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Motivation: Runtime Analysis
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Motivation: Runtime Analysis

mergesort = function
n->10
[x] -> [x]

|
|
| x1 @2 x2 :: xe

let (11,12) = msplit (x1:
erge (mergesort 11, mer
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Motivation: Runtime Analysis

—— O(nlog(n))

Aims
» fully automatic worst-case runtime analysis
» support for full recursion, common data structures and types

This Talk: Complexity Analysis Framework for LCTRS
> Logically Constrained Rewrite Systems (LCTRS):

» frontends: various programming languages and simplification systems
» native support for recursion, and arbitrary theories handled by SMT

» fully automatic worst-case runtime analysis, also sub-linear bounds

» implementation in complexity tool T¢T
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Example 1: Integer Transition Systems

init(x, y, z) — sort(x, y, z)
sort(x, y.z) — (mso(x, u. v),msy(x. u, v).msy(x, u. v), ms3(x, u,v))

[XxZ22AuZ20AVZ20AX+1Z22uN2u2xAXx22vA2v+ 12 X]

mso(x, y,z) — split(x, y, z) split(x,y, z) — split(x — 2,y, z) [x > 2]
msy(x,y,z) — ms(y.y,z) merge(x, y,z) — merge(x — 1,y,z) [x = 1Ay > 1]
msy(x,y,z) — ms(z,y, z) merge(x, y,z) — merge(x,y —1.z) [x = 1 Ay > 1]
mss(x, y,z) — merge(y, z, z)

» LCTRSs cover Integer Transition Systems (ITS)
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Example 1: Integer Transition Systems

init(x, y, z) — sort(x, y, z)

sort(x,

<< %<

y,z) — (msg(x, u. v),msy(x, u, v),msy(x,u,v),msz(x,u,v))

,Z

,Z

[XxZ22AuZ20AVZ20AX+1Z22uN2u2xAXx22vA2v+ 12 X]

. z) — split(x, y, z) split(x,y, z) — split(x — 2,y, z) [x > 2]

.z) —ms(y,y,z) merge(x, y,z) — merge(x — 1,y,z) [x = 1Ay > 1]
) = ms(z,y,z) merge(x. y,z) — merge(x,y —1.z) [x = 1 Ay > 1]
) — merge(y. z, z)

» LCTRSs cover Integer Transition Systems (ITS)

» new TcT version derives optimal O(n log(n)) bound
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Example 1: Integer Transition Systems

init(x, y, z) — sort(x, y, z)
sort(x, y.z) — (mso(x, u. v),msy(x. u, v).msy(x, u. v), ms3(x, u,v))

[XxZ22AuZ20AVZ20AX+1Z22uN2u2xAXx22vA2v+ 12 X]

mso(x, y,z) — split(x, y, z) split(x,y, z) — split(x — 2,y, z) [x > 2]
msy(x,y,z) — ms(y.y,z) merge(x, y,z) — merge(x — 1,y,z) [x = 1Ay > 1]
msy(x,y,z) — ms(z,y, z) merge(x, y,z) — merge(x,y —1.z) [x = 1 Ay > 1]
mss(x, y,z) — merge(y, z, z)

» LCTRSs cover Integer Transition Systems (ITS)

» new TcT version derives optimal O(n log(n)) bound
(CoFloCo, KoAT, PUBS, and previous version of TcT at best quadratic)
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Example 2: Logic Programs
» (max(/s,0,m),len(/s, /1))
len(t,/ — 1) [xs ~ h:: t] len([],0) — ()

— max(t,n,m) [h < nAxs~h:t] max([], m,m)— ()

max_ length(/s, m,/
len(xs, /

>nAxs~h:t

)
) =
max(xs, n, m)
max(xs, n, m) — max(t, hym) [h >

» can use approach to analyze (constraint) logic programs
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Example 2: Logic Programs

max_length(/s, m, /) — (max(/s,0, m),len(/s,/))

)

) = len(t,/ —1) [xs ~ h:: t] len([],0) — ¢
max(xs, n, m) — max(t,n,m) [h < nAxs=ah:t] max([],m m)

)

max(xs, n,m) — max(t, h,m) [h > nAxs =~ h:: t]

len(xs, /

> can use approach to analyze (constraint) logic programs

» new version of T T can handle LCTRSs corresponding to deterministic
Prolog programs over integers and lists
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Example 2: Logic Programs

max_length(/s, m, /) — (max(/s,0, m),len(/s,/))
len(xs, /) — len(t,/ — 1) [xs ~ h:: t] len([],0) — ()
max(xs, n,m) — max(t,n,m) [h < nAxs=h:t] max([],m,m)— ()
max(xs, n,m) — max(t, h,m) [h > nAxs =~ h:: t]

> can use approach to analyze (constraint) logic programs
» new version of T¢cT can handle LCTRSs corresponding to deterministic
Prolog programs over integers and lists
» techniques known to extend to decomposable non-deterministic programs
@ J. Giesl, T. Stréder, P. Schneider-Kamp, F. Emmes, C. Fuhs.
Symbolic evaluation graphs and term rewriting:

a general methodology for analyzing logic programs.
Proc. PPDP 2012, pp. 1-12, 2012.
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Example 3: Simplification Systems

¥

int foo(int z) {

int x =4 * (z | 101);
return -256 ~x;

Expression simplifications in compilers

LCTRS Runtime Analysis (SW) 4/18

define 132 @foo(i32) #0 {
%2 = or 132 %0, 101
%3 = mul nsw i32 4, %2
%4 = xor 132 -256, %3
ret 132 %4

¥

Instcombine
_—

dafine 132 @foo(i32) #0 {
%2 =shl 132 %0, 2
%3 = or i32 %2, 404
%4 = xor 132 %3, -256
ret i32 %4

}

010111110101011011010
111111111011101000010
010011100101011001010
111110111011101001010

| mul(x, C1) = shl(x, Cz) [log2 (C1) = Gz A isPowerOf2 (G1) ]|

» e.g. in LLVM: multiplications to shifts, reordering bitwise operations, ...
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Example 3: Simplification Systems

int foo(int z) {

int x =4 * (z | 101);
return -256 ~x;

define 132 @foo(i32) #0 {
%2 = or 132 %0, 101
%3 = mul nsw i32 4, %2
%4 = xor 132 -256, %3

Instcombine
_—

dafine 132 @foo(i32) #0 {
%2 =shl 132 %0, 2
%3 = or i32 %2, 404
%4 = xor 132 %3, -256
ret i32 %4

010111110101011011010
111111111011101000010
010011100101011001010
111110111011101001010

¥ ret i32 Y4
3} }

| mul(x, C1) = shl(x, Cz) [log2 (C1) = Gz A isPowerOf2 (G1) ]|

Expression simplifications in compilers
» e.g. in LLVM: multiplications to shifts, reordering bitwise operations, ...
» can be modeled as LCTRS
» complexity crucial
(current work is first step: derivational complexity needed)
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How? Divide and Conquer

problem processor
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How? Divide and Conquer
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How? Divide and Conquer

split

\/

time bounds

)

problem processor

\/ Z
| =
O(n) O(n)
V)
| | =~
= =
O(n log(n)) e — O(n log(n))

size bounds

=—————0(log(n))

recurrence
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How? Divide and Conquer
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How? Divide and Conquer

split time bounds
\/ \
V v

z

—

— 1"

O(n log(n))

o
— —

A

/\
size bounds @

problem processor

[ M. Avanzini and G. Moser.
A combination framework for complexity.
Inf. Comput., 248:22-55, 2016.
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How? Divide and Conquer

split time bounds

\ /
\
V

— 1"

O(n log(n))

o
—> —>
A

/\
size bounds recurrence

problem processor

@ M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl.
Analyzing runtime and size complexity of integer programs.
ACM Trans. Program. Lang. Syst., 38(4):13:1-13:50, 2016.
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Motivation
Background
Processor Framework
Implementation

Conclusion
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Logically Constrained Rewrite Systems

» logically constrained rewrite rule
{ — r|[c]

» constraint ¢ is term over logic signature (with SMT-decidable theory)
» terms ¢, r contain free symbols and logic signature
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Logically Constrained Rewrite Systems

» logically constrained rewrite rule
¢ —r|c]

» constraint ¢ is term over logic signature (with SMT-decidable theory)
» terms £, r contain free symbols and logic signature

» LCTRS is set of logically constraint rewrite rules

Example
> split(x,y.z) — split(x — 2,y,z) [x > 2] (integers)
> len(xs,/) —len(t,/ —1) [xs ~ h: t] (lists)
» mul(sub(y, x), c) — mul(sub(x, y),abs(c)) [c < 0g A isPowerOf2(abs(c))]
(bitvectors)
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Definition (Dependency tuples)
» (7 is obtained from term t by marking root symbol by #
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Definition (Dependency tuples)
» t7 is obtained from term t by marking root symbol by #
» dependency tuple (DT) of £ — r [c] is
o () [
where rp, ..., rq are all recursive calls in r
> set of dependency tuples of LCTRS R is denoted DT(R)

Definition (Dependency graph)

» node set DT(R) for LCTRS R

» edge from s* — (... t# ...) [p] to u¥ — v¥# [Y] if tHo =% ufT
Example

init™ (x) — f#(x)

[#(y) > (= 1), g*(y)) [y > 0]

#(2) > g#(2/2) [z > 0]
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Definition (Dependency tuples)
» t7 is obtained from term t by marking root symbol by #
» dependency tuple (DT) of £ — r [c] is
o - (rl ) > [c]
where rp, ..., rq are all recursive calls in r
> set of dependency tuples of LCTRS R is denoted DT(R)

Definition (Dependency graph)
» node set DT(R) for LCTRS R
» edge from s* — (... t# ...) [p] to u¥ — v¥# [Y] if tHo =% ufT

Example

LCTRS Runtime Analysis (SW)



Processor Framework
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Bound expressions

UB = |x| | UB+UB | UB-UB | max(UB,UB) | UB* | log,(UB) | w
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Bound expressions

UB:=|[x| | UB+UB | UB-UB | max(UB,UB) | UB* | log,(UB) | w

measure |x| € N for all
input variables x
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Bound expressions
UB:=|x| | UB+UB | UB-UB | max(UB,UB) | UB* | log,(UB) | w

Time bounds and size bounds
for LCTRS R, let p: ¢ — r[c] € DT(R) and consider rewrite sequence:

init? (g, ..oy %) = o S s T (%)
P /) /)
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Time bounds and size bounds
for LCTRS R, let p: £ — r[c] € DT(R) and consider rewrite sequence:

init? (g, ..oy x) = o Do B I L (%)
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» time bounds are function T : DT(R) — UB such that
T(p) is upper bound on how often p is used in (x)
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Bound expressions

=|x| | UB+UB | UB-UB | max(UB,UB) | UB* | log,(UB) | w

Time bounds and size bounds
for LCTRS R, let p: £ — r[c] € DT(R) and consider rewrite sequence:

init? (g, ..oy x) = o Do B I L (%)
P P P

» time bounds are function T : DT(R) — UB such that
T(p) is upper bound on how often p is used in (x)

> size bounds are function S : DT(R) x V — UB such that S(p,y) for
y € Var({) is upper bound on yo; in (%)

Example
init#(x) — f#(x) T=1
() — y—f) g (v) Iy > 0]] T =lx|
Sg*(2) ~ g#(2/2) [z > 0]] T = |x?

LCTRS Runtime Analysis (SW) 10/18



Bound expressions

=|x| | UB+UB | UB-UB | max(UB,UB) | UB* | log,(UB) | w

Time bounds and size bounds
for LCTRS R, let p: £ — r[c] € DT(R) and consider rewrite sequence:

init? (g, ..oy x) = o Do B I L (%)
P P P

» time bounds are function T : DT(R) — UB such that
T(p) is upper bound on how often p is used in (x)

> size bounds are function S : DT(R) x V — UB such that S(p,y) for
y € Var({) is upper bound on yo; in (%)

Example
init? (x) — f#(x) T=1 S(x) = |x]
S0 = (- 1.670) Iy > 0] T=Ixl S)=I
de(2) (z/2) [z > 0]] T=[x* S(z)=lx
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Processor Framework

Definitions
given LCTRS R,

» complexity problem is P = (. D, R) for initial term t; and DTs D
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Processor Framework

Definitions
given LCTRS R,

» complexity problem is P = (to, D, R) for initial term t; and DTs D
> judgement - P: (T,S) states time bounds T and size bounds S for P
» processor Proc is inference rule on complexity judgements

FPli (Tl,Sl),...,FPkZ (Tk,Sk)

P
P (T,S) roc
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Processor Framework

Definitions
given LCTRS R,

» complexity problem is P = (to, D, R) for initial term t; and DTs D
> judgement - P: (T,S) states time bounds T and size bounds S for P
» processor Proc is inference rule on complexity judgements

FPli (Tl,Sl),...,FPkZ (Tk,Sk)

P
P (T,S) roc

Processors

interpretations

time bounds

size bounds

splitting new
recurrence new
chaining, simplification

vVvYVvyVvyyvyy
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Example (Bounding mergesort)

llnlt#(X v, Z) > ms?(x, y, z)‘

’mS#XVZHmSOXUV mslxuv m52><uv ms3xuv ]‘

= SN
{ #(x,y,2) = ms#(z,y.z) ’msl (x,y,2) = ms*(y,y, z)"

’ms0 (x,y,z) — split#(x, y, 2) ’ms3 (x.y,z) — merge(y, z, z)‘
lsplit#(x.y.z) s split#(x —2,y,2) .. ]‘ lmerge#(x.y. z) — merge? (x,y —1,2) [.. ]‘
lmerge#(x.yAz) — merge? (x — 1,y,2) .. ]‘
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Example (Bounding mergesort)

PP n T=1
[nit? ey 2) > msF0ey ] 500~ i, 500) = 11, 5(2) = I

’ms#(xu\/‘ z) = mso#(xA u,v), msf(x. u,v), msf(x. u,v), msf(x. u,v)) [ ]‘ S(

=w
=w

-
)

T=w
D=w

’msf(x.y.z) : ms#(y.y.z)" s(

[msF (. v.2) - ms# (2. 2)] 5 N2

’msé’i(x.y.z) > split#(x.y.z)‘ 5(52: ’ms?(x,y,z) lmerge#(y,z.z)‘ 5(5 :
-

lsplit#(x.y.z) ssplit#(x —2,y,2) [... ‘ lmerge#(x.y.z) > merge™ (x,y — 1, 2) []‘ sC)

]

initial problem

LCTRS Runtime Analysis (SW)



Example (Bounding mergesort)

[nit# (e . 2) ms#(wzlsnf\x\ S0) =191, 5(2) = I

’lw (x,y,z) = ms0 x,u,v),msi (x,u,v),msy (x,u,v) ms3 X, U, V) []‘

S(

4 N

{ T (x,y,z) = ms* zyz mSlX\/Z »ms™(y,y, )"
5 )=w

’ms0 (x,y,z) — split#(x, y, 2) ‘ ’ms3 (x.y,z) — merge®(y,z,7) ‘ s( z:
lsplit#(x.y.z) s split#(x —2,y,2) .. ]‘ lmerge#(x.y.z) > merge™ (x,y — 1, 2) []‘ S(T)ii::
o— _
S()=w
lmerge#(x y,z) — merge®(x — 1.y, z) | ]‘
T =w
S()=w

Chaining processor
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[mit# .. Z) »m5# (. 2] 50 e, ) = Iyl 5(e) = e

T=w
Qms#xyz)ﬂmsoxuv ms* (u,u,v) ,ms™ (u,u,v) ms3><uv ]DS ):

\
/

’ 4 T =w
ms3 X.y,Z) — merge (yzz‘s ()=u

’ms0 xyz)gspllt#xyz‘s

‘ lmerge#(x.y. z) — merge? (x,y —1,2) [.. ]‘ S( )= \:

lsplit#(x.y.z) — split#(x — 2,y,2) [..

]
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Example (Bounding mergesort)

[mit# .. Z) »m5# (. 2] 50 e, ) = Iyl 5(e) = e

Qms#xyz)ﬂmsoxuv ms* (u,u,v) ,ms™ (u,u,v) ms3><uv ]DS ;

A

’ms3 (x.y,z) — merge®(y,z,7) ‘ s()

’ms0 (x,y,z) — split#(x, y, 2) z‘;

lspllt#(x y,z) — split#(x — 2, y, 2) [7 ‘ lmerge#(x.y. z) — merge? (x,y —1,2) [.. ]‘ 5(52("1

5(,) \

]

w
x|

lmerge#(x.yAz) — merge” (x — 1,y,2) .
-
S()

Chaining processor
Size bounds processor
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Example (Bounding mergesort)

PP n T=1
[nit? ey 2) > msF0ey ] 500~ i, 500) = 11, 5(2) = I

ijs# (x,y,2) = mszf(x u,v),ms® (u, u, v), ms* (u, u, v), ms3 x,u,v)) [ DS \X\
’ms#(x.y.z) - split#(x.y,z)‘ 5(52 ‘“;‘ ’ms?(x,y, z) lmerge#(y, z.z)‘ 5(5 T;‘
lspllt#(x y,z) — split#(x — 2,y,2) [.. ‘ lmerge#(x.y.z) > merge™ (x,y — 1, 2) []‘ S(I)i(";l
sH=H

lmerge#(x.yAz) — merge? (x — 1,y,z

|
=
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Size bounds processor
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Example (Bounding mergesort)

linit#(x.y. z) — ms?(

X Z)‘ r=1
V2] S(x) = Ix1, S(y) = Iyl S(z) = ||

Qms" (x,y,2) = ms#(x u,v),ms” (u,u,v),ms” (u,u,v), ms3 X, U, V) ]DS

\X\

’ms0 (x,y,z) — split#(x, y, 2) ‘ s( 71

= I ’ms3 (x.y,z) — merge®(y,z,7) ‘ S( ,z ‘lx‘
lsplit#(x.y.z) — split#(x — 2,y,2) [.. ]‘ lmerge#(x,y. z) — merge(x,y — 1,2) .. ]‘ S( T)/i m
T = x| -
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Example (Bounding mergesort)

llnlt#(x Y, Z) > ms?(

Y2 5002 bl Str) = Iy, S(2) = Il

T =log
Qms# (x,y,z) = ms0 X, U, V) . ms” (u,u,v) ,ms™ (u,u,v) msf(x u,v) ["']DS(X):\% *

/

’ms0 (x,y,z) — split#(x, y, 2) ‘ S( T 7@ log |x ’ms (x,y,2) — merge#(y, z, 2) ‘ S T)jiﬁ; )
lsplit#(x.y»z) — split#(x — 2,y,2) [.. ]‘ lmerge#(x,y. z) — merge(x,y — 1,2) .. ]‘ S( T)i Kl “log |x
T =|x]| - log x| B
S(L)=Ix]

lmerge#(x.yAz) — merge? (x — 1,y.2) [.. ]‘
T =|x]| - log x|

S(L)=IK

B Interpretation processor

Chaining processor

Size bounds processor B Time bounds processor™
Split processor B Recurrence processor
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Example (Bounding mergesort)

L
|i”“#<”'z) - msF 0 2] 50602 1, S0) = Iyl S(2) — e

# = log | x|
ms xyz)ﬂmsoxuv ms™ (u, u, v), ms? (u, u, v) ms3><uv -] 5 = x|

lOgM ’ms (x.y,z) — merge®(y,z,7) ‘ S( )710%‘)(‘

’ms0 (x,y,z) — split#(x, y, 2)

} I log [x|

]‘ lmerge#(x,y. z) — merge(x,y — 1,2) .. s

lsplit#(x.y.z) — split?(x —2,y,2) [...
T = |x|-log|x|

= Ix]
lmerge#(x.yAz) — merge? (x — 1,y.2) [.. ]‘
T)i m - log | x|

B Interpretation processor
B Time bounds processor™
B Recurrence processor
2. T € O(|x] - log |x])
12/18

Chaining processor
Size bounds processor

Split processor

LCTRS Runtime Analysis (SW)



Splitting Processor
Let P = (to, D, R) have dependency graph of shape

CTRS Runtime Analysis (SW) 13/18



Splitting Processor
Let P = (to, D, R) have dependency graph of shape

Then the following processor is sound

FP:(T,S)

Split

CTRS Runtime Analysis (SW) 13/18



Splitting Processor
Let P = (to, D, R) have dependency graph of shape

Then the following processor is sound

FP:(T,8) (0, D1.R): (T1,5) Split

LCTRS Runtime Analysis (SW) 13/18



Splitting Processor
Let P = (to, D, R) have dependency graph of shape

Then the following processor is sound, where ~v: £ — r [i/]

FP: (T, S) |_(t07D1,R)2 (T1751) F(/A’Dz_'];’,)j (T2_52)

Split

LCTRS Runtime Analysis (SW) 13/18



Splitting Processor
Let P = (to, D, R) have dependency graph of shape

Then the following processor is sound, where ~v: £ — r [i/]

FP: (T, S) |_(t07D1,R)2 (T1751) }_(Z,DQ,R): (T2,52)

I—P:()\p.{ },5)

Split

LCTRS Runtime Analysis (SW) 13/18



Splitting Processor
Let P = (to, D, R) have dependency graph of shape
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FP: (T, 5) |_(t07D1,R)2 (T1751) }_(Z,DQ,R): (T2,52)

. T1(p) e
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Split

LCTRS Runtime Analysis (SW) 13/18
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Let P = (to, D, R) have dependency graph of shape

Then the following processor is sound, where ~v: £ — r [i/]
FP: (T, 5) |_(t07D1,R)2 (T1751) }_(Z,DQ,R): (T2,52)

. T1(p) oDy
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Splitting Processor
Let P = (to, D, R) have dependency graph of shape

Then the following processor is sound, where ~v: £ — r [i/]
FP: (T, 5) |_(t07D1,R)2 (T1751) }_(Z,DQ,R): (T2,52)

. T1(p) oDy
o (Ap'{ T(6) - Ta(p)(S(vsy1), -+, S(vs k) if pE€ Dy }75)

Split

Example

Ti = |x|

—FF(x) > (FF(x— 1), g#(0) [ > 0 —g#(2) > g#(2/2) [ > 0]
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. T1(p) oDy
o (Ap'{ T(6) - Ta(p)(S(vsy1), -+, S(vs k) if pE€ Dy }75)

Split

Example

Ti = |x| Ty = log(|2])
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Then the following processor is sound, where ~v: £ — r [i/]
FP: (T, 5) |_(t07D1,R)2 (T1751) }_(Z,DQ,R): (T2,52)

. T1(p) oDy
o (Ap'{ T(6) - Ta(p)(S(vsy1), -+, S(vs k) if pE€ Dy }75)

Split

Example
T = |x| T = log(|z])
T = | T''= || - log([x])
—FF(x) > (FF(x— 1), g#(0) [ > 0 —g#(2) > g#(2/2) [ > 0]
D1 U D> U
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Recurrence Processor
For complexity problem P = (f(x), D, R) of form
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Recurrence Processor
For complexity problem P = (f(x), D, R) of form

S

—ﬁé}—ﬁh(m)e...}—w-- 5. f(X) — (F(P), h(E)) [ AR

have following processor:

- (h(?),D\ {0}, R): (T, S)
FP: (. .9)

Recurrence
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Recurrence Processor
For complexity problem P = (f(x), D, R) of form

-,

A{)HMWHWPW 5. f(R) = (F(A), h(D)) [Y AR bl

have following processor:

- (h(£), D\ {6}, R): (T,S)
FP: (. F(%),S)

Recurrence

-,

if H> > T(p)and F solution to recurrence f(|x|) = f() + H(x), f(b) =1
peD\{5}
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Recurrence Processor ’form can be generalized‘
For complexity problem P = (f(x), D, R) of form

A{)HMWHWPW §:  f(X) = (F(7),h(£)) [ AR> b

have following processor:

h(t),D\ {0}, R): (T, S)

R
FP: (. FX).9) ecurrence

if H> > T(p) and F solution to recurrence f(|%|) = f(F) + H(X), f(b) =1
pED\{6}
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Recurrence Processor
For complexity problem P = (f(x), D, R) of form

-,

H{)Hh(m)ﬁ...%... 5. f(R) = (F(A), h(D)) [Y AR bl

have following processor:

- (h(t). D\ {0}, R): (T, S)

R
“P (. F(2).5) ecurrence

-,

if H> Z T(p) and F solution to recurrence f(|x]) = () + H(X), f(b) =1
pED\{5}

Example

—{f#(x) > (7 (/2),h#(x)) [x > 0 f——{h#(y) > h#(y — 1) [y > 1]
U U
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Recurrence Processor
For complexity problem P = (f(x), D, R) of form

-,

A{)HMWHWPW 5. f(R) = (F(A), h(D)) [Y AR bl

have following processor:

- (h(t). D\ {0}, R): (T, S)

R
“P (. F(2).5) ecurrence

-,

if H> Z T(p) and F solution to recurrence f(|x]) = f(F) + H(X), f(b) =1
peD\{4}

Example
T=lyl

—f#(x) > (FF(x/2),h#(x)) [x > 0] F——{h#(y) = h#(y = 1) [y > 1]
U U
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Recurrence Processor
For complexity problem P = (f(x), D, R) of form

-,

H{)Hh(m)ﬁ...%... 5. f(R) = (F(A), h(D)) [Y AR bl

have following processor:

h(t),D\ {0}, R): (T, S)

R
“P (. F(2).5) ecurrence

if H> Z T(p) and F solution to recurrence f(|x|) = (F) + H(x), f(b) = 1
pED\{5}

Example
=1yl

—{F#(x) = (/2.0 (x)) [x > 0 ——{W# () > by 1) [y > 1]
U U

F =|x| - log(|x]) is solution to f(x) = f(|x|/2) + |x|, f(1) =
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Recurrence Processor
For complexity problem P = (f(x), D, R) of form

-,

H{)Hh(m)ﬁ...%... 5. f(R) = (F(A), h(D)) [Y AR bl

have following processor:

h(t),D\ {0}, R): (T, S)

R
“P (. F(2).5) ecurrence

if H> Z T(p) and F solution to recurrence f(|x|) = (F) + H(x), f(b) = 1

pED\{d}
Example
=1yl
T x| - /og(\x) T' = |x| - log(|x])
— () > (F#(x/2), b > 0 ——{h*(y) > h#(y — 1) [y > 1]
U U

F = |x] - log(|x|) is solution to f(x) = f(|x|/2) + |x]|, f(1) =

LCTRS Runtime Analysis (SW) 14/18



Implementation

CTRS Runtime Analysis (SW)



Implementation

» new module of complexity tool T¢T: tct-lctrs

CTRS Runtime Analysis (SW)


http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/

Implementation

» new module of complexity tool T¢T: tct-lctrs

> integers and lists as background theories (for now), interface Yices/Z3

CTRS Runtime Analysis (SW)


http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/

Implementation

» new module of complexity tool T¢T: tct-lctrs

> integers and lists as background theories (for now), interface Yices/Z3

» processors applied according to strategy

d d . . . .

simp: unsatisfiable paths, unreachable rules, leaf elimination

time bounds: standard techniques to find ranking functions

recurrence: first solve subproblems, then check whether some
recursion pattern according to Master theorem applies

TRS Runtime Analysis (SW)


http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/

Implementation

» new module of complexity tool T¢T: tct-lctrs
> integers and lists as background theories (for now), interface Yices/Z3

» processors applied according to strategy

d d . . .

simp: unsatisfiable paths, unreachable rules, leaf elimination

time bounds: standard techniques to find ranking functions
recurrence: first solve subproblems, then check whether some
recursion pattern according to Master theorem applies

» code and results available:

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/

CTRS Runtime Analysis (SW)


http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/

Implementation

» new module of complexity tool T¢T: tct-lctrs
> integers and lists as background theories (for now), interface Yices/Z3

» processors applied according to strategy

d d . . .

simp: unsatisfiable paths, unreachable rules, leaf elimination

time bounds: standard techniques to find ranking functions
recurrence: first solve subproblems, then check whether some
recursion pattern according to Master theorem applies

» code and results available:
http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/

» |TS benchmarks: optimal, sublinear bounds for several problems where
other tools only yield polynomials
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Conclusion

Summary

» first runtime complexity framework for LCTRSs
» advance time/size bound approach by Brockschmidt et al,

combine with complexity framework by Avanzini et al, extend to LCTRSs
» additional processors: splitting and recurrence (sublinear bounds)

Future work
theory:
» more processors: knowledge propagation, narrowing, ...

» non-innermost rewriting
» analyse derivational complexity

applications:
» non-deterministic (constraint) logic programs

» evaluation: ITS benchmarks (+ logic programs, SV-COMP)
» derivational complexity, e.g. for compiler simplification systems
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