

Learning Strategy Design: First Lessons

Martin Suda and Sarah Winkler Czech Technical University and University of Verona

AITP 2020 16 September 2020

This Talk: Three Experiments

1 predict one of Vampire's 801 CASC strategies for given problem

This Talk: Three Experiments

- 1 predict one of Vampire's 801 CASC strategies for given problem
- 2 correlate problem features with beneficial strategy components

This Talk: Three Experiments

- 1 predict one of Vampire's 801 CASC strategies for given problem
- 2 correlate problem features with beneficial strategy components
- 3 correlate problem features with success of CASC tools

Strategy Design Lessons (SW)

Vampire was run for 60sec on all 17574 FOL problems in TPTP 7.2.0 using all 801 strategies ${\cal S}$ used in CASC-27

Vampire was run for 60sec on all 17574 FOL problems in TPTP 7.2.0 using all 801 strategies S used in CASC-27

```
% File
           : PUZ015-1 : TPTP v7.2.0. Released v1.0.0.
           : Puzzles
% Domain
. . .
% Source
          : [ANL]
          : Satisfiable
% Status
           : 0.89 v7.1.0, 0.88 v7.0.0
% Rating
           : Number of clauses
                                  : 21 (
% Syntax
                                             0 non-Horn; 13 unit; 21 RR)
%
            Number of atoms : 29 ( 11 equality)
%
            Maximal clause size : 2 ( 1 average)
%
            Number of predicates : 2 ( 0 propositional: 2-2 arity)
%
            Number of functors :
                                      16 ( 12 constant: 0-8 arity)
%
            Number of variables :
                                      58 (
                                             0 singleton)
%
            Maximal term depth :
                                       3 (
                                             2 average)
cnf(cover columns 1 and 2,axiom,
    ( ~ achievable(row(X), squares(not_covered, not_covered, Y3, Y4, Y5, Y6, Y7, Y8))
      achievable(row(X), squares(covered, covered, Y3, Y4, Y5, Y6, Y7, Y8)) )).
cnf(cover_columns_2_and_3,axiom,
    ( ~ achievable(row(X), squares(Y1, not_covered, not_covered, Y4, Y5, Y6, Y7, Y8)) )).
```

Vampire was run for 60sec on all 17574 FOL problems in TPTP 7.2.0 using all 801 strategies S used in CASC-27

Problem Features

▶ all 92 problem properties collected by TPTP and Vampire:

clauses, # terms, # predicates, # functions, # variables, # connectives, # \exists , # \forall , # \lor , # \land , # \neg , # unit clauses, is EPR, is UEQ, is ground, # Horn clauses, # unit clauses, has sorts, has rationals, has reals, has groups, has rings, has equality, has arrays, has extensionality, max term depth, avg term depth, max predicate arity, avg predicate arity, max function arity, max # variables in clause, ...

Vampire was run for 60sec on all 17574 FOL problems in TPTP 7.2.0 using all 801 strategies S used in CASC-27

Problem Features

▶ all 92 problem properties collected by TPTP and Vampire:

clauses, # terms, # predicates, # functions, # variables, # connectives, # \exists , # \forall , # \lor , # \land , # \neg , # unit clauses, is EPR, is UEQ, is ground, # Horn clauses, # unit clauses, has sorts, has rationals, has reals, has groups, has rings, has equality, has arrays, has extensionality, max term depth, avg term depth, max predicate arity, avg predicate arity, max function arity, max # variables in clause, ...

three TPTP features: domain, source, rating

Vampire was run for 60sec on all 17574 FOL problems in TPTP 7.2.0 using all 801 strategies S used in CASC-27

Problem Features

▶ all 92 problem properties collected by TPTP and Vampire:

clauses, # terms, # predicates, # functions, # variables, # connectives, # \exists , # \forall , # \lor , # \land , # \neg , # unit clauses, is EPR, is UEQ, is ground, # Horn clauses, # unit clauses, has sorts, has rationals, has reals, has groups, has rings, has equality, has arrays, has extensionality, max term depth, avg term depth, max predicate arity, avg predicate arity, max function arity, max # variables in clause, ...

- ▶ three TPTP features: domain, source, rating
- three hand-crafted features (approximated):
 - # of unifiable positive and negative literals
 - # terms matching non-variable equation sides
 - # terms unifiable with non-variable equation sides

Task 1

▶ predict runtime from subset *F* of features ("timeout penalty" 300sec)

Task 1

- ▶ predict runtime from subset *F* of features ("timeout penalty" 300sec)
- random forest regressors
- rating-balanced training and test sets (80% vs 20%)

Task 1

- predict runtime from subset \mathcal{F} of features ("timeout penalty" 300sec)
- random forest regressors
- rating-balanced training and test sets (80% vs 20%)

test phase:

training phase: for each strategy $s \in S$ train regressor using features \mathcal{F} for problem in test set, predict runtime for each strategy, recommend strategy with lowest predicted runtime

Task 1

- ▶ predict runtime from subset *F* of features ("timeout penalty" 300sec)
- random forest regressors
- rating-balanced training and test sets (80% vs 20%)

training phase:for each strategy $s \in S$ train regressor using features \mathcal{F} test phase:for problem in test set, predict runtime for each strategy,
recommend strategy with lowest predicted runtime

count how many test problems are solved by recommended strategy

Solved problems

		no TPTP					Vampire default
features ${\cal F}$	all	features	source	# terms	domain	rating	single strategy
solved (of 3515)	2583	2548	2342	2180	2241	2166	2013

Solved problems vhen predicting from single feature, source works best						ce works best	
		no TPTP					Vampire default
features \mathcal{F}	all	features	source	# terms	domain	rating	single strategy
solved (of 3515)	2583	2548	2342	2180	2241	2166	2013

Solved problems Q when predicting from single feature, source works best					ce works best		
		no TPTP					Vampire default
features ${\cal F}$	all	features	source	# terms	domain	rating	single strategy
solved (of 3515)	2583	2548	2342	2180	2241	2166	2013

Feature importance (without rating)

- 1. # terms 6%
- 2. # unifiable pos/neg literals 4.7%
- 3. # variables 4.2%
- 4. # atoms 3.8%
- 5. # connectives 3.5%
- 6. # functions 3.4%

- 7. # terms unifiable with equations 3.4%
- 8. # negations 3.4%
- 9. # terms matching equations 3.2%
- 10. # axioms 3.2%
- 11. # unit clauses 2.9%
- 12. source 2.8%

Solved problems vhen predicting from single feature, source works best							
		no TPTP					Vampire default
features ${\cal F}$	all	features	source	# terms	domain	rating	single strategy
solved (of 3515)	2583	2548	2342	2180	2241	2166	2013
Feature import 1. # terms 6% 2. # unifiable po 3. # variables 4. 4. # atoms 3.8% 5. # connectives 6. # functions 3.	ance s/neg 2% 3.5% 4%	(withou literals 4.79	t r 7 % 8 9 10 11 12	Interaction hand-craft . # term . # nega . # term . # axior . # unit . source 2	n matters ted featur unifiabl tions 3.4' s matchin ns 3.2% clauses 2 2.8%	e with e with e gequat	ubute 11.6% quations 3.4% ions 3.2%

\P Side remark: regression quality eq prediction power

• for all features $r^2 = 0.71$, but source-only 0.28 and rating-only 0.41

Which problem features prefer which parameter values?

Which problem features prefer which parameter values?

Strategy components

• each strategy consists of set of pairs (o, v) of option o and value v

Which problem features prefer which parameter values?

Strategy components

• each strategy consists of set of pairs (o, v) of option o and value v

Task 2

compare probability that problem with feature f can be solved by strategy with option o set to a value v to probability that

Which problem features prefer which parameter values?

Strategy components

• each strategy consists of set of pairs (o, v) of option o and value v

Task 2

compare probability that problem with feature f can be solved by strategy with option o set to a value v to probability that

(a) arbitrary strategy solves problem with feature f (advantage ratio)

Which problem features prefer which parameter values?

Strategy components

• each strategy consists of set of pairs (o, v) of option o and value v

Task 2

compare probability that problem with feature f can be solved by strategy with option o set to a value v to probability that

- (a) arbitrary strategy solves problem with feature f
- (b) strategy with o = v solves arbitrary problem

(advantage ratio) (surprise ratio)

Which problem features prefer which parameter values?

Strategy components

• each strategy consists of set of pairs (o, v) of option o and value v

Task 2

compare probability that problem with feature f can be solved by strategy with option o set to a value v to probability that

- (a) arbitrary strategy solves problem with feature f
- (b) strategy with o = v solves arbitrary problem

(advantage ratio) (surprise ratio)

Example

feature	option value	advantage	surprise	#problems
EPR	age_weight=50	11%	15%	1512

Which problem features prefer which parameter values?

Strategy components

• each strategy consists of set of pairs (o, v) of option o and value v

Task 2

compare probability that problem with feature f can be solved by strategy with option o set to a value v to probability that

- (a) arbitrary strategy solves problem with feature f
- (b) strategy with o = v solves arbitrary problem

(advantage ratio) (surprise ratio)

Example

feature	option value	advantage	surprise	#problems
EPR	age_weight=50	11%	15%	1512

"strategy s with age_weight=50 is 11% more likely to solve an EPR problem than an arbitrary strategy, and on EPR s is 15% better than s usually is"

Strategy Design Lessons (SW)

Which problem features prefer which parameter values?

Strategy components

• each strategy consists of set of pairs (o, v) of option o and value v

Task 2

compare probability that problem with feature f can be solved by strategy with option o set to a value v to probability that

- (a) arbitrary strategy solves problem with feature f
- (b) strategy with o = v solves arbitrary problem

(advantage ratio) (surprise ratio)

Example

feature	option value	advantage	surprise	#problems
EPR	age_weight=50	11%	15%	1512

"strategy s with age_weight=50 is 11% more likely to solve an EPR problem than an arbitrary strategy, and on EPR s is 15% better than s usually is"

even for sources with at least 20 problems, 389 correlations where certain option value has \geq 30% advantage on problems from particular source

even for sources with at least 20 problems, 389 correlations where certain option value has \geq 30% advantage on problems from particular source

option value	advantage	surprise	#problems
st1=20	52%	58%	184
sa=fmb	60%	82%	30
igrr=64/1	67%	37%	72
fmbsr=1.6	63%	66%	20
age weight=16	36%	53%	1017
uwa=all	10%	56%	151
	option value stl=20 sa=fmb igrr=64/1 fmbsr=1.6 age weight=16 uwa=all	option value advantage st1=20 52% sa=fmb 60% igrr=64/1 67% fmbsr=1.6 63% age weight=16 36% uwa=all 10%	option value advantage surprise st1=20 52% 58% sa=fmb 60% 82% igrr=64/1 67% 37% fmbsr=1.6 63% 66% age weight=16 36% 53% uwa=all 10% 56%

even for sources with at least 20 problems, 389 correlations where certain option value has \geq 30% advantage on problems from particular source

Correlations identify fragile options

- for options like stl and age_weight, range is beneficial
- other options are fragile, i.e. only one value works well

even for sources with at least 20 problems, 389 correlations where certain option value has \geq 30% advantage on problems from particular source

Correlations identify fragile options

- for options like stl and age_weight, range is beneficial
- other options are fragile, i.e. only

many correlations for EPR and UEQ: saturation algorithm, age-weight limit

feature	option value	advantage	surprise	#problems
EPR	$\texttt{age_weight} \in [50, \dots, 128]$	10%	17%	1512
EPR	sa=ins	5%	18%	1512
UEQ	age_weight=28	13%	18%	1656
UEQ	nwc=3	13%	18%	1656
UEQ	ins=3	14%	17%	1656

even for sources with at least 20 problems, 389 correlations where certain option value has \geq 30% advantage on problems from particular source

ceil Correlations identify fragile options

- for options like stl and age_weight, range is beneficial
- other options are fragile, i.e. only

many correlations for EPR and UEQ: saturation algorithm, age-weight limit

facture	— 🗣 for UEQ focus on conjecture-de	rived clauses	6 (by pena	alizing others)
leature		aarantage	Sarprise	Thopicins
EPR	$\texttt{age_weight} \in [50, \dots, 128]$	10%	17%	1512
EPR	sa=ins	5%	18%	1512
UEQ	age_weight=28	13%	18%	1656
UEQ	nwc=3	13%	18%	1656
UEQ	ins=3	14%	17%	1656

even for sources with at least 20 problems, 389 correlations where certain option value has \geq 30% advantage on problems from particular source

ceil Correlations identify fragile options

- for options like st1 and age_weight, range is beneficial
- other options are fragile, i.e. only

many correlations for EPR and UEQ: saturation algorithm, age-weight limit

🧟	for UEQ focus on conjecture-	derived clause	s (by pena	lizing others)
feature			Surprise	π prosicility
EPR	age_weight∈ [50,,#28]	10%	17%	1512
EPR	sa=ins	5%	18%	1512
UEQ	age_w			
UEQ	nwc=3 🚺 for many consta	ants, use light	er equatio	onal reasoning
UEQ	ins=3	14%	17%	1656
# cnst > 1556	age_weight=16	22%	14%	722
# cnst > 1556	ep=RST	12%	21%	722
	-			

even for sources with at least 20 problems, 389 correlations where certain option value has \geq 30% advantage on problems from particular source

Correlations identify fragile options

- for options like st1 and age_weight, range is beneficial
- other options are fragile, i.e. only

many correlations for EPR and UEQ: saturation algorithm, age-weight limit

🚽 💡 for	UEQ focus on conjecture-der	ived clauses	(by penali	zing others)
feature		aarantage	surprise 7	T PI O DI CITI S
EPR	$\texttt{age_weight} \in [50, \dots, 28]$	10%	17%	1512
EPR	sa=ins	5%	18%	1512
UEQ	age_w	ta usa limbta	r equation	al reaconing
UEQ	nwc=3	is, use lighte	equation	arreasoning
LIEO				
# cnct > 1556	? for many variables, less a	ggressive lin	nited resou	rce strategy
# Clist > 1550		1/		
# cnst > 1556	ep=RST	12%	21%	722
vars/clause > 183	$\texttt{stl} \in \{\texttt{150},\texttt{210}\}$	20%	10%	178

even for sources with at least 20 problems, 389 correlations where certain option value has \geq 30% advantage on problems from particular source

Correlations identify fragile options

- for options like st1 and age_weight, range is beneficial
- other options are fragile, i.e. only

many correlations for EPR and UEQ: saturation algorithm, age-weight limit

🔹 💡 for	UEQ focus on conjecture-	derived clauses	(by penaliz	ing others)	
feature		- advantage	затрпос Л	-problems	
EPR	$age_weight \in [50, \dots, \mathbb{Z}28]$? for UEQ, eag	ger inequali	ity splitting	
EPR	sa=insl	570	/ 1070	1312	
UEQ	age_w	anta waa limbta		Lucacaning	
UEQ	nwc=3	ants, use lighte	requationa	it reasoning	
$\frac{UEQ}{H}$ cost > 1556	? for many variables, less aggressive limited resource strategy				
# cnst > 1556 # cnst > 1556	ep=RST	12%	21%	722	
vars/clause > 183	$\texttt{stl} \in \{\texttt{150},\texttt{210}\}$	20%	10%	178	

Given a problem, which tool works best?

Given a problem, which tool works best?

Task 3

compare probability that problem with feature f can be solved by tool t to (a) probability that other tool solves problems with feature f

Given a problem, which tool works best?

Task 3

compare probability that problem with feature f can be solved by tool t to

- (a) probability that other tool solves problems with feature f
- (b) probability that tool t solves arbitrary problem (overperformance)

Given a problem, which tool works best?

Task 3

compare probability that problem with feature f can be solved by tool t to

- (a) probability that other tool solves problems with feature f
- (b) probability that tool t solves arbitrary problem (overperformance)

😵 Classes where Vampire does not work best

feature	# problems	tool
has_reals	279	CVC4 1.7
has_interpreted_equality	869	CVC4 1.7
> 54 positive axioms	1120	Leo III 1.3
source Hoe08/Sta08	441/140	versions of E

Given a problem, which tool works best?

Task 3

compare probability that problem with feature f can be solved by tool t to

- (a) probability that other tool solves problems with feature f
- (b) probability that tool t solves arbitrary problem (overperformance)

🖇 Classes where Vampire does not work best

feature	# problems	tool
has_reals	279	CVC4 1.7
has_interpreted_equality	869	CVC4 1.7
> 54 positive axioms	1120	Leo III 1.3
source Hoe08/Sta08	441/140	versions of E

iProver, Z3, Zipperposition on EPR, versions of E on UEQ,

 some number crunching to find correlations between problem features and successful strategies/strategy properties

- some number crunching to find correlations between problem features and successful strategies/strategy properties
- can predict reasonably good strategy out of fixed set
- identify influential and relevant features: size, interference (but TPTP characteristics like source highly significant)

- some number crunching to find correlations between problem features and successful strategies/strategy properties
- can predict reasonably good strategy out of fixed set
- identify influential and relevant features: size, interference (but TPTP characteristics like source highly significant)
- identify problem clusters where other tools than Vampire prevail

- some number crunching to find correlations between problem features and successful strategies/strategy properties
- can predict reasonably good strategy out of fixed set
- identify influential and relevant features: size, interference (but TPTP characteristics like source highly significant)
- identify problem clusters where other tools than Vampire prevail
- data and collection of TPTP problem features is available http://cl-informatik.uibk.ac.at/users/swinkler/learn_strat/

- some number crunching to find correlations between problem features and successful strategies/strategy properties
- can predict reasonably good strategy out of fixed set
- identify influential and relevant features: size, interference (but TPTP characteristics like source highly significant)
- identify problem clusters where other tools than Vampire prevail
- data and collection of TPTP problem features is available http://cl-informatik.uibk.ac.at/users/swinkler/learn_strat/

Future investigations

- correlations for multiple features
- play with dimensionality reduction
- use such analysis to build good strategy schedules
- suggestions?