

Runtime Complexity Analysis of Logically Constrained Rewriting

<u>Sarah Winkler</u> and Georg Moser University of Verona and University of Innsbruck

LOPSTR 2020 7 September 2020

```
mergesort = function
| [] -> []
| [x] -> [x]
| x1 :: x2 :: xs ->
| let (11,12) = msplit (x1::x2::xs) in
| merge (mergesort 11, mergesort 12)
...
```

Aims

- fully automatic worst-case runtime analysis
- support for full recursion, common data structures and types

Aims

- ▶ fully automatic worst-case runtime analysis
- support for full recursion, common data structures and types

```
mergesort = function
| [] -> []
| [x] -> [x]
| x1 :: x2 :: xs ->
| let (11,12) = msplit (x1::x2::xs) in
| merge (mergesort 11, mergesort 12)
...
```

Aims

- fully automatic worst-case runtime analysis
- support for full recursion, common data structures and types

This Talk: Complexity Analysis Framework for LCTRS

► Logically Constrained Rewrite Systems (LCTRS):

```
mergesort = function
| [] \rightarrow [] \\ | [x] \rightarrow [x] \\ | [x] : x2 :: xs \rightarrow \\ let ([1,12) = msplit (x1::x2::xs) in \\ merge (mergesort li, mergesort l2) \\ \dots
\longrightarrow \mathcal{O}(n \log(n))
```

Aims

- fully automatic worst-case runtime analysis
- support for full recursion, common data str

rewrite rules with constraints over SMT-supported theory

This Talk: Complexity Analysis Framework for LATRS

▶ Logically Constrained Rewrite Systems (LCTRS):

```
mergesort = function
| [] \rightarrow [] \\ | [x] \rightarrow [x] \\ | [x] \rightarrow [x] \\ | x1 :: x2 :: xs \rightarrow \\ let (11,12) = msplit (x1::x2::xs) in \\ merge (mergesort 11, mergesort 12) \\ \dots
\longrightarrow \mathcal{O}(n \log(n))
```

Aims

- fully automatic worst-case runtime analysis
- support for full recursion, common data structures and types

- ► Logically Constrained Rewrite Systems (LCTRS):
 - frontends: various programming languages and simplification systems

```
mergesort = function
| [] \rightarrow [] 
| [x] \rightarrow [x] 
| x1 :: x2 :: xs \rightarrow ]
| t1 (1,12) = msplit (x1::x2::xs) in 
merge (mergesort li, mergesort 12)
...
```

Aims

- ▶ fully automatic worst-case runtime analysis
- support for full recursion, common data structures and types

- ► Logically Constrained Rewrite Systems (LCTRS):
 - frontends: various programming languages and simplification systems
 - native support for recursion, and arbitrary theories handled by SMT

```
mergesort = function
| [] \rightarrow []
| [x] \rightarrow [x]
| x1 :: x2 :: xs \rightarrow
| tet (11,12) = msplit (x1::x2::xs) in
merge (mergesort 11, mergesort 12)
...
```

Aims

- fully automatic worst-case runtime analysis
- support for full recursion, common data structures and types

- Logically Constrained Rewrite Systems (LCTRS):
 - frontends: various programming languages and simplification systems
 - native support for recursion, and arbitrary theories handled by SMT
- fully automatic worst-case runtime analysis, also sub-linear bounds

```
mergesort = function
| [] \rightarrow [] 
| [x] \rightarrow [x] 
| x1 :: x2 :: xs \rightarrow ]
| t1 (1,12) = msplit (x1::x2::xs) in 
merge (mergesort li, mergesort 12)
...
```

Aims

- fully automatic worst-case runtime analysis
- support for full recursion, common data structures and types

- Logically Constrained Rewrite Systems (LCTRS):
 - ▶ frontends: various programming languages and simplification systems
 - native support for recursion, and arbitrary theories handled by SMT
- fully automatic worst-case runtime analysis, also sub-linear bounds
- ▶ implementation in complexity tool TCT

Example 1: Integer Transition Systems

► LCTRSs cover Integer Transition Systems (ITS)

Example 1: Integer Transition Systems

- ► LCTRSs cover Integer Transition Systems (ITS)
- ▶ new T_CT version derives optimal $O(n \log(n))$ bound

Example 1: Integer Transition Systems

- ► LCTRSs cover Integer Transition Systems (ITS)
- ▶ new T_CT version derives optimal $\mathcal{O}(n \log(n))$ bound (CoFloCo, KoAT, PUBS, and previous version of T_CT at best quadratic)

Example 2: Logic Programs

```
\begin{split} \mathsf{max\_length}(\mathit{ls},\mathit{m},\mathit{l}) &\to \langle \mathsf{max}(\mathit{ls},0,\mathit{m}), \mathsf{len}(\mathit{ls},\mathit{l}) \rangle \\ \mathsf{len}(\mathit{xs},\mathit{l}) &\to \mathsf{len}(\mathit{t},\mathit{l}-1) \ [\mathit{xs} \approx \mathit{h} :: \mathit{t}] \\ \mathsf{max}(\mathit{xs},\mathit{n},\mathit{m}) &\to \mathsf{max}(\mathit{t},\mathit{n},\mathit{m}) \ [\mathit{h} \leqslant \mathit{n} \land \mathit{xs} \approx \mathit{h} :: \mathit{t}] \\ \mathsf{max}(\mathit{xs},\mathit{n},\mathit{m}) &\to \mathsf{max}(\mathit{t},\mathit{h},\mathit{m}) \ [\mathit{h} > \mathit{n} \land \mathit{xs} \approx \mathit{h} :: \mathit{t}] \end{split} \quad \mathsf{max}([],\mathit{m},\mathit{m}) &\to \langle \rangle \end{split}
```

can use approach to analyze (constraint) logic programs

Example 2: Logic Programs

```
\begin{split} \max\_\mathsf{length}(\mathit{ls},\mathit{m},\mathit{l}) &\to \langle \mathsf{max}(\mathit{ls},0,\mathit{m}), \mathsf{len}(\mathit{ls},\mathit{l}) \rangle \\ &\mathsf{len}(\mathit{xs},\mathit{l}) \to \mathsf{len}(\mathit{t},\mathit{l}-1) \ [\mathit{xs} \approx \mathit{h} :: \mathit{t}] \\ &\mathsf{max}(\mathit{xs},\mathit{n},\mathit{m}) \to \mathsf{max}(\mathit{t},\mathit{n},\mathit{m}) \ [\mathit{h} \leqslant \mathit{n} \land \mathit{xs} \approx \mathit{h} :: \mathit{t}] \\ &\mathsf{max}(\mathit{xs},\mathit{n},\mathit{m}) \to \mathsf{max}(\mathit{t},\mathit{h},\mathit{m}) \ [\mathit{h} > \mathit{n} \land \mathit{xs} \approx \mathit{h} :: \mathit{t}] \end{split} \quad \\ &\mathsf{max}(\mathit{xs},\mathit{n},\mathit{m}) \to \mathsf{max}(\mathit{t},\mathit{h},\mathit{m}) \ [\mathit{h} > \mathit{n} \land \mathit{xs} \approx \mathit{h} :: \mathit{t}] \end{split}
```

- can use approach to analyze (constraint) logic programs
- new version of T_CT can handle LCTRSs corresponding to deterministic
 Prolog programs over integers and lists

Example 2: Logic Programs

```
\begin{split} \max\_\mathsf{length}(\mathit{ls},\mathit{m},\mathit{l}) &\to \langle \mathsf{max}(\mathit{ls},0,\mathit{m}), \mathsf{len}(\mathit{ls},\mathit{l}) \rangle \\ &= \mathsf{len}(\mathit{xs},\mathit{l}) \to \mathsf{len}(\mathit{t},\mathit{l}-1) \ [\mathit{xs} \approx \mathit{h} :: \mathit{t}] \\ &= \mathsf{max}(\mathit{xs},\mathit{n},\mathit{m}) \to \mathsf{max}(\mathit{t},\mathit{n},\mathit{m}) \ [\mathit{h} \leqslant \mathit{n} \land \mathit{xs} \approx \mathit{h} :: \mathit{t}] \\ &= \mathsf{max}(\mathit{xs},\mathit{n},\mathit{m}) \to \mathsf{max}(\mathit{t},\mathit{h},\mathit{m}) \ [\mathit{h} > \mathit{n} \land \mathit{xs} \approx \mathit{h} :: \mathit{t}] \end{split} \quad \\ &= \mathsf{max}(\mathit{l},\mathit{m},\mathit{m}) \to \langle \mathsf{l} \rangle \end{split}
```

- can use approach to analyze (constraint) logic programs
- new version of T_CT can handle LCTRSs corresponding to deterministic
 Prolog programs over integers and lists
- techniques known to extend to decomposable non-deterministic programs

J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, C. Fuhs. Symbolic evaluation graphs and term rewriting: a general methodology for analyzing logic programs. Proc. PPDP 2012, pp. 1–12, 2012.

Example 3: Simplification Systems

Expression simplifications in compilers

▶ e.g. in LLVM: multiplications to shifts, reordering bitwise operations, . . .

Example 3: Simplification Systems

Expression simplifications in compilers

- e.g. in LLVM: multiplications to shifts, reordering bitwise operations, . . .
- can be modeled as LCTRS

Example 3: Simplification Systems

Expression simplifications in compilers

- ▶ e.g. in LLVM: multiplications to shifts, reordering bitwise operations, . . .
- can be modeled as LCTRS
- complexity crucial (current work is first step: derivational complexity needed)

processor

problem

problem

problem processor

M. Avanzini and G. Moser.

A combination framework for complexity.

Inf. Comput., 248:22-55, 2016.

problem processor

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. **Analyzing runtime and size complexity of integer programs.** ACM Trans. Program. Lang. Syst., 38(4):13:1–13:50, 2016.

Contents

Motivation

Background

Processor Framework

Implementation

Conclusion

► logically constrained rewrite rule

$$\ell \to r [c]$$

- constraint c is term over logic signature (with SMT-decidable theory)
- \blacktriangleright terms ℓ , r contain free symbols and logic signature

logically constrained rewrite rule

$$\ell \to r [c]$$

- ▶ constraint c is term over logic signature (with SMT-decidable theory)
- \blacktriangleright terms ℓ , r contain free symbols and logic signature
- ► LCTRS is set of logically constraint rewrite rules

► logically constrained rewrite rule

$$\ell \to r [c]$$

- constraint c is term over logic signature (with SMT-decidable theory)
- \blacktriangleright terms ℓ , r contain free symbols and logic signature
- ► LCTRS is set of logically constraint rewrite rules

Example

▶ $\operatorname{split}(x, y, z) \rightarrow \operatorname{split}(x - 2, y, z) [x \geqslant 2]$

(integers)

► logically constrained rewrite rule

$$\ell \to r [c]$$

- constraint c is term over logic signature (with SMT-decidable theory)
- \blacktriangleright terms ℓ , r contain free symbols and logic signature
- ► LCTRS is set of logically constraint rewrite rules

Example

- $\operatorname{split}(x, y, z) \to \operatorname{split}(x 2, y, z) [x \geqslant 2]$ (integers)
- $\blacktriangleright \quad \mathsf{len}(\mathit{xs},\mathit{l}) \to \mathsf{len}(\mathit{t},\mathit{l}-1) \; [\mathit{xs} \approx \mathit{h} :: \mathit{t}] \tag{lists}$

► logically constrained rewrite rule

$$\ell \to r [c]$$

- ► constraint c is term over logic signature (with SMT-decidable theory)
- \blacktriangleright terms ℓ , r contain free symbols and logic signature
- ► LCTRS is set of logically constraint rewrite rules

Example

- ▶ $len(xs, l) \rightarrow len(t, l-1) [xs \approx h :: t]$ (lists)
- $\mathsf{mul}(\mathsf{sub}(y,x),c) \to \mathsf{mul}(\mathsf{sub}(x,y),\mathsf{abs}(c)) \ [c < \mathbf{0}_8 \land \mathsf{isPowerOf2}(\mathsf{abs}(c))]$ (bitvectors)

Definition (Dependency tuples)

 $ightharpoonup t^{\#}$ is obtained from term t by marking root symbol by #

- $ightharpoonup t^{\#}$ is obtained from term t by marking root symbol by #
- ▶ dependency tuple (DT) of $\ell \rightarrow r$ [c] is

$$\ell^{\#} \rightarrow \langle r_1^{\#}, \ldots, r_k^{\#} \rangle [c]$$

where r_1, \ldots, r_k are all recursive calls in r

- $ightharpoonup t^{\#}$ is obtained from term t by marking root symbol by #
- lacktriangle dependency tuple (DT) of $\ell
 ightarrow r$ [c] is

$$\ell^{\#} \rightarrow \langle r_1^{\#}, \ldots, r_k^{\#} \rangle [c]$$

where r_1, \ldots, r_k are all recursive calls in r

 \triangleright set of dependency tuples of LCTRS \mathcal{R} is denoted $\mathsf{DT}(\mathcal{R})$

- $ightharpoonup t^{\#}$ is obtained from term t by marking root symbol by #
- ▶ dependency tuple (DT) of $\ell \rightarrow r$ [c] is

$$\ell^{\#} \rightarrow \langle r_1^{\#}, \ldots, r_k^{\#} \rangle [c]$$

where r_1, \ldots, r_k are all recursive calls in r

ightharpoonup set of dependency tuples of LCTRS $\mathcal R$ is denoted DT($\mathcal R$)

Definition (Dependency graph)

▶ node set $DT(\mathcal{R})$ for LCTRS \mathcal{R}

- $ightharpoonup t^{\#}$ is obtained from term t by marking root symbol by #
- ▶ dependency tuple (DT) of $\ell \rightarrow r$ [c] is

$$\ell^{\#} \rightarrow \langle r_1^{\#}, \dots, r_k^{\#} \rangle [c]$$

where r_1, \ldots, r_k are all recursive calls in r

ightharpoonup set of dependency tuples of LCTRS $\mathcal R$ is denoted DT($\mathcal R$)

Definition (Dependency graph)

- ightharpoonup node set $\mathsf{DT}(\mathcal{R})$ for LCTRS \mathcal{R}
- $lackbox{ edge from } s^\# o \langle \dots, t^\#, \dots \rangle \; [\varphi] \; {
 m to} \; {\it u}^\# o v^\# \; [\psi] \; {
 m if} \; t^\# \sigma o_{\mathcal R}^* \; {\it u}^\# au$

- $ightharpoonup t^{\#}$ is obtained from term t by marking root symbol by #
- ▶ dependency tuple (DT) of $\ell \rightarrow r$ [c] is

$$\ell^{\#} \rightarrow \langle r_1^{\#}, \dots, r_k^{\#} \rangle [c]$$

where r_1, \ldots, r_k are all recursive calls in r

ightharpoonup set of dependency tuples of LCTRS $\mathcal R$ is denoted DT($\mathcal R$)

Definition (Dependency graph)

- ightharpoonup node set $\mathsf{DT}(\mathcal{R})$ for LCTRS \mathcal{R}
- $\qquad \text{edge from } \mathsf{s}^\# \to \langle \dots, \mathsf{t}^\#, \dots \rangle \; [\varphi] \; \text{to} \; \mathsf{u}^\# \to \mathsf{v}^\# \; [\psi] \; \text{if} \; \mathsf{t}^\# \sigma \to_{\mathcal{R}}^* \mathsf{u}^\# \tau$

Example

$$\label{eq:formula} \begin{split} \boxed{ & \operatorname{init}^\#(x) \to \mathsf{f}^\#(x) \\ \\ \hline & \mathsf{f}^\#(y) \to \langle \mathsf{f}^\#(y-1), \mathsf{g}^\#(y) \rangle \; [y \geqslant 0] \\ \\ \hline & \mathsf{g}^\#(z) \to \mathsf{g}^\#(z/2) \; [z \geqslant 0] \end{split} }$$

- $ightharpoonup t^{\#}$ is obtained from term t by marking root symbol by #
- ▶ dependency tuple (DT) of $\ell \to r$ [c] is

$$\ell^{\#} \rightarrow \langle r_1^{\#}, \dots, r_k^{\#} \rangle [c]$$

where r_1, \ldots, r_k are all recursive calls in r

ightharpoonup set of dependency tuples of LCTRS $\mathcal R$ is denoted DT($\mathcal R$)

Definition (Dependency graph)

- ightharpoonup node set $\mathsf{DT}(\mathcal{R})$ for LCTRS \mathcal{R}
- $\qquad \text{edge from } \mathsf{s}^\# \to \langle \dots, \mathsf{t}^\#, \dots \rangle \; [\varphi] \; \text{to} \; \mathsf{u}^\# \to \mathsf{v}^\# \; [\psi] \; \text{if} \; \mathsf{t}^\# \sigma \to_{\mathcal{R}}^* \mathsf{u}^\# \tau$

Example

$$\downarrow \\ \text{init}^{\#}(x) \to f^{\#}(x)$$

$$\downarrow \\ f^{\#}(y) \to \langle f^{\#}(y-1), g^{\#}(y) \rangle [y \ge 0]$$

$$\downarrow \\ g^{\#}(z) \to g^{\#}(z/2) [z \ge 0]$$

Contents

Motivation

Background

Processor Framework

Implementation

Conclusion

$$\begin{tabular}{ll} {\sf UB} ::= |x| & | & {\sf UB} + {\sf UB} & | & {\sf UB} \cdot {\sf UB} & | & {\sf max}({\sf UB}, {\sf UB}) & | & {\sf UB}^k & | & {\sf log}_k({\sf UB}) & | & \omega \\ \end{tabular}$$

$$\mbox{UB} ::= |x| \mid \mbox{UB} + \mbox{UB} \mid \mbox{UB} \cdot \mbox{UB} \mid \mbox{max}(\mbox{UB}, \mbox{UB}) \mid \mbox{UB}^k \mid \mbox{log}_k(\mbox{UB}) \mid \omega$$
 measure $|x| \in \mathbb{N}$ for all input variables x

$$\mathsf{UB} ::= |x| \ \big| \ \mathsf{UB} + \mathsf{UB} \ \big| \ \mathsf{UB} \cdot \mathsf{UB} \ \big| \ \mathsf{max}(\mathsf{UB}, \mathsf{UB}) \ \big| \ \mathsf{UB}^k \ \big| \ \mathsf{log}_k(\mathsf{UB}) \ \big| \ \omega$$

Time bounds and size bounds

for LCTRS \mathcal{R} , let $\rho: \ell \to r[c] \in \mathsf{DT}(\mathcal{R})$ and consider rewrite sequence:

$$\operatorname{init}^{\#}(x_1,\ldots,x_n) \to \ldots \xrightarrow{\sigma_1} \xrightarrow{\rho} \to \ldots \xrightarrow{\sigma_n} \xrightarrow{\rho} \to \ldots$$
 (\star)

$$\mathsf{UB} ::= |x| \ \big| \ \mathsf{UB} + \mathsf{UB} \ \big| \ \mathsf{UB} \cdot \mathsf{UB} \ \big| \ \mathsf{max}(\mathsf{UB}, \mathsf{UB}) \ \big| \ \mathsf{UB}^k \ \big| \ \mathsf{log}_k(\mathsf{UB}) \ \big| \ \omega$$

Time bounds and size bounds

for LCTRS \mathcal{R} , let $\rho: \ell \to r[c] \in \mathsf{DT}(\mathcal{R})$ and consider rewrite sequence:

$$\operatorname{init}^{\#}(x_1,\ldots,x_n) \to \ldots \xrightarrow{\sigma_1} \xrightarrow{\rho} \to \ldots \xrightarrow{\sigma_2} \xrightarrow{\rho} \to \ldots$$
 (\star)

▶ time bounds are function $T: \mathsf{DT}(\mathcal{R}) \to \mathsf{UB}$ such that $T(\rho)$ is upper bound on how often ρ is used in (\star)

$$\mathsf{UB} ::= |x| \ \big| \ \mathsf{UB} + \mathsf{UB} \ \big| \ \mathsf{UB} \cdot \mathsf{UB} \ \big| \ \mathsf{max}(\mathsf{UB}, \mathsf{UB}) \ \big| \ \mathsf{UB}^k \ \big| \ \mathsf{log}_k(\mathsf{UB}) \ \big| \ \omega$$

Time bounds and size bounds

for LCTRS \mathcal{R} , let $\rho: \ell \to r[c] \in \mathsf{DT}(\mathcal{R})$ and consider rewrite sequence:

$$\operatorname{init}^{\#}(x_1,\ldots,x_n) \to \ldots \xrightarrow{\sigma_1} \longrightarrow \ldots \xrightarrow{\sigma_2} \longrightarrow \ldots \xrightarrow{\sigma_2} \longrightarrow \ldots$$
 expressed in $|x_1|,\ldots,|x_n|$

▶ time bounds are function $T : \mathsf{DT}(\mathcal{R}) \to \mathsf{UB}$ such that $T(\rho)$ is upper bound on how often ρ is used in (\star)

$$\mathsf{UB} ::= |x| \ \big| \ \mathsf{UB} + \mathsf{UB} \ \big| \ \mathsf{UB} \cdot \mathsf{UB} \ \big| \ \mathsf{max}(\mathsf{UB}, \mathsf{UB}) \ \big| \ \mathsf{UB}^k \ \big| \ \mathsf{log}_k(\mathsf{UB}) \ \big| \ \omega$$

Time bounds and size bounds

for LCTRS \mathcal{R} , let $\rho: \ell \to r[c] \in \mathsf{DT}(\mathcal{R})$ and consider rewrite sequence:

$$\operatorname{init}^{\#}(x_1,\ldots,x_n) \to \ldots \xrightarrow[\rho]{\sigma_1} \to \ldots \xrightarrow[\rho]{\sigma_2} \to \ldots \xrightarrow[\rho]{\sigma_n} \to \ldots \tag{\star}$$

- ▶ time bounds are function $T: \mathsf{DT}(\mathcal{R}) \to \mathsf{UB}$ such that $T(\rho)$ is upper bound on how often ρ is used in (\star)
- ▶ size bounds are function $S: DT(\mathcal{R}) \times \mathcal{V} \to UB$ such that $S(\rho, y)$ for $y \in \mathcal{V}$ ar(ℓ) is upper bound on $y\sigma_i$ in (\star)

$$\mathsf{UB} ::= |x| \ \big| \ \mathsf{UB} + \mathsf{UB} \ \big| \ \mathsf{UB} \cdot \mathsf{UB} \ \big| \ \mathsf{max}(\mathsf{UB}, \mathsf{UB}) \ \big| \ \mathsf{UB}^k \ \big| \ \mathsf{log}_k(\mathsf{UB}) \ \big| \ \omega$$

Time bounds and size bounds

for LCTRS \mathcal{R} , let $\rho: \ell \to r[c] \in \mathsf{DT}(\mathcal{R})$ and consider rewrite sequence:

$$\operatorname{init}^{\#}(x_1,\ldots,x_n) \to \ldots \xrightarrow{\sigma_1} \longrightarrow \ldots \xrightarrow{\sigma_2} \longrightarrow \underbrace{\left[\text{expressed in } |x_1|,\ldots,|x_n|\right]}_{r}$$

- ▶ time bounds are function $T: \mathsf{DT}(\mathcal{R}) \to \mathsf{UB}$ such that $T(\rho)$ is upper bound on how often ρ is used in (\star)
- ▶ size bounds are function $S: DT(\mathcal{R}) \times \mathcal{V} \to UB$ such that $S(\rho, y)$ for $y \in \mathcal{V}$ ar(ℓ) is upper bound on $y\sigma_i$ in (\star)

$$\mathsf{UB} ::= |x| \ \big| \ \mathsf{UB} + \mathsf{UB} \ \big| \ \mathsf{UB} \cdot \mathsf{UB} \ \big| \ \mathsf{max}(\mathsf{UB}, \mathsf{UB}) \ \big| \ \mathsf{UB}^k \ \big| \ \mathsf{log}_k(\mathsf{UB}) \ \big| \ \omega$$

Time bounds and size bounds

for LCTRS \mathcal{R} , let $\rho: \ell \to r[c] \in \mathsf{DT}(\mathcal{R})$ and consider rewrite sequence:

$$\operatorname{init}^{\#}(x_1,\ldots,x_n) \to \ldots \xrightarrow{\sigma_1} \to \ldots \xrightarrow{\sigma_2} \to \ldots \xrightarrow{\sigma_m} \to \ldots$$
 (*)

- ▶ time bounds are function $T: \mathsf{DT}(\mathcal{R}) \to \mathsf{UB}$ such that $T(\rho)$ is upper bound on how often ρ is used in (\star)
- ▶ size bounds are function $S: \mathsf{DT}(\mathcal{R}) \times \mathcal{V} \to \mathsf{UB}$ such that $S(\rho, y)$ for $y \in \mathcal{V}\mathsf{ar}(\ell)$ is upper bound on $y\sigma_i$ in (\star)

Example

$$\begin{array}{c}
\downarrow \\
\text{linit}^{\#}(x) \to f^{\#}(x)
\end{array}
\qquad T = 1$$

$$\begin{array}{c}
f^{\#}(y) \to \langle f^{\#}(y-1), g^{\#}(y) \rangle [y \ge 0]
\end{array}
\qquad T = |x|$$

$$\begin{array}{c}
g^{\#}(z) \to g^{\#}(z/2) [z \ge 0]
\end{array}
\qquad T = |x|^{2}$$

$$\mathsf{UB} ::= |x| \ \big| \ \mathsf{UB} + \mathsf{UB} \ \big| \ \mathsf{UB} \cdot \mathsf{UB} \ \big| \ \mathsf{max}(\mathsf{UB}, \mathsf{UB}) \ \big| \ \mathsf{UB}^k \ \big| \ \mathsf{log}_k(\mathsf{UB}) \ \big| \ \omega$$

Time bounds and size bounds

for LCTRS \mathcal{R} , let $\rho \colon \ell \to r[c] \in \mathsf{DT}(\mathcal{R})$ and consider rewrite sequence:

$$\operatorname{init}^{\#}(x_1,\ldots,x_n) \to \ldots \xrightarrow{\sigma_1} \to \ldots \xrightarrow{\sigma_2} \to \ldots \xrightarrow{\sigma_m} \to \ldots$$
 (*)

- ▶ time bounds are function $T: \mathsf{DT}(\mathcal{R}) \to \mathsf{UB}$ such that $T(\rho)$ is upper bound on how often ρ is used in (\star)
- ▶ size bounds are function $S: \mathsf{DT}(\mathcal{R}) \times \mathcal{V} \to \mathsf{UB}$ such that $S(\rho, y)$ for $y \in \mathcal{V}\mathsf{ar}(\ell)$ is upper bound on $y\sigma_i$ in (\star)

Example

Definitions

given LCTRS \mathcal{R} ,

ightharpoonup complexity problem is $P=(t_0,\mathcal{D},\mathcal{R})$ for initial term t_0 and DTs \mathcal{D}

Definitions

given LCTRS \mathcal{R} ,

- ightharpoonup complexity problem is $P=(t_0,\mathcal{D},\mathcal{R})$ for initial term t_0 and DTs \mathcal{D}
- ▶ judgement $\vdash P: (T, S)$ states time bounds T and size bounds S for P

Definitions

given LCTRS \mathcal{R} ,

- lacktriangle complexity problem is $P=(t_0,\mathcal{D},\mathcal{R})$ for initial term t_0 and DTs \mathcal{D}
- ▶ judgement $\vdash P: (T, S)$ states time bounds T and size bounds S for P
- processor Proc is inference rule on complexity judgements

$$\frac{\vdash P_1 \colon (T_1, S_1), \dots, \vdash P_k \colon (T_k, S_k)}{\vdash P \colon (T, S)} \quad \mathsf{Proc}$$

Definitions

given LCTRS \mathcal{R} ,

- ightharpoonup complexity problem is $P=(t_0,\mathcal{D},\mathcal{R})$ for initial term t_0 and DTs \mathcal{D}
- ▶ judgement $\vdash P: (T, S)$ states time bounds T and size bounds S for P
- processor Proc is inference rule on complexity judgements

$$\frac{\vdash P_1 \colon (T_1, S_1), \dots, \vdash P_k \colon (T_k, S_k)}{\vdash P \colon (T, S)} \quad \mathsf{Proc}$$

Processors

- interpretations
- time bounds
 - size bounds
- splitting
- recurrence
- chaining, simplification

new

new

initial problem

Chaining processor

Chaining processor

- Chaining processor
- 2 Size bounds processor

- Chaining processor
- 2 Size bounds processor

- Chaining processor
- Size bounds processor
- 3 Split processor

- Chaining processor
- Size bounds processor
- 3 Split processor

4 Interpretation processor

$$\begin{array}{c} \overset{\downarrow}{\inf^{\#}(x,y,z) \rightarrow \mathsf{ms}^{\#}(x,y,z)}} \ \ S(x) = |x|, S(y) = |y|, S(z) = |z| \\ & \overset{\downarrow}{\longrightarrow} \\ \mathsf{ms}^{\#}(x,y,z) \rightarrow \langle \mathsf{ms}^{\#}_{0}(x,u,v), \mathsf{ms}^{\#}(u,u,v), \mathsf{ms}^{\#}_{0}(x,u,v) \rangle \ [\dots] \end{array}$$

- Chaining processor
- Size bounds processor
- Split processor

- Interpretation processor
- Time bounds processor+

- Chaining processor
- Size bounds processor
- 3 Split processor

- Interpretation processor
- Time bounds processor+
- 6 Recurrence processor

- Chaining processor
- 2 Size bounds processor
- 3 Split processor

- Interpretation processor
- Time bounds processor+
- 6 Recurrence processor

- Chaining processor
- Size bounds processor
- 3 Split processor

- Interpretation processor
- Time bounds processor+
- 6 Recurrence processor

$$\sum T \in \mathcal{O}(|x| \cdot \log |x|)$$

Let $P=(t_0,\mathcal{D},\mathcal{R})$ have dependency graph of shape

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound

$$\vdash P \colon (T,S)$$

Split

Let $P=(t_0,\mathcal{D},\mathcal{R})$ have dependency graph of shape

Then the following processor is sound

$$\vdash P: (T,S) \vdash (t_0, \mathcal{D}_1, \mathcal{R}): (T_1, S_1)$$

Split

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound, where $\gamma \colon \ell \to r \ [\psi]$

$$\vdash P \colon (T,S) \quad \vdash (t_0, \mathcal{D}_1, \mathcal{R}) \colon (T_1, S_1) \quad \vdash (\ell, \mathcal{D}_2, \mathcal{R}) \colon (T_2, S_2)$$

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound, where $\gamma \colon \ell \to r \; [\psi]$

$$\frac{\vdash P \colon (\mathcal{T}, \mathcal{S}) \quad \vdash (t_0, \mathcal{D}_1, \mathcal{R}) \colon (\mathcal{T}_1, \mathcal{S}_1) \quad \vdash (\ell, \mathcal{D}_2, \mathcal{R}) \colon (\mathcal{T}_2, \mathcal{S}_2)}{\vdash P \colon (\lambda \rho. \left\{ \right\}} \quad \text{Split}$$

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound, where $\gamma \colon \ell \to r$ $[\psi]$

$$\frac{\vdash P \colon (T,S) \quad \vdash (t_0, \mathcal{D}_1, \mathcal{R}) \colon (T_1, S_1) \quad \vdash (\ell, \mathcal{D}_2, \mathcal{R}) \colon (T_2, S_2)}{\vdash P \colon (\lambda \rho. \left\{\begin{array}{c} T_1(\rho) \\ \end{array}\right\}, S)} \quad \mathsf{Split}$$

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound, where $\gamma \colon \ell \to r$ $[\psi]$

$$\frac{\vdash P \colon (T,S) \quad \vdash (t_0, \mathcal{D}_1, \mathcal{R}) \colon (T_1, S_1) \quad \vdash (\ell, \mathcal{D}_2, \mathcal{R}) \colon (T_2, S_2)}{\vdash P \colon (\lambda \rho. \left\{ \begin{array}{c} T_1(\rho) & \text{if } \rho \in \mathcal{D}_1 \\ T(\delta) \cdot T_2(\rho)(S(\gamma, y_1), \dots, S(\gamma, y_k)) & \text{if } \rho \in \mathcal{D}_2 \end{array} \right\}, S)} \quad \text{Split}$$

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound, where $\gamma \colon \ell \to r \ [\psi]$

$$\frac{\vdash P \colon (T,S) \quad \vdash (t_0,\mathcal{D}_1,\mathcal{R}) \colon (T_1,S_1) \quad \vdash (\ell,\mathcal{D}_2,\mathcal{R}) \colon (T_2,S_2)}{\vdash P \colon (\lambda \rho. \left\{ \begin{array}{c} T_1(\rho) & \text{if } \rho \in \mathcal{D}_1 \\ T(\delta) \cdot T_2(\rho)(S(\gamma,y_1),\ldots,S(\gamma,y_k)) & \text{if } \rho \in \mathcal{D}_2 \end{array} \right\}, S)} \quad \text{Split}$$

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound, where $\gamma \colon \ell \to r$ [ψ]

$$\frac{\vdash P \colon (T,S) \quad \vdash (t_0, \mathcal{D}_1, \mathcal{R}) \colon (T_1, S_1) \quad \vdash (\ell, \mathcal{D}_2, \mathcal{R}) \colon (T_2, S_2)}{\vdash P \colon (\lambda \rho. \left\{ \begin{array}{c} T_1(\rho) & \text{if } \rho \in \mathcal{D}_1 \\ T(\delta) \cdot T_2(\rho)(S(\gamma, y_1), \dots, S(\gamma, y_k)) & \text{if } \rho \in \mathcal{D}_2 \end{array} \right\}, S)} \quad \text{Split}$$

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound, where $\gamma \colon \ell \to r$ $[\psi]$

$$\frac{\vdash P \colon (T,S) \quad \vdash (t_0, \mathcal{D}_1, \mathcal{R}) \colon (T_1, S_1) \quad \vdash (\ell, \mathcal{D}_2, \mathcal{R}) \colon (T_2, S_2)}{\vdash P \colon (\lambda \rho. \left\{ \begin{array}{c} T_1(\rho) & \text{if } \rho \in \mathcal{D}_1 \\ T(\delta) \cdot T_2(\rho)(S(\gamma, y_1), \dots, S(\gamma, y_k)) & \text{if } \rho \in \mathcal{D}_2 \end{array} \right\}, S)} \quad \text{Split}$$

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound, where $\gamma \colon \ell \to r$ $[\psi]$

$$\frac{\vdash P \colon (T,S) \quad \vdash (t_0, \mathcal{D}_1, \mathcal{R}) \colon (T_1, S_1) \quad \vdash (\ell, \mathcal{D}_2, \mathcal{R}) \colon (T_2, S_2)}{\vdash P \colon (\lambda \rho. \left\{ \begin{array}{c} T_1(\rho) & \text{if } \rho \in \mathcal{D}_1 \\ T(\delta) \cdot T_2(\rho)(S(\gamma, y_1), \dots, S(\gamma, y_k)) & \text{if } \rho \in \mathcal{D}_2 \end{array} \right\}, S)} \quad \text{Split}$$

Let $P = (t_0, \mathcal{D}, \mathcal{R})$ have dependency graph of shape

Then the following processor is sound, where $\gamma \colon \ell \to r$ $[\psi]$

$$\frac{\vdash P \colon (T,S) \quad \vdash (t_0, \mathcal{D}_1, \mathcal{R}) \colon (T_1, S_1) \quad \vdash (\ell, \mathcal{D}_2, \mathcal{R}) \colon (T_2, S_2)}{\vdash P \colon (\lambda \rho. \left\{ \begin{array}{c} T_1(\rho) & \text{if } \rho \in \mathcal{D}_1 \\ T(\delta) \cdot T_2(\rho)(S(\gamma, y_1), \dots, S(\gamma, y_k)) & \text{if } \rho \in \mathcal{D}_2 \end{array} \right\}, S)} \quad \text{Split}$$

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

$$\delta$$
 :

$$f(\vec{x}) \rightarrow \langle f(\vec{r}), h(\vec{t}) \rangle \quad [\psi]$$

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

$$\frac{\vdash (h(\vec{t}), \mathcal{D} \setminus \{\delta\}, \mathcal{R}) \colon (T, S)}{\mathsf{Recurrence}}$$

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

$$\frac{\vdash (h(\vec{t}), \mathcal{D} \setminus \{\delta\}, \mathcal{R}) \colon (T, S)}{\vdash P \colon (\lambda \rho. \quad , S)} \quad \text{Recurrence}$$

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

$$\frac{\vdash (\textit{h}(\vec{t}), \mathcal{D} \setminus \{\delta\}, \mathcal{R}) \colon (\textit{T}, \textit{S})}{\vdash \textit{P} \colon (\lambda \rho. \quad , \textit{S})} \quad \text{Recurrence}$$

if
$$H > \sum_{\rho \in \mathcal{D} \setminus \{\delta\}} T(\rho)$$

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

$$\frac{\vdash (\textit{h}(\vec{t}), \mathcal{D} \setminus \{\delta\}, \mathcal{R}) \colon (\textit{T}, \textit{S})}{\vdash \textit{P} \colon (\lambda \rho. \frac{\textit{F}(\vec{x})}{}, \textit{S})} \quad \text{Recurrence}$$

if
$$H > \sum_{\rho \in \mathcal{D} \setminus \{\delta\}} T(\rho)$$
 and F solution to recurrence $f(|\vec{x}|) = f(\vec{r}) + H(\vec{x})$, $f(\vec{b}) = 1$

form can be generalized

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

$$f(\vec{x}) \rightarrow$$

$$\frac{1}{\delta} h(\ldots) \to \ldots \qquad \delta: \quad f(\vec{x}) \to \langle f(\vec{r}), h(\vec{t}) \rangle \quad [\psi \land \vec{x} \geqslant \vec{b}]$$

$$\frac{\vdash (\textit{h}(\vec{t}), \mathcal{D} \setminus \{\delta\}, \mathcal{R}) \colon (\textit{T}, \textit{S})}{\vdash \textit{P} \colon (\lambda \rho. \, \textit{F}(\vec{x}), \textit{S})} \quad \text{Recurrence}$$

if
$$H > \sum_{\rho \in \mathcal{D} \setminus \{\delta\}} T(\rho)$$
 and F solution to recurrence $f(|\vec{x}|) = f(\vec{r}) + H(\vec{x})$, $f(\vec{b}) = 1$

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

$$\xrightarrow{\delta} \xrightarrow{h(\ldots) \to \ldots} \longrightarrow \cdots \qquad \delta \colon \quad f(\vec{x}) \to \langle f(\vec{r}), h(\vec{t}) \rangle \quad [\psi \land \vec{x} \geqslant \vec{b}]$$

have following processor:

$$\frac{\vdash (\textit{h}(\vec{t}), \mathcal{D} \setminus \{\delta\}, \mathcal{R}) \colon (\textit{T}, \textit{S})}{\vdash \textit{P} \colon (\lambda \rho. \, \textit{F}(\vec{x}), \textit{S})} \quad \text{Recurrence}$$

if
$$H > \sum_{\rho \in \mathcal{D} \setminus \{\delta\}} T(\rho)$$
 and F solution to recurrence $f(|\vec{x}|) = f(\vec{r}) + H(\vec{x})$, $f(\vec{b}) = 1$

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

have following processor:

$$\frac{\vdash (\textit{h}(\vec{t}), \mathcal{D} \setminus \{\delta\}, \mathcal{R}) \colon (\textit{T}, \textit{S})}{\vdash \textit{P} \colon (\lambda \rho. \, \textit{F}(\vec{x}), \textit{S})} \quad \text{Recurrence}$$

if $H > \sum_{\rho \in \mathcal{D} \setminus \{\delta\}} T(\rho)$ and F solution to recurrence $f(|\vec{x}|) = f(\vec{r}) + H(\vec{x})$, $f(\vec{b}) = 1$

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

$$\xrightarrow{\delta} \underbrace{h(\ldots) \to \ldots} \longrightarrow \cdots \qquad \qquad \delta \colon \quad f(\vec{x}) \to \langle f(\vec{r}), h(\vec{t}) \rangle \quad [\psi \land \vec{x} \geqslant \vec{b}]$$

have following processor:

$$\frac{\vdash (h(\vec{t}), \mathcal{D} \setminus \{\delta\}, \mathcal{R}) \colon (T, S)}{\vdash P \colon (\lambda \rho. F(\vec{x}), S)} \quad \text{Recurrence}$$

if
$$H > \sum_{\rho \in \mathcal{D} \setminus \{\delta\}} T(\rho)$$
 and F solution to recurrence $f(|\vec{x}|) = f(\vec{r}) + H(\vec{x})$, $f(\vec{b}) = 1$

$$T = |y|$$

$$\longrightarrow \boxed{f^{\#}(x) \to \langle f^{\#}(x/2), h^{\#}(x) \rangle \ [x \geqslant 0]} \longrightarrow \boxed{h^{\#}(y) \to h^{\#}(y-1) \ [y \geqslant 1]}$$

$$F = |x| \cdot log(|x|)$$
 is solution to $f(x) = f(|x|/2) + |x|$, $f(1) = 1$

For complexity problem $P = (f(\vec{x}), \mathcal{D}, \mathcal{R})$ of form

have following processor:

$$\frac{\vdash (h(\vec{t}), \mathcal{D} \setminus \{\delta\}, \mathcal{R}) \colon (T, S)}{\vdash P \colon (\lambda \rho. F(\vec{x}), S)} \quad \text{Recurrence}$$

if
$$H > \sum_{\rho \in \mathcal{D} \setminus \{\delta\}} T(\rho)$$
 and F solution to recurrence $f(|\vec{x}|) = f(\vec{r}) + H(\vec{x})$, $f(\vec{b}) = 1$

$$T' = |x| \cdot \log(|x|)$$

$$T' = |x| \cdot \log(|x|)$$

$$\uparrow' = |x| \cdot \log(|x|)$$

$$F = |x| \cdot log(|x|)$$
 is solution to $f(x) = f(|x|/2) + |x|$, $f(1) = 1$

Contents

Motivation

Background

Processor Framework

Implementation

Conclusion

new module of complexity tool T_CT: tct-lctrs

- ightharpoonup new module of complexity tool T_CT: tct-1ctrs
- ▶ integers and lists as background theories (for now), interface Yices/Z3

- ▶ new module of complexity tool T_CT: tct-lctrs
- ▶ integers and lists as background theories (for now), interface Yices/Z3
- processors applied according to strategy

simp: unsatisfiable paths, unreachable rules, leaf elimination

time bounds: standard techniques to find ranking functions recurrence: first solve subproblems, then check whether some

recursion pattern according to Master theorem applies

recursion pattern according to Master theorem applies

- new module of complexity tool T_CT: tct-lctrs
- ▶ integers and lists as background theories (for now), interface Yices/Z3
- processors applied according to strategy

simp: unsatisfiable paths, unreachable rules, leaf elimination

time bounds: standard techniques to find ranking functions

recurrence: first solve subproblems, then check whether some

recursion pattern according to Master theorem applies

code and results available:

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/

- ▶ new module of complexity tool T_CT: tct-lctrs
- ▶ integers and lists as background theories (for now), interface Yices/Z3
- processors applied according to strategy

simp: unsatisfiable paths, unreachable rules, leaf elimination

time bounds: standard techniques to find ranking functions

recurrence: first solve subproblems, then check whether some

recursion pattern according to Master theorem applies

code and results available:

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/

► ITS benchmarks: optimal, sublinear bounds for several problems where other tools only yield polynomials

Contents

Motivation

Background

Processor Framework

Implementation

Conclusion

Conclusion

Summary

- first runtime complexity framework for LCTRSs
- advance time/size bound approach by Brockschmidt et al, combine with complexity framework by Avanzini et al, extend to LCTRSs
- ▶ additional processors: splitting and recurrence (sublinear bounds)

Conclusion

Summary

- first runtime complexity framework for LCTRSs
- advance time/size bound approach by Brockschmidt et al,
 combine with complexity framework by Avanzini et al, extend to LCTRSs
- additional processors: splitting and recurrence (sublinear bounds)

Future work

theory:

- more processors: knowledge propagation, narrowing, . . .
- non-innermost rewriting
- analyse derivational complexity

Conclusion

Summary

- first runtime complexity framework for LCTRSs
- advance time/size bound approach by Brockschmidt et al,
 combine with complexity framework by Avanzini et al, extend to LCTRSs
- additional processors: splitting and recurrence (sublinear bounds)

Future work theory:

- more processors: knowledge propagation, narrowing, . . .
- non-innermost rewriting
- analyse derivational complexity

applications:

- non-deterministic (constraint) logic programs
- evaluation: ITS benchmarks (+ logic programs, SV-COMP)
- ▶ derivational complexity, e.g. for compiler simplification systems