite State Space Jungle

order type =7

order type =1 order type =1 order type =3 order type =3
cost =10 e cost =11 cost =100 cost =100 cost=0
paid =22 paid =11 paid =30 paid =3 paid =10
checked checked checked checked resumed
order type =1 order type =1 order type =1 order type =3 order type =3 order type =17 order type =7
cost =10 cost =10 cost =10 cost =100 cost =100 cost=0 e cost=0
paid =15 paid =20 paid =10 paid =2 paid =2 paid =2 paid =10
checked checked checked checked checked checked declined
order type =1 order type =2 order type =3 order type =7
cost =10 cost=2 cost =100 .. cost=0
paid =0 paid =0 paid =0
declined

paid =0
ordered ordered ordered
... CO ‘
order type =0
cost =0 X soun d ?
7

paid =0
init “

3/100

The Infinite State Space Jungle

3/100

92
a0
c
=]

-_
[}
(@]
(s}
Qo

7))
[}
e
(3]
-

0]
[}

=
c

=
=
[}

e

T

The Infinite State Space Jungle

3/100

The Infinite State Space Jungle

partition infinite state space
using (finitely many) formulas

3/100

Motivation

Discovery and verification of data-aware BPNV equivalent to other model?

. compliant?

@ . data-aware sound?

Xcost» Xpaid»
®) Xorder typer - - -

This talk
identify classes of data-aware models where verification tasks are decidable

4/100

5/100

Data Petri net (DPN) Example (Auction model)

» based on Petri net
» initial and final markings M, and Mg

6/100

Data Petri net (DPN)

v

based on Petri net

initial and final markings M, and Mg
data: set of “global” variables V
with numeric domain (Q or Z)

Example (Auction model)

t timer Q
o last offer Q

6/100

Data Petri net (DPN)

v

based on Petri net

initial and final markings M, and Mg
data: set of “global” variables V

with numeric domain (Q or Z)

initial values of V are fixed by valuation

Qo

Example (Auction model)

t timer Q
o last offer Q

6/100

Data Petri net (DPN) Example (Auction model)

» based on Petri net

initial and final markings M, and Mg init
[t'>0A o =0]

v

» data: set of “global” variables V
with numeric domain (Q or Z) [t>0A0 >0l
» initial values of V are fixed by valuation ag

» transitions have guards that read and write variables: [t<0A 0> 0]

t timer Q

linear arithmetic expressions over V and V’
o last offer Q

6/100

Data Petri net (DPN) Example (Auction model)

primed variables refer to next state ‘

» based on Petri net

initial and final markings M, and Mg init
[t'>0A o =0]

v

» data: set of “global” variables V
with numeric domain (Q or Z) [t>0A0 >0l
» initial values of V are fixed by valuation ag

» transitions have guards that read and write variables: [t<0A0>0]

t timer Q

linear arithmetic expressions over V and V’
o last offer Q

6/100

Data Petri net (DPN) Example (Auction model)

» based on Petri net
initial and final markings M, and Mg it

w o . ">0N0' =0
» data: set of “global” variables V It o'=0

v

with numeric domain (Q or Z) [t>0A0 ;’iﬂ

C 0 a t>0AE <t
» initial values of V are fixed by valuation ag [t>0nt'<t]

.. . . sell
» transitions have guards that read and write variables: ; [t<0A0>0]
. . . . p t timer Q
linear arithmetic expressions over V and V . 7
requires that t < 0 and o positive

6/100

Data Petri net (DPN) Example (Auction model)

» based on Petri net

» initial and final markings M, and Mg init
» data: set of “global” variables * requires that t positive, increases o| |0/ =0
with numeric domain (Q or Z) [t>0n0 >b'o‘1

[t>0At <t

» initial values of V are fixed by valuation ag
» transitions have guards that read and write variables:

L] sell
[t<0A0>0]

t timer Q

linear arithmetic expressions over V and V’
o last offer Q

6/100

Data Petri net (DPN) Example (Auction model)

set o to 0 and t to positive value‘

» based on Petri net

initial and final markings M, and Mg init
[t'>0A o =0]

v

» data: set of “global” variables V
with numeric domain (Q or Z) [£>0A0 > 0]

» initial values of V are fixed by valuation ag

» transitions have guards that read and write variables:

[t>0At <t

sell
[t<0A0>0]

t timer Q

linear arithmetic expressions over V and V’
o last offer Q

6/100

Data Petri net (DPN) Example (Auction model)

» based on Petri net

initial and final markings M, and Mg init
[t'>0A o =0]

v

» data: set of “global” variables V
with numeric domain (Q or Z) [t>0A0 >0l
» initial values of V are fixed by valuation ag

» transitions have guards that read and write variables: [t<0A0>0]

t timer Q

linear arithmetic expressions over V and V’ ‘
o last offer Q

Background logic

» propositional logic + theory of linear arithmetic over integers and rationals

» satisfiability is decidable (SMT solvers), quantifiers can be eliminated

6/100

Data Petri net (DPN) Example (Auction model)

» based on Petri net

initial and final markings M, and Mg init
[t'>0A o =0]

v

» data: set of “global” variables V
with numeric domain (Q or Z) [t>0A0 >0l
» initial values of V are fixed by valuation ag

» transitions have guards that read and write variables: [t<0A0>0]

t timer Q

linear arithmetic expressions over V and V’ ‘
o last offer Q

Remark
» DPNs can be mined automatica”y from data [Mannhardt et al 2016, de Leoni 2013]
» used to model BPM processes from various domains [Mannhardt et al 2016, Mannhardt 2018]

6/100

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)
» labeled transition system

» control states: markings of DPN
» transitions: reflect firings in DPN

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN

Example (DDSA for DPN)

reset

7/100

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN

» data variables V like in DPN, with ag

Example (DDSA for DPN)

reset

7/100

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag

Example (DDSA for DPN)

reset [o=0]

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

timer
[t>0nt <t]

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

timer
[t>0nt <t]

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

bid
[t>0A0" >0]

t=2| bid
070‘]

t*O‘ init

—)‘Plz

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

t—=2| bid t=2
070‘ P12 5210

t*O‘ init

—)‘Plz

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

—)‘Plz

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

t|me§

t=2 bid} =2
070‘ 0=10

t=0

P12 P12 o= 10‘

t*O‘ init

—)‘Plz

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

t=2| bid sell
070‘)

—

timer t=0| init
[t>0At <] 070‘_)‘;312

t=2
0=10

time t=0
P12 —5 P12 0—10

Observation
if underlying Petri net is bounded, DPN has finite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

» labeled transition system
» control states: markings of DPN
» transitions: reflect firings in DPN, with same guards

» data variables V like in DPN, with ag
» run is sequence of states and valuations of V

Example (DDSA for DPN)

reset [o=0]

timer t=0| init t=2| bid
[t>0At <t 070‘)‘plz 070‘ ?

t=2
0=10

time t=0
P12 —5 P12 0—10

—>|p3

sell ‘

State Space Abstraction

Definitions

> state of DDSA is tuple (s, «) of control state s and assignment « to data variables V

Example

8/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V

Example

O N

O ~+

» state pr

8/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V

» abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

Example

O N

O ~+

» state pr

8/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V

> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

Example
> state pe |1 é
> abstract state (P2, @)

v =(0=0)A(t>0)

8/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V
> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
> state pe |1 é
» abstract state (pr,¥)

v =(0=0)A(t>0)

8/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V
> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
> state pr éié
matches :
<
» abstract state (pr,¥)

v =(0=0)A(t>0)

8/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V
> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
t=2 bid t=2
> state P2 | Z0 Nryvzd Pe |10
matches :
e
» abstract state (pr,¥)

v =(0=0)A(t>0)

8/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V

> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
> state pr éié
matches :
<
» abstract state (pr,¥)

v =(0=0)A(t>0)

3 t=2
>0A0 >0 (% 10
bid ¥

8/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V

> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
> state pr éié
matches :
<
» abstract state (pr,¥)

v =(0=0)A(t>0)

bid p—
t>0A0 >0 e 10
bid v
t>0A0 >0 ('D12‘Y)
=7

8/100

describes how formula ¢ changes after transition a

Definition (Update) 7

for formula ¢ and transition a in DDSA

update(p, a) =

9/100

Definition (Update)

for formula © and transition g il rename variables in formula to auxiliary V= {V| S V}

e

update(p,a) = (V)

9/100

Definition (Update)

for formula ¢ and transition a in DDSA ’guard must hold, propagate variables that are not written

update(p, a) = (V) A guard ,(V, V) A //V: v

v&write(a)

9/100

Definition (Update) ’3 quantification to get formula with free variables V‘
for formula ¢ and transition a in DDSA /

update(p,a) = V. (o(V) A guard ,(V, V) A /\ v=yv)

v write(a)

9/100

Definition (Update)
for formula ¢ and transition a in DDSA

can get equivalent quantifier-free formula by quantifier elimination

update(p,a) = V. (p(V) A guard (V,V) A" J\ V=v)

v write(a)

9/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V
> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
bid _
> state e Otié t:~0‘jo’>o pe é;%o
rnatchesg
- bid My
» abstract state (pr,¥) Rryeael (pr,¥’)
¢ =(0=0)A(t>0) @' = update(p, bid)

10/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V
> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
bid _
> state e Otié t>0 ‘jo’/\o pe é;%o
rnatchesg
v bid v
» abstract state (pr,¥) Rryeael (pr,¥’)
¢ =(0=0)A(t>0) ¢! = update(p,bid)
=Jot.(0=0) A (t>0)

10/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V

> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
> state pr 5*5
matches :
<
» abstract state (pr,¥)

v =(0=0)A(t>0)

bid p—
t50n0 %o Pelo=10
bid v
Sona Lo (P, ¢)
¢ = update(p, bid)
— 367, (6=0) A (>0) A (F>0) A (0>3)

10/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V
> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
bid _
> state e Otié t\O‘jo’/\o pe é;%o
rnatchesg
v bid v
» abstract state (pr,¥) Rryeael (pr,¥’)
¢ =(0=0)A(t>0) ¢! = update(p,bid) - R
=3ot. (0=0) A (t>0) A (t>0) A (0>0) A (t=t)

10/100

State Space Abstraction

Definitions

» state of DDSA is tuple (s, «) of control state s and assignment « to data variables V
> abstract state is tuple (s,) of control state s and formula ¢ with free variables V/

> (s,a) matches (s,¢) if a E ¢

Example
t=2 bid t=2
» state Pe 0o t;()x‘T’Zo Pe | 5-10
rnatchesg
v bid v
» abstract state (P, ¥) Sa—E (pr,¢")
¢ =(0=0)A(t>0) ¢! = update(p,bid) - -
=3Jot. (0=0) A (t>0) A (t>0) A (0>0) A (t=t)
=(0>0)A(t>0)

10/100

Definition (Update)

for formula ¢ and transition a in DDSA

update(p,a) = IV. (p(V) A guard (V,V)A \ T=v)

v write(a)

Definition (Constraint graph)

is graph with node set of abstract states such that

Definition (Update)

for formula ¢ and transition a in DDSA

update(p,a) = IV. (p(V) A guard (V,V)A \ T=v)

v write(a)

Definition (Constraint graph)
is graph with node set of abstract states such that
» initial node is (so, o), with o = Ay v = ao(v)

Definition (Update)

for formula ¢ and transition a in DDSA

update(p,a) = IV. (p(V) A guard (V,V)A \ T=v)

v write(a)

Definition (Constraint graph)
is graph with node set of abstract states such that
» initial node is (so, o), with g = A\ v = ao(v)

» for every node (s,)

Definition (Update)

for formula ¢ and transition a in DDSA

update(p,a) = IV. (p(V) A guard (V,V)A \ T=v)

v write(a)

Definition (Constraint graph)
is graph with node set of abstract states such that
» initial node is (so, o), with g = A\ v = ao(v)

» for every node (s,) where s 2, s’

Definition (Update)

for formula ¢ and transition a in DDSA

update(p,a) = IV. (p(V) A guard (V,V)A \ T=v)

v write(a)

Definition (Constraint graph)
is graph with node set of abstract states such that
» initial node is (so, o), with g = A\ v = ao(v)

» for every node (s,) where s 2, s’ and update(p, a) is satisfiable

Definition (Update)

for formula ¢ and transition a in DDSA

update(p,a) = IV. (p(V) A guard (V,V)A \ T=v)

v write(a)

Definition (Constraint graph)
is graph with node set of abstract states such that
» initial node is (so, o), with g = A\ v = ao(v)
» for every node (s,) where s 2, s’ and update(p, a) is satisfiable
there is node (s, ¢') such that ¢ = update(yp, a)

Definition (Update)

for formula ¢ and transition a in DDSA

update(p,a) = IV. (p(V) A guard (V,V)A \ T=v)

v write(a)

Definition (Constraint graph)
is graph with node set of abstract states such that
» initial node is (so, o), with g = A\ v = ao(v)
» for every node (s,) where s 2, s’ and update(p, a) is satisfiable
there is node (s’, ') such that ¢’ = update(p, a), and edge (s,) 2 (s',¢')

Definition (Update)
for formula ¢ and transition a in DDSA

update(p,a) = IV. (p(V) A guard (V,V)A \ T=v)

v write(a)

Definition (Constraint graph)
is graph with node set of abstract states such that
» initial node is (so, o), with g = A\ v = ao(v)
» for every node (s,) where s 2, s’ and update(p, a) is satisfiable
there is node (s’, ') such that ¢’ = update(p, a), and edge (s,¢) 25 (s',¢')
> (s,...) € Nis final if s is final in DDSA

Example (Constraint graph for auction model)

bid
[t>0A0 >0]

Example (Constraint graph for auction model)

bid
[t>0A0 >0]

Key Lemma

3 DDSA run (sp,) 25 (s,) — 3 pathin CG (sp,%0) 2 (s,) with o |= ¢

Example (Constraint graph for auction model)

bid
[t>0A0 >0]

Key Lemma

3 DDSA run (sp,) 25 (s,) — 3 pathin CG (sp,0) X (s,) with o = ¢

12/100

Example (Constraint graph for auction model)

bid
[t>0A0 > 0] =

Key Lemma

3 DDSA run (sp,) 25 (s,) — 3 pathin CG (sp,0) X (s,) with o = ¢

Observation
control state or transition of DDSA are reachable iff they appear in the constraint graph

Example (Constraint graph for auction model)

bid
[t>0A0 > 0] =

sell [t <OAo0>0]

unreachable transition

Key Lemma

3 DDSA run (sp,) 25 (s,) — 3 pathin CG (sp,0) X (s,) with o = ¢

Observation
control state or transition of DDSA are reachable iff they appear in the constraint graph

Example (Constraint graph for auction model)

bid
[t>0A0 > 0] =

sell [t <OAo0>0]

unreachable transition

Key Lemma

3 DDSA run (sp,) 25 (s,) — 3 pathin CG (sp,0) X (s,) with o = ¢

’if CG is finite, reachability is decidable‘

Observation
control state or transition of DDSA are reachable iff they appear in the constraint graph

Example (Constraint graph for auction model)

bid
[t>0A0 >0]

sell [t <OAo0>0]

unreachable transition

Key Lemma

3 DDSA run (sp,) 25 (s,) — 3 pathin CG (sp,0) X (s,) with o = ¢

Caveat

constraint graph can be infinite

Decidability Conditions formulas in CG are history constraints:
3...3 (conjunctions of renamed transition guards)

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

13/100

Decidability Conditions

Definition (Finite summary) abstract decidability condition
DDSA has finite summary if set of history constraints is finite

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]
» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x > % Y =0 [Demri & de Souza 2006]

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]
» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x%% Y =0 [Demri & de Souza 2006]

} applies to all DPNs mined according to [Mannhardt et al 2016] ‘

init
[t'>0A 0" =0]

[t<0A0>0]

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]
» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x > % Y =0 [Demri & de Souza 2006]
» integer periodicity constraints over Z: x =y, x < 3, y =5 3 [Demri 2006, Gascon 2009]

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]

» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x > % Y =0 [Demri & de Souza 2006]
» integer periodicity constraints over Z: x =y, x < 3, y =5 3 [Demri 2006, Gascon 2009]
| 2 gap—order COnStraif]tS: X =Yy 2 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]

» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x > % Y =0 [Demri & de Souza 2006]
» integer periodicity constraints over Z: x =y, x < 3, y =5 3 [Demri 2006, Gascon 2009]
| 2 gap—order COnStraintS: X =Yy 2 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

» restrict control flow:

> feedback freedom [Damaggio, Deutsch & Vianu 2012]

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]

» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x > % Y =0 [Demri & de Souza 2006]
» integer periodicity constraints over Z: x =y, x < 3, y =5 3 [Demri 2006, Gascon 2009]
| 2 gap—order COnStraintS: X =Yy 2 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

» restrict control flow:

> feedback freedom [Damaggio, Deutsch & Vianu 2012]
» bounded memory

‘ idea: behaviour depends on bounded number of past steps ‘

13/100

Decidability Conditions

Definition (Finite road fine management process
DDSA has finite sum P

Concrete instance @ 4, 79 .74

[Felli, Montali & W, AAAI 2022]
» restrict shape of
» variable-to
» integer per
» gap-order ™

y= 0 [Demri & de Souza 2006]

[Demri 2006, Gascon 2009]

\ L - e rans 1995, Bozzelli & Pinchinat 2014]
» restrict control { =
> feedback freedom [Damaggio, Deutsch & Vianu 2012]
» bounded memory

‘ idea: behaviour depends on bounded number of past steps ‘

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]

» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x > % Y =0 [Demri & de Souza 2006]
» integer periodicity constraints over Z: x =y, x < 3, y =5 3 [Demri 2006, Gascon 2009]
| 2 gap—order COnStraintS: X =Yy 2 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

» restrict control flow:

> feedback freedom [Damaggio, Deutsch & Vianu 2012]
» bounded memory

» DDSA can be decomposed into subsystems that have finite summary

» into sequential process parts
» by splitting variables

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary [Felli, Montali & W, AAAI 2022]

» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x > % Y =0 [Demri & de Souza 2006]
» integer periodicity constraints over Z: x =y, x < 3, y =5 3 [Demri 2006, Gascon 2009]
| 2 gap—order COnStraintS: X =Yy 2 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

auction process

» restrict control flow:

» feedback freedom
» bounded memory

» DDSA can be decomposed into subsystems that have finite Sy .«mary

» into sequential process parts
» by splitting variables

13/100

Decidability Conditions

Definition (Finite summary)
DDSA has finite summary if set of history constraints is finite

Concrete instances of finite summary ‘capture wide range of DPNs from literature L]

» restrict shape of transition guards:

» variable-to-variable/constant comparisons over Q: x <y, x > % Y =0 [Demri & de Souza 2006]
» integer periodicity constraints over Z: x =y, x < 3, y =5 3 [Demri 2006, Gascon 2009]
| 2 gap—order COnStraintS: X =Yy 2 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

» restrict control flow:

> feedback freedom [Damaggio, Deutsch & Vianu 2012]
» bounded memory

» DDSA can be decomposed into subsystems that have finite summary

» into sequential process parts
» by splitting variables

13/100

Linear-Time Model Checking

Verification problem: Compliance
given DDSA and LTL¢ formula % with arithmetic constraints:
constraint | control state | Yy A | Y Vp | (action)yp | Xip | Fyp | Gy | p U

is there a witness run of DDSA that satisfies 7

15/100

Linear-Time Model Checking
evaluated over finite traces

Verification problem: Co%pliance
given DDSA and LTL; formula v with arithmetic constraints:
constraint | control state | Yy A | Y Vp | (action)yp | Xip | Fyp | Gy | p U

is there a witness run of DDSA that satisfies 7

15/100

Linear-Time Model Checking

Verification problem: Compliance
given DDSA and LTL¢ formula % with arithmetic constraints:

constraint | control state | Yy A | Y Vp | (action)yp | Xip | Fyp | Gy | p U
is there a witness run of DDSA that satisfies 7

Example

reset [0 =0]
?- >0nd » F((0=100) AG(ps — o # 100)): witness exists
it is possible that bid of 100€ does not win

sell [t <0 A o0>0]

15/100

Linear-Time Model Checking

Verification problem: Compliance
given DDSA and LTL¢ formula % with arithmetic constraints:

constraint | control state | Yy A | Y Vp | (action)yp | Xip | Fyp | Gy | p U
is there a witness run of DDSA that satisfies 7

Example
reset [0 =0]
?- oo » F((0=100) A G (ps — o # 100)): witness exists
bid it is possible that bid of 100€ does not win
[t>0A0">0]
» F ((bid)(sell)T): no witness exists

sell [t <0 A o0>0]

it is possible that a sell happens right after a bid

15/100

Linear-Time Model Checking

Verification problem: Compliance
given DDSA and LTL¢ formula % with arithmetic constraints:

constraint | control state | Yy A | Y Vp | (action)yp | Xip | Fyp | Gy | p U
is there a witness run of DDSA that satisfies 7

Example
reset [0 =0]
?- '50n0'=0 » F((0=100) A G (ps — o # 100)): witness exists
bid it is possible that bid of 100€ does not win
[t>0A0">0]
» F ((bid)(sell)T): no witness exists

sell [t <0 A o0>0]

it is possible that a sell happens right after a bid

Fact

can construct finite automaton (NFA) accepting exactly those runs that satisfy LTL; property

15/100

Model checking approach

! foo: [x' > y] '

bar: [y’ > x]

DDSA

16/100

Model checking approach

foo: [x' > y]
M O e 0

bar: [y’ > x]

DDSA NFA for ¢

16/100

Model checking approach

m

foo: [x' > y]
@, @) 5
G WG, SN

bar: [y’ > x] s
@[>y Ay=0-22G T [x>0Ay >x Ay>5)
DDSA NFA for ¢ product automaton N

16/100

Model checking approach

EEET e

o foo: [x' > y] @
+ D=L @e

bar: [y’ > x]
@[>y Ay=0-22G T [x>0Ay >x Ay>5)
DDSA NFA for ¢ product automaton N

Product automaton

» nodes are triples (DDSA state, NFA state, formula)

16/100

Model checking approach

o foo: [x' > y] @ .
+ D)@ s
bar: [y’ > x]
@[>y Ay=0-22G T [x>0Ay >x Ay>5)
DDSA NFA for ¢ product automaton N

Product automaton

» nodes are triples (DDSA state, NFA state, formula)
» construction is similar as for constraint graph, but edges combine DDSA and NFA steps

16/100

Model checking approach

o foo: [x' > y] @ .
+ D=L @e

bar: [y’ > x]
@[>y Ay=0-22G T [x>0Ay >x Ay>5)
DDSA NFA for ¢ product automaton N

Product automaton

» nodes are triples (DDSA state, NFA state, formula)
» construction is similar as for constraint graph, but edges combine DDSA and NFA steps
» final nodes are those that combine final DDSA and NFA state

16/100

Model checking approach

o foo: [x' > y] @
+ D=L @e
bar: [y’ > x]

(2[11;[x>y/\y:0)%)(a'51[T[x>0/\y>x/\y>@
DDSA NFA for ¢ product automaton N

Product automaton
» nodes are triples (DDSA state, NFA state, formula)
» construction is similar as for constraint graph, but edges combine DDSA and NFA steps
» final nodes are those that combine final DDSA and NFA state

Theorem

» product automaton has final node iff DDSA admits witness for 1)

[Felli, Montali & W, AAAI 2022]

16/100

Model checking approach

o foo: [x' > y] @
. () WAL G, RN
bar: [y’ > x]

@lw[x>y/\y:0)yb—>)(a'51[’[x>0/\y>x/\y>@
DDSA NFA for v product automaton N

Product automaton

» nodes are triples (DDSA state, NFA state, formula)
» construction is similar as for constraint graph, but edges combine DDSA and NFA steps
» final nodes are those that combine final DDSA and NFA state

Theorem can use SMT solver to extract witness from accepting path

» product automaton has final node iff DDSA admits Wit@ for 1

[Felli, Montali & W, AAAI 2022]

16/100

Model checking approach

o foo: [x' > y] @
+ D=L @e
bar: [y’ > x]

(2[11;[x>y/\y:0)%)(a'51[T[x>0/\y>x/\y>@
DDSA NFA for ¢ product automaton N

Product automaton

» nodes are triples (DDSA state, NFA state, formula)
» construction is similar as for constraint graph, but edges combine DDSA and NFA steps
» final nodes are those that combine final DDSA and NFA state

Theorem

» product automaton has final node iff DDSA admits witness for 1)
» LTLs model checking is decidable if DDSA has finite summary with respect to

[Felli, Montali & W, AAAI 2022]

16/100

Data-aware Soundness

Definition

DPN is data-aware sound if

Data-aware Soundness

Definition
DPN is data-aware sound if
from any reachable state, a final state can be reached

Data-aware Soundness

Definition
DPN is data-aware sound if
from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)

Data-aware Soundness

Definition

DPN is data-aware sound if
from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)
B all transitions are reachable

Example (Auction)

reset [0 =0]

init [/ >0 A o/ = 0]

18/100

Example (Auction)

init [/ >0 A o/ = 0]

not data-aware sound because
» transition reset is unreachable

18/100

Example (Auction)

not data-aware sound because
» transition reset is unreachable

70‘ init

N

. =1/ timer,
» deadlocks exist, e.g. after ‘Po ;2(1)"—)

18/100

Data-aware Soundness

Definition

DPN is data-aware sound if ’can be checked on corresponding DDSA‘
i -aware sound i

from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)
B all transitions are reachable

19/100

Data-aware Soundness

Definition

DPN is data-aware sound if ’can be checked on corresponding DDSA‘
i -aware sound i

from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)
B all transitions are reachable

Soundness checking approach [Felli, Montali & W, CAISE 2022]

» can check F and F directly on CG

19/100

Data-aware Soundness

Definition

DPN is data-aware sound if ’can be checked on corresponding DDSA‘
i -aware sound i

from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)
B all transitions are reachable

Soundness checking approach [Felli, Montali & W, CAISE 2022]

» can check B and H directly on CG

» for fl: for each non-final CG node (s, ¢):

19/100

Data-aware Soundness

Definition

DPN is data-aware sound if ’can be checked on corresponding DDSA‘
i -aware sound i

from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)
B all transitions are reachable

Soundness checking approach [Felli, Montali & W, CAISE 2022]

» can check B and H directly on CG
» for fl: for each non-final CG node (s, ¢):

» compute CG,; starting from s and unknown initial values \/

19/100

Data-aware Soundness

Definition

DPN is data-aware sound if ’can be checked on corresponding DDSA‘
i -aware sound i

from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)
B all transitions are reachable

Soundness checking approach [Felli, Montali & W, CAISE 2022]
» can check B and H directly on CG
» for fl: for each non-final CG node (s, ¢):

» compute CG; starting from s and unknown initial values V4
» extract formula reach final(s) expressing conditions on V;
that guarantee reachability of final state from s

19/100

Data-aware Soundness

Definition

DPN is data-aware sound if
from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)

’can be checked on corresponding DDSA‘

B all transitions are reachable

Soundness checking approach [Felli, Montali & W, CAISE 2022]

» can check B and H directly on CG
» for fl: for each non-final CG node (s, ¢):

» compute CG; starting from s and unknown initial values V4
» extract formula reach_final(s) expressing conditions on Vg

that guarantee reachability of final state from s
» @ |= reach_final(s) iff final state is always reachable from (s, ©)

19/100

Data-aware Soundness

Definition

DPN is data-aware sound if
from any reachable state, a final state can be reached
termination is clean (no reachable marking M is such that M > M)

’can be checked on corresponding DDSA‘

B all transitions are reachable

Soundness checking approach [Felli, Montali & W, CAISE 2022]
‘ if DDSA has finite summary, data-aware soundness is decidable

» can check B and H directly on CG
» for fl: for each non-final CG node (s, ¢):

» compute CG; starting from s and unknown initial values V4
» extract formula reach_final(s) expressing conditions on Vg

that guarantee reachability of final state from s
» @ |= reach_final(s) iff final state is always reachable from (s,)

19/100

Example (Auction)

init [/ >0 A o/ = 0]

not data-aware sound because
» transition reset is unreachable

;ig‘ nit ‘Pu

= ti
=

» deadlocks exist, e.g. after ‘po

20/100

Example (Auction)

reset [0 =0]

< sell
timer [[P3 H o=0>0ANt=1ty> 0]]

(Pr2[o=0p At <ty A to> 0], timer
\sell

(Pso=c0>0At<to At<OAt>0]

init [/ >0 A o/ = 0]

Pizfo>a At=tg At>0)
bid tlmer\L

(Plz‘o\oo/\t0>0/\t0>t]
tim timer
o

[[P3 Ho >ogNo>0At>tAt<0Aty >0]]

t,l‘ timer,

not data-aware sound because
» transition reset is unreachable

=0 |n|t
o= 0

» deadlocks exist, e.g. after ‘po

20/100

Example (Auction)

reset [0 =0]

init [/ >0 A o/ = 0]

[t>0A 0" >0]

not data-aware sound because
» transition reset is unreachable

=g
(t >0)

» deadlocks exist, e.g. after ‘po

have reach _final(p12) =

timer,

=

o=og ANt=tg

< sell
timer [(P3[[o=00 >0 t=1>0)

(Pr2[o=0p At <ty A to> 0], timer
\sell

(Ps]lo=n>0At<to At<OAt>0)

Pr2[o>o00 At=tg At>0]
bid tlmer\L

(Plz‘o\oo/\t0>0/\t0>t]
tim timer
sell o>oO Ato>t >0 bid

(P3]lo>00n0>0At>tAtSOA L >0)

20/100

Example (Auction)

reset [0 =0]

init [/ >0 A o/ = 0]

[t>0A 0" >0]

not data-aware sound because
» transition reset is unreachable

» deadlocks exist, e.g. after ‘ _init o ‘

have reach _final(p12) =

20/100

221‘ timer,

(t>0), and (0o =0) [~£ (t > 0)

o=og ANt=tg

< sell
timer [[P3 H o=0>0ANt=1ty> 0]]

(Pr2[o=0p At <ty A to> 0], timer
\sell

(Ps]lo=0n>0At<to At<OAt>0)

Pr2[o>o00 At=tg At>0]
bid tlmer\L

(Plz‘o\oo/\t0>0/\t0>t]
tim timer
sell o>oO Ato>t >0 bid

(P3]lo>00n0>0At>tAt<OA L >0)

Example (Auction)

< sell
timer |(P3][o=00 >0 A t =1, >0)

[Plz ‘ o=o0g At<tgA to> O]D timer
A\sell

(Pso=c0>0At<to At<OAt>0]

Pr2[o>o00 At=tg At>0]
bid timer\L

(Plz‘o/\oo/\to/\o/'\to/\t]
time bid timer

sell

(pslo>0nt>0

not data-aware sound because (Palo>onn0>0Ato>tAL<ON >0

éig‘ init ‘Pu 52(1)‘ timer,
have reach _final(pi2) = (t > 0), and (o = 0) - (t > 0)

bid

» transition reset is unreachable

» deadlocks exist, e.g. after ‘po

Branching-time model checking
use similar approach to obtain CTL* model checking procedure

[Felli, Montali & W, 1JCAR 2022]

20/100

Example (Road fine management process)

®

d#0V (p=0At=>a)

o

add penalty
payment payment payment 2 =?
t =7 t =7
) i t' =7

L] 7
- . . [
create fine send fine insert notification LTV
\l \ \l \l d =nil

L N , 1 appeal to judge
a,t',d\p =7 0>ds' >2160 A e =7 7 g

1

0>dj' >1440 A d' >0
t>ate

credit collection

Vi
A

appeal to prefecture

|
[4 .
0>dp' > 1440

send to prefecture
[1

LN
d =?

[Mannhardt et al 2016]

21/100

Example (Road fine management process) not data-aware sound

add penalty
pay,ment pa;iment payment 2 =?
t' =7 W =7 t =7

L] L]
))) [
create fine send fine insert notification LTV
@] \, N \] d = nil

e n_J U 7L appeal to judge
a,t',d,p' =7 0>ds' >2160 A e =? s]

0>dj' >1440 A d' >0
t>ate

credit collection

Vi
A

appeal to prefecture
1

d#0V (p=0At=>a)

AT
t<a+t+e [4 .

N N) 1440
process is stuck if d ¢ {ml,#}r
s \/
result prefecture send to prefecture
iV f\(B(
d =nil)J d =?
T4
| Vi J
LS
d=1

[Mannhardt et al 2016]

21/100

Monitoring Arithmetic Temporal Properties

given a trace of values, check current and possible future satisfaction of LTL; properties like
p t1=(20)U(x>yAG(x>y))

— / = o o .
p P2=G>x)AF(x=2) x" is value of x looking one trace instant ahead
x=0 x=1 x=4 x=5 x= 6
y=0 y=3 y=3 y=4 y==4

11 holds but could get violated in the future! /

1, does not hold and will never hold in the future!

22/100

Monitoring Arithmetic Temporal Properties

given a trace of values, check current and possible future satisfaction of LTL; properties like
p t1=(20)U(x>yAG(x>y))

— / = o o .
p P2=G>x)AF(x=2) x" is value of x looking one trace instant ahead
x=0 x=1 x=4 x=5 x= 6
y=0 y=3 y=3 y=4 y==4

11 holds but could get violated in the future! /

1, does not hold and will never hold in the future!

Results

» developed monitoring procedure
» use finite summary approach to identify classes of properties where problem is decidable

[Felli, Montali, Patrizi & W, AAAI 2023]

22/100

Process Equivalence

Verification problem
given two DPNs, do they have the same sets of configurations, and/or the same language?

Results

» can be determined using constraint graphs

» decidable for finite summary systems

23/100

Implementation

Arithmetic DDS Analyzer (ada)

input DPN (+ LTLf or CTL} property)

checks for decidability conditions, visualizes CG/product automaton
performs LTL¢, CTL} model checking, soundness checking, and monitoring
computes Witness/counterexample

written in Python, using Z3/Yices/CVC5 for SMT solving and quantifier elimination
https://1tl.adatool.dev https://soundness.adatool.dev
https://ctlstar.adatool.dev

vV VvV VvV VY

https://ltl.adatool.dev
https://soundness.adatool.dev
https://ctlstar.adatool.dev

Implementation

Arithmetic DDS Analyzer (ada)

input DPN (+ LTLf or CTL} property)
checks for decidability conditions, visualizes CG/product automaton

>
>
» performs LTL¢, CTL} model checking, soundness checking, and monitoring
» computes Witness/counterexample

>

written in Python, using Z3/Yices/CVC5 for SMT solving and quantifier elimination
https://1tl.adatool.dev https://soundness.adatool.dev

https://ctlstar.adatool.dev

Experiments

» about 60 DPNs (20 from literature, 40 artificial)

» all DPNs from literature are in some decidable class for LTL¢ (but not CTL}) model checking

https://ltl.adatool.dev
https://soundness.adatool.dev
https://ctlstar.adatool.dev

Arithmetic DO

» input DPN
» checks for d
» performs LT]
» computes w
» written in P
1
Experimentsé
» about 60 Df
» all DPNs frq

process

property

0
o
-

b

road fines (1)

no deadlock

2052

x
AG (p7 — EF end) v 7.6s 7655 1987
road fines (2) no deadlock v 15m27s 247563 9 4927
AG (p7 — EFend) v 16m7s 246813 4927
road fines (3) no deadlock X 9s 9179 9 1985
AG (p7 — EFend) v 6.6s 6382 1597
EF (dS > 2160) X 1155 17680 1280
hospital billing no deadlock v 20m59s 1234928 17 23147
EF (p16 A —closed) v 10m20s 669379 10654
sepsis (1) no deadlock v 1m36s 139 301 44939
AG (sink — ter < t,p) X 30.1s 170 22724
AG (sink —> ter+60 > t) v 32s 153 22538
sepsis (2) no deadlock v 7m24 4524 301 161242
A (—lacticAcid U (diagnostic) T) v 3m53s 5734 74984
board: register no deadlock v 1.4s 12 7 27
board: transfer no deadlock v 1.4s 27 7 51
board: discharge no deadlock v 1.5s 25 6 67
AG (p2 A 03=207 — AG 03=207) v 1.5s 94 91
AG (EF (tra) T A EF (his) T) v 1.5s 27 98
—E (F (tra) T A F (his) T) v 1.4s 56 43
credit approval no deadlock v 1.7s 470 6 230
AG ((openLoan) T — ver A dec) v 13.2s 14156 645
A (F (ver A dec) — F (openLoan)T) X 3.7s 3128 316
package handling no deadlock v 2.7ss 1025 16 693
no deadlock (71) v 2.5s 1079 398
yy = EF (fetch) T X 2.6s 850 343
Wyp = EF (76) T X 2.4s 875 336
auction no deadlock X 10.8s 1683 5 186
EF (sold A d >0 A o< t) x 6.45 1180 79
EF (b=1Ao0>tAF(sold Ab>1)) | v 26.5s 4000 263

https://ltl.adatool.dev
https://soundness.adatool.dev
https://ctlstar.adatool.dev

Conclusion

Summary

» for Data Petri nets with arithmetic constraints:

verification procedures for LTLs, CTL?%, data-aware soundness
» decision procedure if DPN satisfies finite summary property: new decidability results
» implemented and tested on processes from BPM

25/100

Conclusion

Summary

» for Data Petri nets with arithmetic constraints:

verification procedures for LTLs, CTL?%, data-aware soundness
» decision procedure if DPN satisfies finite summary property: new decidability results
» implemented and tested on processes from BPM

Take-home message

> finite constraint graphs are powerful tool for verification
» many relevant verification tasks are decidable for “practical” Data Petri nets

25/100

Conclusion

Summary

» for Data Petri nets with arithmetic constraints:

verification procedures for LTLs, CTL?%, data-aware soundness
» decision procedure if DPN satisfies finite summary property: new decidability results
» implemented and tested on processes from BPM

Take-home message

> finite constraint graphs are powerful tool for verification
» many relevant verification tasks are decidable for “practical” Data Petri nets

Future work

» further SMT theories, e.g. allow guards to refer to database
» discover more expressive transition guards for DPNs :)

25/100

... all of this is the result of a fun collaboration with

Marco Montali Paolo Felli Fabio Patrizi

26/100

Bibliography: DPN Toolbox

[3 P. Felli, M. Montali, S. Winkler
Linear-time verification of data-aware dynamic systems with arithmetic
AAAI-36, 5642-5650, 2022

@ P. Felli, M. Montali, S. Winkler
Soundness of data-aware processes with arithmetic conditions
CAISE-34, LNCS 13295, 389-406, 2022

[3 P. Felli, M. Montali, S. Winkler
CTL* model checking for data-aware dynamic systems with arithmetic
IJCAR-11, LNCS 13385, 36-56, 2022

@ P. Felli, M. Montali, F. Patrizi, S. Winkler
Monitoring Arithmetic Temporal Properties on Finite Traces
AAAI-37, 6346-6354, 2023

@ M. Montali, S. Winkler

Equivalence of Data Petri Nets with Arithmetic
FM-BPM 2023, to appear

26/100

Bibliography: Related Work

@ F. Mannhardt
Multi-perspective Process Mining
Ph.D. thesis, Technical University of Eindhoven, 2018

@ F. Mannhardt, M. de Leoni, H. A. Reijers, W. van der Aalst

Decision mining revisited: Discovering overlapping rules
CAISE-28, LNCS 9694, 377-392, 2016

26/100

