
Using Logic to Escape the Jungle of Data-aware Process Veri�cation

Sarah Winkler

Free University of Bozen-Bolzano, Italy

seminar @ DTU Compute, 7.9.2023

Motivation

Discovery and veri�cation of BPM processes

... compliant?

e.g. every order is eventually shipped

... sound?

... equivalent to other model?

xcost , xpaid ,
xorder_type , . . .

event logs automatic discovery experts model

data

2/100

Motivation

Discovery and veri�cation of BPM processes

... compliant?

e.g. every order is eventually shipped

... sound?

... equivalent to other model?

xcost , xpaid ,
xorder_type , . . .

event logs automatic discovery experts model

data

2/100

Motivation

Discovery and veri�cation of BPM processes

... compliant?

e.g. every order is eventually shipped

... sound?

... equivalent to other model?

xcost , xpaid ,
xorder_type , . . .

event logs automatic discovery experts model

data

in Petri nets for typical BPM processes, veri�cation tasks can be e�ectively decided

2/100

Motivation

Discovery and veri�cation of data-aware BPM processes

... compliant?

e.g. every order is eventually shipped

... sound?

... equivalent to other model?

xcost , xpaid ,
xorder_type , . . .

event logs automatic discovery experts model

data

Assumption
data is represented by numeric variables, can be read and written by transitions

2/100

Motivation

Discovery and veri�cation of data-aware BPM processes

... compliant?

e.g. every order is eventually shipped

... data-aware sound?

... equivalent to other model?

xcost , xpaid ,
xorder_type , . . .

event logs automatic discovery experts model

data

Assumption
data is represented by numeric variables, can be read and written by transitions

2/100

The In�nite State Space Jungle


order type = 0

cost = 0
paid = 0

init




order type = 1
cost = 10
paid = 0
ordered




order type = 1
cost = 10
paid = 15
checked



order type = 1
cost = 10
paid = 20
checked




order type = 1
cost = 10
paid = 22
checked

 · · ·

order type = 1
cost = 11
paid = 11
checked




order type = 1
cost = 10
paid = 10
checked




order type = 2

cost = 2
paid = 0
ordered



order type = 3
cost = 100
paid = 0
ordered




order type = 3
cost = 100
paid = 2
checked



order type = 3
cost = 100
paid = 2
checked




order type = 3
cost = 100
paid = 30
checked



order type = 3
cost = 100
paid = 3
checked



· · ·

order type = 7

cost = 0
paid = 0
declined




order type = 7

cost = 0
paid = 2
checked

 · · ·

order type = 7

cost = 0
paid = 10
declined




order type = 7

cost = 0
paid = 10
resumed



... compliant?

... data-aware sound?

... ?

checked ∧ (paid > cost) (paid = cost)

(cost>0) ∧ (paid=0)

init ∧ (cost=0)

(paid < cost) ∧ (cost > 80)

declined ∧ (cost = 0)

resumed

partition in�nite state space
using (�nitely many) formulas

∃
φ
|=
ψ

3/100

The In�nite State Space Jungle


order type = 0

cost = 0
paid = 0

init




order type = 1
cost = 10
paid = 0
ordered




order type = 1
cost = 10
paid = 15
checked



order type = 1
cost = 10
paid = 20
checked




order type = 1
cost = 10
paid = 22
checked

 · · ·

order type = 1
cost = 11
paid = 11
checked




order type = 1
cost = 10
paid = 10
checked




order type = 2

cost = 2
paid = 0
ordered



order type = 3
cost = 100
paid = 0
ordered




order type = 3
cost = 100
paid = 2
checked



order type = 3
cost = 100
paid = 2
checked




order type = 3
cost = 100
paid = 30
checked



order type = 3
cost = 100
paid = 3
checked



· · ·

order type = 7

cost = 0
paid = 0
declined




order type = 7

cost = 0
paid = 2
checked

 · · ·

order type = 7

cost = 0
paid = 10
declined




order type = 7

cost = 0
paid = 10
resumed



... compliant?

... data-aware sound?

... ?

checked ∧ (paid > cost) (paid = cost)

(cost>0) ∧ (paid=0)

init ∧ (cost=0)

(paid < cost) ∧ (cost > 80)

declined ∧ (cost = 0)

resumed

partition in�nite state space
using (�nitely many) formulas

∃
φ
|=
ψ

3/100

The In�nite State Space Jungle


order type = 0

cost = 0
paid = 0

init




order type = 1
cost = 10
paid = 0
ordered




order type = 1
cost = 10
paid = 15
checked



order type = 1
cost = 10
paid = 20
checked




order type = 1
cost = 10
paid = 22
checked

 · · ·

order type = 1
cost = 11
paid = 11
checked




order type = 1
cost = 10
paid = 10
checked




order type = 2

cost = 2
paid = 0
ordered



order type = 3
cost = 100
paid = 0
ordered




order type = 3
cost = 100
paid = 2
checked



order type = 3
cost = 100
paid = 2
checked




order type = 3
cost = 100
paid = 30
checked



order type = 3
cost = 100
paid = 3
checked



· · ·

order type = 7

cost = 0
paid = 0
declined




order type = 7

cost = 0
paid = 2
checked

 · · ·

order type = 7

cost = 0
paid = 10
declined




order type = 7

cost = 0
paid = 10
resumed



... compliant?

... data-aware sound?

... ?

checked ∧ (paid > cost) (paid = cost)

(cost>0) ∧ (paid=0)

init ∧ (cost=0)

(paid < cost) ∧ (cost > 80)

declined ∧ (cost = 0)

resumed

partition in�nite state space
using (�nitely many) formulas

∃
φ
|=
ψ

3/100

The In�nite State Space Jungle


order type = 0

cost = 0
paid = 0

init




order type = 1
cost = 10
paid = 0
ordered




order type = 1
cost = 10
paid = 15
checked



order type = 1
cost = 10
paid = 20
checked




order type = 1
cost = 10
paid = 22
checked

 · · ·

order type = 1
cost = 11
paid = 11
checked




order type = 1
cost = 10
paid = 10
checked




order type = 2

cost = 2
paid = 0
ordered



order type = 3
cost = 100
paid = 0
ordered




order type = 3
cost = 100
paid = 2
checked



order type = 3
cost = 100
paid = 2
checked




order type = 3
cost = 100
paid = 30
checked



order type = 3
cost = 100
paid = 3
checked



· · ·

order type = 7

cost = 0
paid = 0
declined




order type = 7

cost = 0
paid = 2
checked

 · · ·

order type = 7

cost = 0
paid = 10
declined




order type = 7

cost = 0
paid = 10
resumed



... compliant?

... data-aware sound?

... ?

checked ∧ (paid > cost) (paid = cost)

(cost>0) ∧ (paid=0)

init ∧ (cost=0)

(paid < cost) ∧ (cost > 80)

declined ∧ (cost = 0)

resumed

partition in�nite state space
using (�nitely many) formulas

∃
φ
|=
ψ

3/100

The In�nite State Space Jungle


order type = 0

cost = 0
paid = 0

init




order type = 1
cost = 10
paid = 0
ordered




order type = 1
cost = 10
paid = 15
checked



order type = 1
cost = 10
paid = 20
checked




order type = 1
cost = 10
paid = 22
checked

 · · ·

order type = 1
cost = 11
paid = 11
checked




order type = 1
cost = 10
paid = 10
checked




order type = 2

cost = 2
paid = 0
ordered



order type = 3
cost = 100
paid = 0
ordered




order type = 3
cost = 100
paid = 2
checked



order type = 3
cost = 100
paid = 2
checked




order type = 3
cost = 100
paid = 30
checked



order type = 3
cost = 100
paid = 3
checked



· · ·

order type = 7

cost = 0
paid = 0
declined




order type = 7

cost = 0
paid = 2
checked

 · · ·

order type = 7

cost = 0
paid = 10
declined




order type = 7

cost = 0
paid = 10
resumed



... compliant?

... data-aware sound?

... ?

checked ∧ (paid > cost) (paid = cost)

(cost>0) ∧ (paid=0)

init ∧ (cost=0)

(paid < cost) ∧ (cost > 80)

declined ∧ (cost = 0)

resumed

partition in�nite state space
using (�nitely many) formulas

∃
φ
|=
ψ

3/100

The In�nite State Space Jungle


order type = 0

cost = 0
paid = 0

init




order type = 1
cost = 10
paid = 0
ordered




order type = 1
cost = 10
paid = 15
checked



order type = 1
cost = 10
paid = 20
checked




order type = 1
cost = 10
paid = 22
checked

 · · ·

order type = 1
cost = 11
paid = 11
checked




order type = 1
cost = 10
paid = 10
checked




order type = 2

cost = 2
paid = 0
ordered



order type = 3
cost = 100
paid = 0
ordered




order type = 3
cost = 100
paid = 2
checked



order type = 3
cost = 100
paid = 2
checked




order type = 3
cost = 100
paid = 30
checked



order type = 3
cost = 100
paid = 3
checked



· · ·

order type = 7

cost = 0
paid = 0
declined




order type = 7

cost = 0
paid = 2
checked

 · · ·

order type = 7

cost = 0
paid = 10
declined




order type = 7

cost = 0
paid = 10
resumed



... compliant?

... data-aware sound?

... ?

checked ∧ (paid > cost) (paid = cost)

(cost>0) ∧ (paid=0)

init ∧ (cost=0)

(paid < cost) ∧ (cost > 80)

declined ∧ (cost = 0)

resumed

partition in�nite state space
using (�nitely many) formulas

∃
φ
|=
ψ

3/100

The In�nite State Space Jungle


order type = 0

cost = 0
paid = 0

init




order type = 1
cost = 10
paid = 0
ordered




order type = 1
cost = 10
paid = 15
checked



order type = 1
cost = 10
paid = 20
checked




order type = 1
cost = 10
paid = 22
checked

 · · ·

order type = 1
cost = 11
paid = 11
checked




order type = 1
cost = 10
paid = 10
checked




order type = 2

cost = 2
paid = 0
ordered



order type = 3
cost = 100
paid = 0
ordered




order type = 3
cost = 100
paid = 2
checked



order type = 3
cost = 100
paid = 2
checked




order type = 3
cost = 100
paid = 30
checked



order type = 3
cost = 100
paid = 3
checked



· · ·

order type = 7

cost = 0
paid = 0
declined




order type = 7

cost = 0
paid = 2
checked

 · · ·

order type = 7

cost = 0
paid = 10
declined




order type = 7

cost = 0
paid = 10
resumed



... compliant?

... data-aware sound?

... ?

checked ∧ (paid > cost) (paid = cost)

(cost>0) ∧ (paid=0)

init ∧ (cost=0)

(paid < cost) ∧ (cost > 80)

declined ∧ (cost = 0)

resumed

partition in�nite state space
using (�nitely many) formulas

∃
φ
|=
ψ

3/100

Motivation

Discovery and veri�cation of data-aware BPM processes

... compliant?

e.g. every order is eventually shipped

... data-aware sound?

... equivalent to other model?

xcost , xpaid ,
xorder_type , . . .

event logs automatic discovery experts model

data

This talk
identify classes of data-aware models where veri�cation tasks are decidable

4/100

Outline

5/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3
t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive

6/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)

▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3

t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive

6/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0

▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3

t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive

6/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3

t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive

6/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3

t timer Q
o last o�er Q

primed variables refer to next state

requires that t positive, increases o

requires that t ⩽ 0 and o positive

6/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3

t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive

6/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3

t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive

6/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3

t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive

6/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3

t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive

Background logic

▶ propositional logic + theory of linear arithmetic over integers and rationals

▶ satis�ability is decidable (SMT solvers), quanti�ers can be eliminated

6/100

Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3

t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive

Remark

▶ DPNs can be mined automatically from data [Mannhardt et al 2016, de Leoni 2013]

▶ used to model BPM processes from various domains [Mannhardt et al 2016, Mannhardt 2018]

6/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN

, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init

[t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]

timer

[t > 0 ∧ t ′< t]

sell

[t ⩽ 0 ∧ o> 0]

reset

[o= 0]

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN

, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init

[t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]

timer

[t > 0 ∧ t ′< t]

sell

[t ⩽ 0 ∧ o> 0]

reset

[o= 0]

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN

, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init

[t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]

timer

[t > 0 ∧ t ′< t]

sell

[t ⩽ 0 ∧ o> 0]

reset

[o= 0]

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN

, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init

[t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]

timer

[t > 0 ∧ t ′< t]

sell

[t ⩽ 0 ∧ o> 0]

reset

[o= 0]

p0

p1 p2

p3

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN

, with same guards

▶ data variables V like in DPN, with α0

▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init

[t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]

timer

[t > 0 ∧ t ′< t]

sell

[t ⩽ 0 ∧ o> 0]

reset

[o= 0]

p0

p1 p2

p3

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0

▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0] p0

p1 p2

p3

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init bid timer sell

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid timer sell

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid timer sell

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init bid

timer sell

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init bid

timer sell

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init bid timer

sell

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init bid timer

sell

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init bid timer sell

7/100

Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init bid timer sell

7/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)

bid
t > 0 ∧ o′> o

(p12, φ
′)

φ = (o= 0) ∧ (t > 0)

φ′

= update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

8/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)

bid
t > 0 ∧ o′> o

(p12, φ
′)

φ = (o= 0) ∧ (t > 0)

φ′

= update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

8/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)

bid
t > 0 ∧ o′> o

(p12, φ
′)

φ = (o= 0) ∧ (t > 0)

φ′

= update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

8/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)

bid
t > 0 ∧ o′> o

(p12, φ
′)

φ = (o= 0) ∧ (t > 0)

φ′

= update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

8/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)

bid
t > 0 ∧ o′> o

(p12, φ
′)

φ = (o= 0) ∧ (t > 0)

φ′

= update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

8/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)

bid
t > 0 ∧ o′> o

(p12, φ
′)

φ = (o= 0) ∧ (t > 0)

φ′

= update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

8/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)

bid
t > 0 ∧ o′> o

(p12, φ
′)

φ = (o= 0) ∧ (t > 0)

φ′

= update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

8/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)
bid

t > 0 ∧ o′> o ?

φ = (o= 0) ∧ (t > 0)

φ′

= update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

8/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)
bid

t > 0 ∧ o′> o
(p12, φ

′)

φ = (o= 0) ∧ (t > 0) φ′ =?

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

8/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) =

∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

9/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) =

∃V̂ . (

φ(V̂)

∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }

can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

9/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) =

∃V̂ . (

φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v

)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er elimination

guard must hold, propagate variables that are not written

∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

9/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written

∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

9/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }

can get equivalent quanti�er-free formula by quanti�er elimination

guard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

9/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)
bid

t > 0 ∧ o′> o
(p12, φ

′)

φ = (o= 0) ∧ (t > 0) φ′ = update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

10/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)
bid

t > 0 ∧ o′> o
(p12, φ

′)

φ = (o= 0) ∧ (t > 0) φ′ = update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0)

∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

10/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)
bid

t > 0 ∧ o′> o
(p12, φ

′)

φ = (o= 0) ∧ (t > 0) φ′ = update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô)

∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

10/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)
bid

t > 0 ∧ o′> o
(p12, φ

′)

φ = (o= 0) ∧ (t > 0) φ′ = update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

10/100

State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)
bid

t > 0 ∧ o′> o
(p12, φ

′)

φ = (o= 0) ∧ (t > 0) φ′ = update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)

10/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

11/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

11/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

11/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ) where s a−→ s ′

and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

11/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ) where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

11/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ) where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a)

, and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

11/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ) where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

11/100

De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂) ∧ guarda(V̂ ,V) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ) where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . .) ∈ N is �nal if s is �nal in DDSA

11/100

Example (Constraint graph for auction model)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

unreachable transition

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid

timer

sell

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

Key Lemma

∃ DDSA run (s0, α0)
∗−→ (s, α) ⇐⇒ ∃ path in CG (s0, φ0)

∗−→ (s, φ) with α |= φ

Observation
control state or transition of DDSA are reachable i� they appear in the constraint graph

if CG is �nite, reachability is decidable

12/100

Example (Constraint graph for auction model)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

unreachable transition

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid

timer

sell

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

Key Lemma

∃ DDSA run (s0, α0)
∗−→ (s, α) ⇐⇒ ∃ path in CG (s0, φ0)

∗−→ (s, φ) with α |= φ

Observation
control state or transition of DDSA are reachable i� they appear in the constraint graph

if CG is �nite, reachability is decidable

12/100

Example (Constraint graph for auction model)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

unreachable transition

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid

timer

sell

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

Key Lemma

∃ DDSA run (s0, α0)
∗−→ (s, α) ⇐⇒ ∃ path in CG (s0, φ0)

∗−→ (s, φ) with α |= φ

Observation
control state or transition of DDSA are reachable i� they appear in the constraint graph

if CG is �nite, reachability is decidable

12/100

Example (Constraint graph for auction model)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

unreachable transition

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid

timer

sell

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

Key Lemma

∃ DDSA run (s0, α0)
∗−→ (s, α) ⇐⇒ ∃ path in CG (s0, φ0)

∗−→ (s, φ) with α |= φ

Observation
control state or transition of DDSA are reachable i� they appear in the constraint graph

if CG is �nite, reachability is decidable

12/100

Example (Constraint graph for auction model)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

unreachable transition

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid

timer

sell

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

Key Lemma

∃ DDSA run (s0, α0)
∗−→ (s, α) ⇐⇒ ∃ path in CG (s0, φ0)

∗−→ (s, φ) with α |= φ

Observation
control state or transition of DDSA are reachable i� they appear in the constraint graph

if CG is �nite, reachability is decidable

12/100

Example (Constraint graph for auction model)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

unreachable transition

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid

timer

sell

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

Key Lemma

∃ DDSA run (s0, α0)
∗−→ (s, α) ⇐⇒ ∃ path in CG (s0, φ0)

∗−→ (s, φ) with α |= φ

Observation
control state or transition of DDSA are reachable i� they appear in the constraint graph

if CG is �nite, reachability is decidable

12/100

Example (Constraint graph for auction model)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

unreachable transition

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid

timer

sell

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

Key Lemma

∃ DDSA run (s0, α0)
∗−→ (s, α) ⇐⇒ ∃ path in CG (s0, φ0)

∗−→ (s, φ) with α |= φ

Caveat

constraint graph can be in�nite

if CG is �nite, reachability is decidable

12/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary) abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]
capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [tw > 0 ∧mw > 0]

bid : [0 < bw ∧ ow > or]

check : [tr > 0]

dec : [tr − tw ⩾ 1]

exp : [tr ⩽ 0 ∧ br > 0]

sell now : [or > mr]
fee : [ow = or + 10]

13/100

Outline

14/100

Linear-Time Model Checking

Veri�cation problem: Compliance
given DDSA and LTLf formula ψ with arithmetic constraints:

constraint | control state | ψ ∧ ψ | ψ ∨ ψ | ⟨action⟩ψ | Xψ | Fψ | Gψ | ψ U ψ

is there a witness run of DDSA that satis�es ψ?

evaluated over �nite traces

Example

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

▶ F ((o= 100) ∧ G (p3 → o ̸= 100)): witness exists

it is possible that bid of 100e does not win

▶ F (⟨bid⟩⟨sell⟩⊤): no witness exists

it is possible that a sell happens right after a bid

Fact

can construct �nite automaton (NFA) accepting exactly those runs that satisfy LTLf property

15/100

Linear-Time Model Checking

Veri�cation problem: Compliance
given DDSA and LTLf formula ψ with arithmetic constraints:

constraint | control state | ψ ∧ ψ | ψ ∨ ψ | ⟨action⟩ψ | Xψ | Fψ | Gψ | ψ U ψ

is there a witness run of DDSA that satis�es ψ?

evaluated over �nite traces

Example

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

▶ F ((o= 100) ∧ G (p3 → o ̸= 100)): witness exists

it is possible that bid of 100e does not win

▶ F (⟨bid⟩⟨sell⟩⊤): no witness exists

it is possible that a sell happens right after a bid

Fact

can construct �nite automaton (NFA) accepting exactly those runs that satisfy LTLf property

15/100

Linear-Time Model Checking

Veri�cation problem: Compliance
given DDSA and LTLf formula ψ with arithmetic constraints:

constraint | control state | ψ ∧ ψ | ψ ∨ ψ | ⟨action⟩ψ | Xψ | Fψ | Gψ | ψ U ψ

is there a witness run of DDSA that satis�es ψ?

evaluated over �nite traces

Example

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

▶ F ((o= 100) ∧ G (p3 → o ̸= 100)): witness exists

it is possible that bid of 100e does not win

▶ F (⟨bid⟩⟨sell⟩⊤): no witness exists

it is possible that a sell happens right after a bid

Fact

can construct �nite automaton (NFA) accepting exactly those runs that satisfy LTLf property

15/100

Linear-Time Model Checking

Veri�cation problem: Compliance
given DDSA and LTLf formula ψ with arithmetic constraints:

constraint | control state | ψ ∧ ψ | ψ ∨ ψ | ⟨action⟩ψ | Xψ | Fψ | Gψ | ψ U ψ

is there a witness run of DDSA that satis�es ψ?

evaluated over �nite traces

Example

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

▶ F ((o= 100) ∧ G (p3 → o ̸= 100)): witness exists

it is possible that bid of 100e does not win

▶ F (⟨bid⟩⟨sell⟩⊤): no witness exists

it is possible that a sell happens right after a bid

Fact

can construct �nite automaton (NFA) accepting exactly those runs that satisfy LTLf property

15/100

Linear-Time Model Checking

Veri�cation problem: Compliance
given DDSA and LTLf formula ψ with arithmetic constraints:

constraint | control state | ψ ∧ ψ | ψ ∨ ψ | ⟨action⟩ψ | Xψ | Fψ | Gψ | ψ U ψ

is there a witness run of DDSA that satis�es ψ?

evaluated over �nite traces

Example

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

▶ F ((o= 100) ∧ G (p3 → o ̸= 100)): witness exists

it is possible that bid of 100e does not win

▶ F (⟨bid⟩⟨sell⟩⊤): no witness exists

it is possible that a sell happens right after a bid

Fact

can construct �nite automaton (NFA) accepting exactly those runs that satisfy LTLf property

15/100

Model checking approach

1 2
foo : [x ′ > y]

bar : [y ′ > x]

+ ψ ⊤{y > 5}
∅∅ 7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA

NFA for ψ product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path

16/100

Model checking approach

1 2
foo : [x ′ > y]

bar : [y ′ > x]
+ ψ ⊤{y > 5}

∅∅

7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA NFA for ψ

product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path

16/100

Model checking approach

1 2
foo : [x ′ > y]

bar : [y ′ > x]
+ ψ ⊤{y > 5}

∅∅ 7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA NFA for ψ product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path

16/100

Model checking approach

1 2
foo : [x ′ > y]

bar : [y ′ > x]
+ ψ ⊤{y > 5}

∅∅ 7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA NFA for ψ product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path

16/100

Model checking approach

1 2
foo : [x ′ > y]

bar : [y ′ > x]
+ ψ ⊤{y > 5}

∅∅ 7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA NFA for ψ product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path

16/100

Model checking approach

1 2
foo : [x ′ > y]

bar : [y ′ > x]
+ ψ ⊤{y > 5}

∅∅ 7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA NFA for ψ product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path

16/100

Model checking approach

1 2
foo : [x ′ > y]

bar : [y ′ > x]
+ ψ ⊤{y > 5}

∅∅ 7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA NFA for ψ product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path

16/100

Model checking approach

1 2
foo : [x ′ > y]

bar : [y ′ > x]
+ ψ ⊤{y > 5}

∅∅ 7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA NFA for ψ product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path

16/100

Model checking approach

1 2
foo : [x ′ > y]

bar : [y ′ > x]
+ ψ ⊤{y > 5}

∅∅ 7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA NFA for ψ product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path

16/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

17/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

17/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

17/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

17/100

Example (Auction)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

p12 o= o0 ∧ t = t0

p12 o> o0 ∧ t = t0 ∧ t > 0

p12 o= o0 ∧ t < t0 ∧ t0> 0

p3 o= o0> 0 ∧ t = t0> 0

p3 o= o0> 0 ∧ t < t0 ∧ t ⩽ 0 ∧ t0> 0

p12 o> o0 ∧ t0> 0 ∧ t0> t

p12 o> o0 ∧ t0> t > 0

p3 o> o0 ∧ o> 0 ∧ t0> t ∧ t ⩽ 0 ∧ t0> 0

bid
timer

sell

sell

bid

timer

timer

bid

timer bid timer

sell

not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0), and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]

18/100

Example (Auction)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

p12 o= o0 ∧ t = t0

p12 o> o0 ∧ t = t0 ∧ t > 0

p12 o= o0 ∧ t < t0 ∧ t0> 0

p3 o= o0> 0 ∧ t = t0> 0

p3 o= o0> 0 ∧ t < t0 ∧ t ⩽ 0 ∧ t0> 0

p12 o> o0 ∧ t0> 0 ∧ t0> t

p12 o> o0 ∧ t0> t > 0

p3 o> o0 ∧ o> 0 ∧ t0> t ∧ t ⩽ 0 ∧ t0> 0

bid
timer

sell

sell

bid

timer

timer

bid

timer bid timer

sell

not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0), and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]

18/100

Example (Auction)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

p12 o= o0 ∧ t = t0

p12 o> o0 ∧ t = t0 ∧ t > 0

p12 o= o0 ∧ t < t0 ∧ t0> 0

p3 o= o0> 0 ∧ t = t0> 0

p3 o= o0> 0 ∧ t < t0 ∧ t ⩽ 0 ∧ t0> 0

p12 o> o0 ∧ t0> 0 ∧ t0> t

p12 o> o0 ∧ t0> t > 0

p3 o> o0 ∧ o> 0 ∧ t0> t ∧ t ⩽ 0 ∧ t0> 0

bid
timer

sell

sell

bid

timer

timer

bid

timer bid timer

sell

not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0), and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]

18/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

19/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

19/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

19/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

19/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s

▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

19/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

19/100

Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF)

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable

19/100

Example (Auction)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0] p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

p12 o= o0 ∧ t = t0

p12 o> o0 ∧ t = t0 ∧ t > 0

p12 o= o0 ∧ t < t0 ∧ t0> 0

p3 o= o0> 0 ∧ t = t0> 0

p3 o= o0> 0 ∧ t < t0 ∧ t ⩽ 0 ∧ t0> 0

p12 o> o0 ∧ t0> 0 ∧ t0> t

p12 o> o0 ∧ t0> t > 0

p3 o> o0 ∧ o> 0 ∧ t0> t ∧ t ⩽ 0 ∧ t0> 0

bid
timer

sell

sell

bid

timer

timer

bid

timer bid timer

sell

not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0), and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]

20/100

Example (Auction)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0] p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

p12 o= o0 ∧ t = t0

p12 o> o0 ∧ t = t0 ∧ t > 0

p12 o= o0 ∧ t < t0 ∧ t0> 0

p3 o= o0> 0 ∧ t = t0> 0

p3 o= o0> 0 ∧ t < t0 ∧ t ⩽ 0 ∧ t0> 0

p12 o> o0 ∧ t0> 0 ∧ t0> t

p12 o> o0 ∧ t0> t > 0

p3 o> o0 ∧ o> 0 ∧ t0> t ∧ t ⩽ 0 ∧ t0> 0

bid
timer

sell

sell

bid

timer

timer

bid

timer bid timer

sell

not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0), and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]

20/100

Example (Auction)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0] p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

p12 o= o0 ∧ t = t0

p12 o> o0 ∧ t = t0 ∧ t > 0

p12 o= o0 ∧ t < t0 ∧ t0> 0

p3 o= o0> 0 ∧ t = t0> 0

p3 o= o0> 0 ∧ t < t0 ∧ t ⩽ 0 ∧ t0> 0

p12 o> o0 ∧ t0> 0 ∧ t0> t

p12 o> o0 ∧ t0> t > 0

p3 o> o0 ∧ o> 0 ∧ t0> t ∧ t ⩽ 0 ∧ t0> 0

bid
timer

sell

sell

bid

timer

timer

bid

timer bid timer

sell

not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0)

, and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]

20/100

Example (Auction)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0] p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

p12 o= o0 ∧ t = t0

p12 o> o0 ∧ t = t0 ∧ t > 0

p12 o= o0 ∧ t < t0 ∧ t0> 0

p3 o= o0> 0 ∧ t = t0> 0

p3 o= o0> 0 ∧ t < t0 ∧ t ⩽ 0 ∧ t0> 0

p12 o> o0 ∧ t0> 0 ∧ t0> t

p12 o> o0 ∧ t0> t > 0

p3 o> o0 ∧ o> 0 ∧ t0> t ∧ t ⩽ 0 ∧ t0> 0

bid
timer

sell

sell

bid

timer

timer

bid

timer bid timer

sell

not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0), and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]

20/100

Example (Auction)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0] p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

p12 o= o0 ∧ t = t0

p12 o> o0 ∧ t = t0 ∧ t > 0

p12 o= o0 ∧ t < t0 ∧ t0> 0

p3 o= o0> 0 ∧ t = t0> 0

p3 o= o0> 0 ∧ t < t0 ∧ t ⩽ 0 ∧ t0> 0

p12 o> o0 ∧ t0> 0 ∧ t0> t

p12 o> o0 ∧ t0> t > 0

p3 o> o0 ∧ o> 0 ∧ t0> t ∧ t ⩽ 0 ∧ t0> 0

bid
timer

sell

sell

bid

timer

timer

bid

timer bid timer

sell

not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0), and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]

20/100

Example (Road �ne management process)

not data-aware sound

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

process is stuck if d ̸∈ {nil,#}

[Mannhardt et al 2016]

21/100

Example (Road �ne management process) not data-aware sound

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notifyprocess is stuck if d ̸∈ {nil,#}

[Mannhardt et al 2016]

21/100

Monitoring Arithmetic Temporal Properties

given a trace of values, check current and possible future satisfaction of LTLf properties like

▶ ψ1 = (y ⩾ 0) U (x > y ∧ G (x > y))

▶ ψ2 = G (x ′> x) ∧ F (x = 2) x ′ is value of x looking one trace instant ahead

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

ψ1 holds but could get violated in the future!

ψ2 does not hold and will never hold in the future!

Results

▶ developed monitoring procedure

▶ use �nite summary approach to identify classes of properties where problem is decidable

[Felli, Montali, Patrizi & W, AAAI 2023]

22/100

Monitoring Arithmetic Temporal Properties

given a trace of values, check current and possible future satisfaction of LTLf properties like

▶ ψ1 = (y ⩾ 0) U (x > y ∧ G (x > y))

▶ ψ2 = G (x ′> x) ∧ F (x = 2) x ′ is value of x looking one trace instant ahead

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

ψ1 holds but could get violated in the future!

ψ2 does not hold and will never hold in the future!

Results

▶ developed monitoring procedure

▶ use �nite summary approach to identify classes of properties where problem is decidable

[Felli, Montali, Patrizi & W, AAAI 2023]

22/100

Process Equivalence

Veri�cation problem
given two DPNs, do they have the same sets of con�gurations, and/or the same language?

setx sety τ

reset
xw > y r + 1 yw > x r ⊤

xw = 0 ∧ yw = 0

p0 p1 p2 p3 p0 p1

p2

p3

setx sety

sety setx

reset

Results

▶ can be determined using constraint graphs

▶ decidable for �nite summary systems

talk at workshop at BPM next week!

23/100

Implementation

Arithmetic DDS Analyzer (ada)

▶ input DPN (+ LTLf or CTL∗f property)

▶ checks for decidability conditions, visualizes CG/product automaton

▶ performs LTLf , CTL
∗
f model checking, soundness checking, and monitoring

▶ computes witness/counterexample

▶ written in Python, using Z3/Yices/CVC5 for SMT solving and quanti�er elimination
https://ltl.adatool.dev https://soundness.adatool.dev

https://ctlstar.adatool.dev

Experiments

▶ about 60 DPNs (20 from literature, 40 arti�cial)

▶ all DPNs from literature are in some decidable class for LTLf (but not CTL∗f) model checking

process property sat time checks |B| |Nψ
B,b|

road �nes (1) no deadlock ✗ 7.0s 8161 9 2052
AG (p7 → E F end) ✓ 7.6s 7655 1987

road �nes (2) no deadlock ✓ 15m27s 247563 9 4927
AG (p7 → E F end) ✓ 16m7s 246813 4927

road �nes (3) no deadlock ✗ 9s 9179 9 1985
AG (p7 → E F end) ✓ 6.6s 6382 1597
EF (dS ⩾ 2160) ✗ 11.5s 17680 1280

hospital billing no deadlock ✓ 20m59s 1234928 17 23147
EF (p16 ∧ ¬closed) ✓ 10m20s 669379 10654

sepsis (1) no deadlock ✓ 1m36s 139 301 44939
AG (sink → ttr < t

ab
) ✗ 30.1s 170 22724

AG (sink → ttr+60 ⩾ t
ab

) ✓ 32s 153 22538

sepsis (2) no deadlock ✓ 7m24 4524 301 161242
A (¬lacticAcid U ⟨diagnostic⟩⊤) ✓ 3m53s 5734 74984

board: register no deadlock ✓ 1.4s 12 7 27

board: transfer no deadlock ✓ 1.4s 27 7 51

board: discharge no deadlock ✓ 1.5s 25 6 67
AG (p2 ∧ o1=207 → AG o1=207) ✓ 1.5s 94 91

AG (EF ⟨tra⟩⊤ ∧ EF ⟨his⟩⊤) ✓ 1.5s 27 98
¬E (F ⟨tra⟩⊤ ∧ F ⟨his⟩⊤) ✓ 1.4s 56 43

credit approval no deadlock ✓ 1.7s 470 6 230
AG (⟨openLoan⟩⊤ → ver ∧ dec) ✓ 13.2s 14156 645

A (F (ver ∧ dec) → F ⟨openLoan⟩⊤) ✗ 3.7s 3128 316
package handling no deadlock ✓ 2.7ss 1025 16 693

no deadlock (τ1) ✓ 2.5s 1079 398
ψk1 = EF ⟨fetch⟩⊤ ✗ 2.6s 850 343
ψk2 = EF ⟨τ6 ⟩⊤ ✗ 2.4s 875 336

auction no deadlock ✗ 10.8s 1683 5 186
EF (sold ∧ d > 0 ∧ o ⩽ t) ✗ 6.4s 1180 79

EF (b= 1 ∧ o> t ∧ F (sold ∧ b> 1)) ✓ 26.5s 4000 263

24/100

https://ltl.adatool.dev
https://soundness.adatool.dev
https://ctlstar.adatool.dev

Implementation

Arithmetic DDS Analyzer (ada)

▶ input DPN (+ LTLf or CTL∗f property)

▶ checks for decidability conditions, visualizes CG/product automaton

▶ performs LTLf , CTL
∗
f model checking, soundness checking, and monitoring

▶ computes witness/counterexample

▶ written in Python, using Z3/Yices/CVC5 for SMT solving and quanti�er elimination
https://ltl.adatool.dev https://soundness.adatool.dev

https://ctlstar.adatool.dev

Experiments

▶ about 60 DPNs (20 from literature, 40 arti�cial)

▶ all DPNs from literature are in some decidable class for LTLf (but not CTL∗f) model checking

process property sat time checks |B| |Nψ
B,b|

road �nes (1) no deadlock ✗ 7.0s 8161 9 2052
AG (p7 → E F end) ✓ 7.6s 7655 1987

road �nes (2) no deadlock ✓ 15m27s 247563 9 4927
AG (p7 → E F end) ✓ 16m7s 246813 4927

road �nes (3) no deadlock ✗ 9s 9179 9 1985
AG (p7 → E F end) ✓ 6.6s 6382 1597
EF (dS ⩾ 2160) ✗ 11.5s 17680 1280

hospital billing no deadlock ✓ 20m59s 1234928 17 23147
EF (p16 ∧ ¬closed) ✓ 10m20s 669379 10654

sepsis (1) no deadlock ✓ 1m36s 139 301 44939
AG (sink → ttr < t

ab
) ✗ 30.1s 170 22724

AG (sink → ttr+60 ⩾ t
ab

) ✓ 32s 153 22538

sepsis (2) no deadlock ✓ 7m24 4524 301 161242
A (¬lacticAcid U ⟨diagnostic⟩⊤) ✓ 3m53s 5734 74984

board: register no deadlock ✓ 1.4s 12 7 27

board: transfer no deadlock ✓ 1.4s 27 7 51

board: discharge no deadlock ✓ 1.5s 25 6 67
AG (p2 ∧ o1=207 → AG o1=207) ✓ 1.5s 94 91

AG (EF ⟨tra⟩⊤ ∧ EF ⟨his⟩⊤) ✓ 1.5s 27 98
¬E (F ⟨tra⟩⊤ ∧ F ⟨his⟩⊤) ✓ 1.4s 56 43

credit approval no deadlock ✓ 1.7s 470 6 230
AG (⟨openLoan⟩⊤ → ver ∧ dec) ✓ 13.2s 14156 645

A (F (ver ∧ dec) → F ⟨openLoan⟩⊤) ✗ 3.7s 3128 316
package handling no deadlock ✓ 2.7ss 1025 16 693

no deadlock (τ1) ✓ 2.5s 1079 398
ψk1 = EF ⟨fetch⟩⊤ ✗ 2.6s 850 343
ψk2 = EF ⟨τ6 ⟩⊤ ✗ 2.4s 875 336

auction no deadlock ✗ 10.8s 1683 5 186
EF (sold ∧ d > 0 ∧ o ⩽ t) ✗ 6.4s 1180 79

EF (b= 1 ∧ o> t ∧ F (sold ∧ b> 1)) ✓ 26.5s 4000 263

24/100

https://ltl.adatool.dev
https://soundness.adatool.dev
https://ctlstar.adatool.dev

Implementation

Arithmetic DDS Analyzer (ada)

▶ input DPN (+ LTLf or CTL∗f property)

▶ checks for decidability conditions, visualizes CG/product automaton

▶ performs LTLf , CTL
∗
f model checking, soundness checking, and monitoring

▶ computes witness/counterexample

▶ written in Python, using Z3/Yices/CVC5 for SMT solving and quanti�er elimination
https://ltl.adatool.dev https://soundness.adatool.dev

https://ctlstar.adatool.dev

Experiments

▶ about 60 DPNs (20 from literature, 40 arti�cial)

▶ all DPNs from literature are in some decidable class for LTLf (but not CTL∗f) model checking

process property sat time checks |B| |Nψ
B,b|

road �nes (1) no deadlock ✗ 7.0s 8161 9 2052
AG (p7 → E F end) ✓ 7.6s 7655 1987

road �nes (2) no deadlock ✓ 15m27s 247563 9 4927
AG (p7 → E F end) ✓ 16m7s 246813 4927

road �nes (3) no deadlock ✗ 9s 9179 9 1985
AG (p7 → E F end) ✓ 6.6s 6382 1597
EF (dS ⩾ 2160) ✗ 11.5s 17680 1280

hospital billing no deadlock ✓ 20m59s 1234928 17 23147
EF (p16 ∧ ¬closed) ✓ 10m20s 669379 10654

sepsis (1) no deadlock ✓ 1m36s 139 301 44939
AG (sink → ttr < t

ab
) ✗ 30.1s 170 22724

AG (sink → ttr+60 ⩾ t
ab

) ✓ 32s 153 22538

sepsis (2) no deadlock ✓ 7m24 4524 301 161242
A (¬lacticAcid U ⟨diagnostic⟩⊤) ✓ 3m53s 5734 74984

board: register no deadlock ✓ 1.4s 12 7 27

board: transfer no deadlock ✓ 1.4s 27 7 51

board: discharge no deadlock ✓ 1.5s 25 6 67
AG (p2 ∧ o1=207 → AG o1=207) ✓ 1.5s 94 91

AG (EF ⟨tra⟩⊤ ∧ EF ⟨his⟩⊤) ✓ 1.5s 27 98
¬E (F ⟨tra⟩⊤ ∧ F ⟨his⟩⊤) ✓ 1.4s 56 43

credit approval no deadlock ✓ 1.7s 470 6 230
AG (⟨openLoan⟩⊤ → ver ∧ dec) ✓ 13.2s 14156 645

A (F (ver ∧ dec) → F ⟨openLoan⟩⊤) ✗ 3.7s 3128 316
package handling no deadlock ✓ 2.7ss 1025 16 693

no deadlock (τ1) ✓ 2.5s 1079 398
ψk1 = EF ⟨fetch⟩⊤ ✗ 2.6s 850 343
ψk2 = EF ⟨τ6 ⟩⊤ ✗ 2.4s 875 336

auction no deadlock ✗ 10.8s 1683 5 186
EF (sold ∧ d > 0 ∧ o ⩽ t) ✗ 6.4s 1180 79

EF (b= 1 ∧ o> t ∧ F (sold ∧ b> 1)) ✓ 26.5s 4000 263

24/100

https://ltl.adatool.dev
https://soundness.adatool.dev
https://ctlstar.adatool.dev

Conclusion

Summary

▶ for Data Petri nets with arithmetic constraints:

veri�cation procedures for LTLf , CTL
∗
f , data-aware soundness

▶ decision procedure if DPN satis�es �nite summary property: new decidability results

▶ implemented and tested on processes from BPM

Take-home message

▶ �nite constraint graphs are powerful tool for veri�cation

▶ many relevant veri�cation tasks are decidable for �practical� Data Petri nets

Future work

▶ further SMT theories, e.g. allow guards to refer to database

▶ discover more expressive transition guards for DPNs :)

25/100

Conclusion

Summary

▶ for Data Petri nets with arithmetic constraints:

veri�cation procedures for LTLf , CTL
∗
f , data-aware soundness

▶ decision procedure if DPN satis�es �nite summary property: new decidability results

▶ implemented and tested on processes from BPM

Take-home message

▶ �nite constraint graphs are powerful tool for veri�cation

▶ many relevant veri�cation tasks are decidable for �practical� Data Petri nets

Future work

▶ further SMT theories, e.g. allow guards to refer to database

▶ discover more expressive transition guards for DPNs :)

25/100

Conclusion

Summary

▶ for Data Petri nets with arithmetic constraints:

veri�cation procedures for LTLf , CTL
∗
f , data-aware soundness

▶ decision procedure if DPN satis�es �nite summary property: new decidability results

▶ implemented and tested on processes from BPM

Take-home message

▶ �nite constraint graphs are powerful tool for veri�cation

▶ many relevant veri�cation tasks are decidable for �practical� Data Petri nets

Future work

▶ further SMT theories, e.g. allow guards to refer to database

▶ discover more expressive transition guards for DPNs :)

25/100

... all of this is the result of a fun collaboration with

Marco Montali Paolo Felli Fabio Patrizi

26/100

Bibliography: DPN Toolbox

P. Felli, M. Montali, S. Winkler
Linear-time veri�cation of data-aware dynamic systems with arithmetic
AAAI-36, 5642-5650, 2022

P. Felli, M. Montali, S. Winkler
Soundness of data-aware processes with arithmetic conditions
CAiSE-34, LNCS 13295, 389�406, 2022

P. Felli, M. Montali, S. Winkler
CTL* model checking for data-aware dynamic systems with arithmetic
IJCAR-11, LNCS 13385, 36�56, 2022

P. Felli, M. Montali, F. Patrizi, S. Winkler
Monitoring Arithmetic Temporal Properties on Finite Traces
AAAI-37, 6346-6354, 2023

M. Montali, S. Winkler
Equivalence of Data Petri Nets with Arithmetic
FM-BPM 2023, to appear

26/100

Bibliography: Related Work

F. Mannhardt
Multi-perspective Process Mining
Ph.D. thesis, Technical University of Eindhoven, 2018

F. Mannhardt, M. de Leoni, H. A. Reijers, W. van der Aalst
Decision mining revisited: Discovering overlapping rules
CAiSE-28, LNCS 9694, 377�392, 2016

26/100

