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Motivation

Discovery and veri�cation of BPM processes

... compliant?

e.g. every order is eventually shipped

... sound?

... equivalent to other model?

xcost , xpaid ,
xorder_type , . . .

event logs automatic discovery experts model

data
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The In�nite State Space Jungle


order type = 0

cost = 0
paid = 0

init




order type = 1
cost = 10
paid = 0
ordered




order type = 1
cost = 10
paid = 15
checked



order type = 1
cost = 10
paid = 20
checked




order type = 1
cost = 10
paid = 22
checked

 · · ·

order type = 1
cost = 11
paid = 11
checked




order type = 1
cost = 10
paid = 10
checked




order type = 2

cost = 2
paid = 0
ordered



order type = 3
cost = 100
paid = 0
ordered




order type = 3
cost = 100
paid = 2
checked



order type = 3
cost = 100
paid = 2
checked




order type = 3
cost = 100
paid = 30
checked



order type = 3
cost = 100
paid = 3
checked



· · ·

order type = 7

cost = 0
paid = 0
declined




order type = 7

cost = 0
paid = 2
checked

 · · ·

order type = 7

cost = 0
paid = 10
declined




order type = 7

cost = 0
paid = 10
resumed



... compliant?

... data-aware sound?

... ?

checked ∧ (paid > cost) (paid = cost)

(cost>0) ∧ (paid=0)

init ∧ (cost=0)

(paid < cost) ∧ (cost > 80)

declined ∧ (cost = 0)

resumed

partition in�nite state space
using (�nitely many) formulas

∃
φ
|=
ψ
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Motivation

Discovery and veri�cation of data-aware BPM processes

... compliant?

e.g. every order is eventually shipped

... data-aware sound?

... equivalent to other model?

xcost , xpaid ,
xorder_type , . . .

event logs automatic discovery experts model

data

This talk
identify classes of data-aware models where veri�cation tasks are decidable
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Data Petri net (DPN)

▶ based on Petri net

▶ initial and �nal markings MI and MF

▶ data: set of �global� variables V

with numeric domain (Q or Z)
▶ initial values of V are �xed by valuation α0
▶ transitions have guards that read and write variables:

linear arithmetic expressions over V and V ′

Example (Auction model)

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

p0

p1 p2

p3
t timer Q
o last o�er Q

set o to 0 and t to positive value

requires that t positive, increases o

requires that t ⩽ 0 and o positive
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Background logic

▶ propositional logic + theory of linear arithmetic over integers and rationals

▶ satis�ability is decidable (SMT solvers), quanti�ers can be eliminated
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Remark

▶ DPNs can be mined automatically from data [Mannhardt et al 2016, de Leoni 2013]

▶ used to model BPM processes from various domains [Mannhardt et al 2016, Mannhardt 2018]
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Observation
if underlying Petri net is bounded, DPN has �nite set of markings: can be unfolded

Data-aware Dynamic System with Arithmetic (DDSA)

▶ labeled transition system
▶ control states: markings of DPN
▶ transitions: re�ect �rings in DPN

, with same guards

▶ data variables V like in DPN, with α0
▶ run is sequence of states and valuations of V

Example (DDSA for DPN)

p0

p12

p3

init

[t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]

timer

[t > 0 ∧ t ′< t]

sell

[t ⩽ 0 ∧ o> 0]

reset

[o= 0]
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State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)

bid
t > 0 ∧ o′> o

(p12, φ
′)

φ = (o= 0) ∧ (t > 0)

φ′

= update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)
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De�nition (Update)

for formula φ and transition a in DDSA

update(φ, a) =

∃V̂ . (φ(V̂ ) ∧ guarda(V̂ ,V ) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . . ) ∈ N is �nal if s is �nal in DDSA
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State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)
bid

t > 0 ∧ o′> o
(p12, φ

′)

φ = (o= 0) ∧ (t > 0) φ′ = update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)

≡ (o> 0) ∧ (t > 0)
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≡ (o> 0) ∧ (t > 0)

10/100



State Space Abstraction

De�nitions

▶ state of DDSA is tuple (s, α) of control state s and assignment α to data variables V

▶ abstract state is tuple (s, φ) of control state s and formula φ with free variables V

▶ (s, α) matches (s, φ) if α |= φ

Example

▶ state p12
t = 2
o= 0

bid
t > 0 ∧ o′> o

p12
t = 2
o= 10

matches

▶ abstract state (p12, φ)
bid

t > 0 ∧ o′> o
(p12, φ

′)

φ = (o= 0) ∧ (t > 0) φ′ = update(φ, bid)

= ∃ô t̂. (ô= 0) ∧ (t̂>0) ∧ (t̂>0) ∧ (o>ô) ∧ (t̂=t)
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for formula φ and transition a in DDSA

update(φ, a) = ∃V̂ . (φ(V̂ ) ∧ guarda(V̂ ,V ) ∧
∧

v ̸∈write(a)

v̂ = v)

describes how formula φ changes after transition a

rename variables in formula to auxiliary V̂ = {v̂ | v ∈ V }can get equivalent quanti�er-free formula by quanti�er eliminationguard must hold, propagate variables that are not written
∃ quanti�cation to get formula with free variables V

De�nition (Constraint graph)

is graph with node set of abstract states such that

▶ initial node is (s0, φ0), with φ0 =
∧

v∈V v = α0(v)

▶ for every node (s, φ)

where s a−→ s ′ and update(φ, a) is satis�able

there is node (s ′, φ′) such that φ′ ≡ update(φ, a), and edge (s, φ) a−→ (s ′, φ′)

▶ (s, . . . ) ∈ N is �nal if s is �nal in DDSA
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Example (Constraint graph for auction model)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

unreachable transition

p0
t = 0
o= 0

p12
t = 2
o= 0

p12
t = 2
o= 10

p12
t = 0
o= 10

p3
t = 0
o= 10

init

bid

timer

sell

p0 o= 0 ∧ t = 0

p12 o= 0 ∧ t > 0

p12 o= 0

p12 o> 0 ∧ t > 0

p12 o> 0

p3 o> 0 ∧ t ⩾ 0

init

timer

bid

bid

bid

timer

timer bid

sell

Key Lemma

∃ DDSA run (s0, α0)
∗−→ (s, α) ⇐⇒ ∃ path in CG (s0, φ0)

∗−→ (s, φ) with α |= φ

Observation
control state or transition of DDSA are reachable i� they appear in the constraint graph

if CG is �nite, reachability is decidable
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Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
▶ by splitting variables

init

bid

sell

timer

reset

[t ′> 0 ∧ o′ = 0]

[t > 0 ∧ t ′< t]

[t ⩽ 0 ∧ o> 0]

[t > 0 ∧ o′> o]

[o= 0]

applies to all DPNs mined according to [Mannhardt et al 2016]

idea: behaviour depends on bounded number of past steps

road �ne management process

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

auction process

init : [ tw > 0 ∧mw > 0 ]

bid : [ 0 < bw ∧ ow > or ]

check : [ tr > 0 ]

dec : [ tr − tw ⩾ 1 ]

exp : [ tr ⩽ 0 ∧ br > 0 ]

sell now : [ or > mr ]
fee : [ ow = or + 10 ]
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Decidability Conditions

De�nition (Finite summary)

abstract decidability condition

DDSA has �nite summary if set of history constraints is �nite

formulas in CG are history constraints:

∃ . . . ∃ (conjunctions of renamed transition guards)

Concrete instances of �nite summary [Felli, Montali & W, AAAI 2022]

capture wide range of DPNs from literature

▶ restrict shape of transition guards:

▶ variable-to-variable/constant comparisons over Q: x < y , x ⩾ 1

2
, y = 0 [Demri & de Souza 2006]

▶ integer periodicity constraints over Z: x = y , x < 3, y ≡5 3 [Demri 2006, Gascon 2009]

▶ gap-order constraints: x − y ⩾ 2 [Cerans 1995, Bozzelli & Pinchinat 2014]

▶ restrict control �ow:

▶ feedback freedom [Damaggio, Deutsch & Vianu 2012]

▶ bounded memory

▶ DDSA can be decomposed into subsystems that have �nite summary

▶ into sequential process parts
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Linear-Time Model Checking

Veri�cation problem: Compliance
given DDSA and LTLf formula ψ with arithmetic constraints:

constraint | control state | ψ ∧ ψ | ψ ∨ ψ | ⟨action⟩ψ | Xψ | Fψ | Gψ | ψ U ψ

is there a witness run of DDSA that satis�es ψ?

evaluated over �nite traces

Example

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]

bid

[t > 0 ∧ o′> o]
timer

[t > 0 ∧ t ′< t]

sell [t ⩽ 0 ∧ o> 0]

reset [o= 0]

▶ F ((o= 100) ∧ G (p3 → o ̸= 100)): witness exists

it is possible that bid of 100e does not win

▶ F (⟨bid⟩⟨sell⟩⊤): no witness exists

it is possible that a sell happens right after a bid

Fact

can construct �nite automaton (NFA) accepting exactly those runs that satisfy LTLf property
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Model checking approach

1 2
foo : [x ′ > y ]

bar : [y ′ > x ]

+ ψ ⊤{y > 5}
∅∅ 7→

0 ψ x = 0 ∧ y = 0

1 ψ x = 0 ∧ y = 0

2 ψ x > y ∧ y = 0

1 ψ x > 0 ∧ y > x

2 ψ x > y ∧ y > 0

1 ⊤ x > 0 ∧ y > x ∧ y > 5

2 ⊤ x > y ∧ y > 5

1 ⊤ x > 5 ∧ y > x

a0

foo

bar

foo bar

bar y > 5

bar
y > 5

foo
y > 5

foo

bar foo

DDSA

NFA for ψ product automaton N

check F (y > 5)

Product automaton

▶ nodes are triples (DDSA state, NFA state, formula)

▶ construction is similar as for constraint graph, but edges combine DDSA and NFA steps

▶ �nal nodes are those that combine �nal DDSA and NFA state

Theorem

▶ product automaton has �nal node i� DDSA admits witness for ψ

▶ LTLf model checking is decidable if DDSA has �nite summary with respect to ψ

[Felli, Montali & W, AAAI 2022]

can use SMT solver to extract witness from accepting path
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Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF )

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable
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Example (Auction)

p0

p12

p3

init [t ′> 0 ∧ o′ = 0]
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[t > 0 ∧ o′> o]
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[t > 0 ∧ t ′< t]
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not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0), and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]
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Data-aware Soundness

De�nition

DPN is data-aware sound if

1 from any reachable state, a �nal state can be reached

2 termination is clean (no reachable marking M is such that M ⊃ MF )

3 all transitions are reachable

can be checked on corresponding DDSA

Soundness checking approach [Felli, Montali & W, CAiSE 2022]

▶ can check 2 and 3 directly on CG

▶ for 1 : for each non-�nal CG node (s, φ):

▶ compute CGs starting from s and unknown initial values V0

▶ extract formula reach_�nal(s) expressing conditions on V0

that guarantee reachability of �nal state from s
▶ φ |= reach_�nal(s) i� �nal state is always reachable from (s, φ)

if DDSA has �nite summary, data-aware soundness is decidable
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Example (Auction)
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not data-aware sound because

▶ transition reset is unreachable

▶ deadlocks exist, e.g. after p0
t = 0
o= 0

p12
t = 1
o= 0

p12
t = 0
o= 0

init timer

have reach_�nal(p12) = (t > 0), and (o = 0) ̸|= (t > 0)

Branching-time model checking

use similar approach to obtain CTL∗ model checking procedure

[Felli, Montali & W, IJCAR 2022]
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Example (Road �ne management process)

not data-aware sound

create �ne

a′, t ′, d ′, p′ =?

payment

t ′ =?

send �ne

0⩾ ds ′ ⩾ 2160 ∧ e′ =?

τ1
d ̸= 0 ∨ (p= 0 ∧ t ⩾ a)

payment

t ′ =?

insert noti�cation

τ2

t ⩾ a+ e

payment

t ′ =?

add penalty

a′ =?

appeal to judge

0⩾ dj ′ ⩾ 1440 ∧ d ′ ⩾ 0

credit collection

t < a+ e

τ3

t ⩾ a+ e

τ5

d = nil

appeal to prefecture

0⩾ dp′ ⩾ 1440

send to prefecture

d ′ =?

result prefecture

d = nil
τ6

d =G τ4

d = ♯

notify

process is stuck if d ̸∈ {nil,#}

[Mannhardt et al 2016]
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Monitoring Arithmetic Temporal Properties

given a trace of values, check current and possible future satisfaction of LTLf properties like

▶ ψ1 = (y ⩾ 0) U (x > y ∧ G (x > y))

▶ ψ2 = G (x ′> x) ∧ F (x = 2) x ′ is value of x looking one trace instant ahead

x = 0
y = 0

x = 1
y = 3

x = 4
y = 3

x = 5
y = 4

x = 6
y =−4

ψ1 holds but could get violated in the future!

ψ2 does not hold and will never hold in the future!

Results

▶ developed monitoring procedure

▶ use �nite summary approach to identify classes of properties where problem is decidable

[Felli, Montali, Patrizi & W, AAAI 2023]
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Process Equivalence

Veri�cation problem
given two DPNs, do they have the same sets of con�gurations, and/or the same language?

setx sety τ

reset
xw > y r + 1 yw > x r ⊤

xw = 0 ∧ yw = 0

p0 p1 p2 p3 p0 p1

p2

p3

setx sety

sety setx

reset

Results

▶ can be determined using constraint graphs

▶ decidable for �nite summary systems

talk at workshop at BPM next week!
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Implementation

Arithmetic DDS Analyzer (ada)

▶ input DPN (+ LTLf or CTL∗f property)

▶ checks for decidability conditions, visualizes CG/product automaton

▶ performs LTLf , CTL
∗
f model checking, soundness checking, and monitoring

▶ computes witness/counterexample

▶ written in Python, using Z3/Yices/CVC5 for SMT solving and quanti�er elimination
https://ltl.adatool.dev https://soundness.adatool.dev

https://ctlstar.adatool.dev

Experiments

▶ about 60 DPNs (20 from literature, 40 arti�cial)

▶ all DPNs from literature are in some decidable class for LTLf (but not CTL∗f ) model checking

process property sat time checks |B| |Nψ
B,b|

road �nes (1) no deadlock ✗ 7.0s 8161 9 2052
AG (p7 → E F end) ✓ 7.6s 7655 1987

road �nes (2) no deadlock ✓ 15m27s 247563 9 4927
AG (p7 → E F end) ✓ 16m7s 246813 4927

road �nes (3) no deadlock ✗ 9s 9179 9 1985
AG (p7 → E F end) ✓ 6.6s 6382 1597
EF (dS ⩾ 2160) ✗ 11.5s 17680 1280

hospital billing no deadlock ✓ 20m59s 1234928 17 23147
EF (p16 ∧ ¬closed) ✓ 10m20s 669379 10654

sepsis (1) no deadlock ✓ 1m36s 139 301 44939
AG (sink → ttr < t

ab
) ✗ 30.1s 170 22724

AG (sink → ttr+60 ⩾ t
ab

) ✓ 32s 153 22538

sepsis (2) no deadlock ✓ 7m24 4524 301 161242
A (¬lacticAcid U ⟨diagnostic⟩⊤) ✓ 3m53s 5734 74984

board: register no deadlock ✓ 1.4s 12 7 27

board: transfer no deadlock ✓ 1.4s 27 7 51

board: discharge no deadlock ✓ 1.5s 25 6 67
AG (p2 ∧ o1=207 → AG o1=207) ✓ 1.5s 94 91

AG (EF ⟨tra⟩⊤ ∧ EF ⟨his⟩⊤) ✓ 1.5s 27 98
¬E (F ⟨tra⟩⊤ ∧ F ⟨his⟩⊤) ✓ 1.4s 56 43

credit approval no deadlock ✓ 1.7s 470 6 230
AG (⟨openLoan⟩⊤ → ver ∧ dec) ✓ 13.2s 14156 645
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ψk2 = EF ⟨τ6 ⟩⊤ ✗ 2.4s 875 336

auction no deadlock ✗ 10.8s 1683 5 186
EF (sold ∧ d > 0 ∧ o ⩽ t) ✗ 6.4s 1180 79

EF (b= 1 ∧ o> t ∧ F (sold ∧ b> 1)) ✓ 26.5s 4000 263
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Implementation

Arithmetic DDS Analyzer (ada)

▶ input DPN (+ LTLf or CTL∗f property)

▶ checks for decidability conditions, visualizes CG/product automaton

▶ performs LTLf , CTL
∗
f model checking, soundness checking, and monitoring

▶ computes witness/counterexample

▶ written in Python, using Z3/Yices/CVC5 for SMT solving and quanti�er elimination
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https://ctlstar.adatool.dev

Experiments

▶ about 60 DPNs (20 from literature, 40 arti�cial)

▶ all DPNs from literature are in some decidable class for LTLf (but not CTL∗f ) model checking
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Conclusion

Summary

▶ for Data Petri nets with arithmetic constraints:

veri�cation procedures for LTLf , CTL
∗
f , data-aware soundness

▶ decision procedure if DPN satis�es �nite summary property: new decidability results

▶ implemented and tested on processes from BPM

Take-home message

▶ �nite constraint graphs are powerful tool for veri�cation

▶ many relevant veri�cation tasks are decidable for �practical� Data Petri nets

Future work

▶ further SMT theories, e.g. allow guards to refer to database

▶ discover more expressive transition guards for DPNs :)
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... all of this is the result of a fun collaboration with

Marco Montali Paolo Felli Fabio Patrizi
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