
Runtime Complexity Analysis of Logically
Constrained Rewriting

Sarah Winkler and Georg Moser

Free University of Bolzano, Italy, and University of Innsbruck, Austria
sarwinkler@unibz.it,georg.moser@uibk.ac.at

Abstract. Logically constrained rewrite systems (LCTRSs) are a versa-
tile and efficient rewriting formalism that can be used to model programs
from various programming paradigms, as well as simplification systems
in compilers and SMT solvers. In this paper, we investigate techniques to
analyse the worst-case runtime complexity of LCTRSs. For that, we ex-
ploit synergies between previously developed decomposition techniques
for standard term rewriting by Avanzini et al. in conjunction with al-
ternating time and size bound approximations for integer programs by
Brockschmidt et al. and adapt these techniques suitably to LCTRSs.
Furthermore, we provide novel modularization techniques to exploit loop
bounds from recurrence equations which yield sublinear bounds. We have
implemented the method in TCT to test the viability of our method.

1 Introduction

Rewriting with constraints over background theories is a highly versatile model
of computation and tool for analysis. While user-defined data types are modelled
by free function symbols, arbitrary decidable theories can be incorporated, such
as integer or bit-vector arithmetic, lists, or array theory. Constraints over these
theories can be effectively handled by SMT solvers. Different rewrite formalisms
capture this idea [11,21,19]. Here we use the recent notion of logically constrained
term rewrite systems (LCTRSs for short), due to Kop et al. [28,29,20,10].

LCTRSs can abstract programs in a variety of paradigms, comprising im-
perative, functional, and logic languages. They also subsume integer transition
systems (ITSs), which constitute a frequently used program abstraction [19,15,8]
but do—in contrast to LCTRSs—not support (non-tail) recursion. On the other
hand, LCTRSs can also model simplification routines for expressions, which
are crucial procedures in compilers or SMT solvers. For all of these applica-
tion areas, LCTRSs offer a uniform toolset to analyse termination (or non-ter-
mination) [27,33], reachability [10], uniqueness [41], or program equivalence [20].

However, techniques for resource analysis of LCTRSs are so far lacking. This
is despite the fact that in their application domains (program analysis, simplifi-
cation systems), execution time is crucial. As a remedy, this paper investigates
methods to analyse (worst-case) innermost runtime complexity of logically con-
strained rewrite systems. To this end, we unify and generalise the complexity
framework for standard rewriting by Avanzini and Moser [4] with the approach



by Brockschmidt et al. to alternate time and size bound analysis for ITSs [8],
and moreover propose processors for modularisation and sublinear bounds.

Contributions. We present a novel resource analysis framework for logically con-
strained rewrite systems (Sect. 4) coached in the modular processor framework
of TCT [5]. Precisely,

1. we present the first fully-automated runtime complexity analysis of LTCRSs;
2. we unify the complexity framework for standard (innermost) rewriting by

Avanzini and Moser [4] and the alternating time and size bound approxima-
tions for ITSs by Brockschmidt et al. [8],

3. generalising this, we introduce a novel modularisation processor, the splitting
processor ;

4. we present a novel processor, dubbed recurrence processor to derive sublinear
bounds based on recurrences as described by the Master Theorem;

5. we illustrate the viability of our method by providing a prototype imple-
mentation as a dedicated module tct-lctrs in TCT, and evaluate it on ITS
benchmarks.

In the remainder of the section, we highlight potential application areas of
LCTRSs to emphasise their versatility. In the next section (Sect. 2) we give a
high-level account of our technical achievements, providing a step-by-step expla-
nation how the runtime complexity of a natural representation of mergesort can
be optimally analysed in our framework. In this section, we also discuss to what
extent our results can be applied to the below given examples. In Sect. 3 we
summarise the foundations of LCTRSs, while in Sect. 4 we detail the complex-
ity framework used. Processors carried over from the ITS setting are presented
in Sect. 5, and the novel processors are introduced in Sect. 6. Implementational
choices and experimental results are summarized in Sect. 7. Finally, in Sect. 8
we conclude. Some proofs were moved to an extended version [42].

Logically Constrained Rewrite Systems. We emphasise motivational examples
from three different domains, focusing on imperative and logic programs, as well
as compiler optimisations.

Example 1. The following recursive ITS R1, due to Albert et al. [1], corresponds
to an imperative mergesort implementation after computing loop summaries. It
is naturally coached into the LCTRS framework, with the theory of integers as
background theory.

(1) init(x, y, z)→ m(x, y, z) (2) m3(x, y, z)→ merge(y, z, z)

(3) m1(x, y, z)→ m(y, y, z) (4) merge(x, y, z)→ merge(x− 1, y, z) [x > 1 ∧ y > 1]

(5) m0(x, y, z)→ split(x, y, z) (6) split(x, y, z)→ split(x− 2, y, z) [x > 2]

(7) m2(x, y, z)→ m(z, y, z) (8) merge(x, y, z)→ merge(x, y − 1, z) [x > 1 ∧ y > 1]

(9) m(x, y, z)→ 〈m0(x, u, v),m1(x, u, v),m2(x, u, v),m3(x, u, v)〉
[x > 2 ∧ u > 0 ∧ v > 0 ∧ x+ 1 > 2u ∧ 2u > x ∧ x > 2v ∧ 2v + 1 > x]

Here a rule of the form `→ r [c] means that an instance of ` is replaced by the
respective instance of r provided that the instance of c is satisfied.

2



Similarly, (constraint) logic programs can be nicely suited to LCTRSs.

Example 2. Consider the following simple Prolog program from the benchmarks
collected by Mesnard and Neumerkl [31].

max length(Ls,M,Len) :- max1(Ls,0,M), len(Ls,Len).

len([H|T],L) :- len(T,LT), L is LT + 1. len([],0).

max1([H|T],N,M) :- H <= N, max1(T,N,M). max1([],M,M).

max1([H|T],N,M) :- H > N, max1(T,H,M).

Assuming an instantiated list Ls, max length(Ls,M,Len) is deterministic and
returns the maximal list entry and the length of the list. This function becomes
representable as the following LCTRS R2 over the theory of integers and lists:

max length(ls,m, l)→ 〈max(ls, 0,m), len(ls, l)〉
len(xs, l)→ len(t, l − 1) [xs ≈ h :: t] len([], 0)→ 〈〉

max(xs, n,m)→ max(t, n,m) [h 6 n ∧ xs ≈ h :: t] max([],m,m)→ 〈〉
max(xs, n,m)→ max(t, h,m) [h > n ∧ xs ≈ h :: t]

Here, :: denotes the cons operator and 〈·, ·〉, 〈〉 are additional constructor symbols
to collect the recursive calls of a rule. Conceptually LCTRSs appear as a good
fit to express constraint logic programs as well, making use of the fact that
constraints are natively supported.

In order to emphasise that LCTRSs are not confined to static program analysis,
we present a final example which is concerned with program optimisation.

Example 3. The Instcombine pass in the LLVM compilation suite performs peep-
hole optimisations to simplify expressions in the intermediate representation.
The current optimisation set contains over 1000 simplification rules to e.g. re-
place multiplications by shifts or perform bitwidth changes. About 500 of them
have recently been translated into the domain-specific language Alive [30], and
subsequently into LCTRSs [41], resulting in rules of the following shape:

add(x, x)→ shift left(x,#x1)

add(add(xor(or(x, a), y),#x1), w)→ sub(w, and(x, b)) [a ≈ ∼b]
add(xor(x, a), z)→ sub(a+ z, x) [isPowerOf2(a+ #x1) ∧ . . . ] .

These rules are expressed over the background theory of bit-vectors. Naturally, as
a compiler pass this simplification suite is a performance-critical routine, hence
an automated complexity analysis is of great interest.

2 Step by Step to an Optimal Bound

Consider the rewrite system R1 from Ex. 1, and a rewrite sequence starting
with an instance of init(x0, y0, z0). Below we sketch the steps to obtain an upper
bound on the runtime complexity of R1, expressed in |x0|, |y0|, and |z0|, where
| · | denotes the absolute value.

3



An automated runtime complexity analysis of mergesort is notoriously diffi-
cult: For this example, CoFloCo [17,16] can only derive a quadratic bound, while
KoAT [8] (as well as AProVE [22]) even proposes an exponential bound. PUBS [1]
can produce an O(n · log(n)) bound, using a special level-counting feature, which
however negatively affects its overall success rate. Due to the work presented in
this paper, our complexity analyser TCT can automatically prove the optimal
O(n · log(n)) upper bound. This is obtained by the following recipe.

1. We first compute dependency tuples of all rules to focus the analysis on recur-
sive calls (see Def. 4). Then a dependency graph approximation is computed
to estimate computation paths, where the numbers refer to the respective
dependency tuples of rules in Ex. 1:

(1) (9)

(3)

(7)

(2)

(5) (6)

(4)

(8)

2. Next, we derive bounds on the size of variables in left hand sides of rules,
in terms of the sizes of the variables in the initial term init(x0, y0, z0). For
example, it is easy to check that for rule (9), |x|, |y|, and |z| are bounded by
|x0|, |y0|, and |z0|, respectively, and all variables in other rules are bounded
by |x0|. This is established by the size bounds processor (Lem. 3). Formally,
we adapt techniques developed for ITSs for that purpose [8].

3. We first derive time bounds for the SCCs {2, 4, 8} and {6} separately (Lem. 2).
Thus, using the size bounds from above and suitable interpretations [4] (also
called polynomial ranking functions [8]) for LCTRSs, one can derive linear
runtime bounds 2|x0|+ 1 and |x0| for these subproblems, respectively.

4. In order to analyse the SCC {3, 7, 9}, we first apply chaining to combine
rule (9) with (3) and (7), respectively (eliminating symbols m1 and m2).

5. With respect to the modified rule (9) and the derived subproblem bounds,
we exploit the loop processor (Lem. 5) to observe that its runtime can thus
be overestimated by the following recurrence equations.

f(|x|, |y|, |z|) = 2 · f(|x|/2, |x|/2, |x|/2) + 3|x|+ 1 f(1, |y|, |z|) = 0 (1)

Solving the recurrences by the Master Theorem, implies an overall runtime
complexity of O(|x0| · log(|x0|)) for R1, as |x| in rule (9) is bound by |x0|.

Wrt. R2 from Ex. 2, we can fully automatically infer an (asymptotic) optimal
linear bound on the runtime complexity for the given instantiation. Here, we take
an instance of max length(xs, z, l) as initial term. As for comparison, note that
the corresponding logic program cannot be handled by a dedicated variant of
AProVE [23] geared towards runtime complexity analysis of logic programs. Only
termination can be shown by the most recent version of AProVE [22]. A priori,
our approach is restricted to logic programs with instantiation patterns that

4



ensure determinism and avoid failure, but in the conclusion we discuss how to
overcome this limitation.

Finally, Ex. 3 cannot yet be handled, as a successful analysis requires the
extension of the proposed framework to (innermost) derivational complexity (i.e.,
the setting of arbitrary starting terms that may contain nested defined symbols).
This is subject to future work. However, we conceive the work established in this
paper as a solid first step towards the automated analysis of such systems.

3 Logically Constrained Term Rewriting

We assume familiarity with term rewriting [6,37], but briefly recapitulate the
notion of logically constrained rewriting [28,20] that our approach is based on.
We consider an infinite, sorted set of variables V and a sorted signature F =
FT ]FL such that T (F ,V) denotes the set of terms over this disjoint signature.
Symbols in FT are called term symbols, while symbols in FL are theory symbols.
A term in T (FL,V) is a theory term. For a non-variable term t = f(t1, . . . , tn), we
write root(t) to obtain the top-most symbol f . A position p is an integer sequence
used to identify subterms, and the subterm of t at position p is denoted t|p. We
write Pos(t) for the set of positions in a term t, and given a set of function
symbols F ′, PosF ′(t) are those positions p ∈ Pos(t) such that t|p is rooted by a
symbol in F ′. A substitution σ is a mapping from variables to terms with finite
domain, and tσ denotes the application of σ to a term t.

Theory terms T (FL,V) have a fixed semantics: we assume a mapping I that
assigns to every sort ι occurring in FL a carrier set I(ι). Moreover, we assume
that for every element a ∈ I(ι) there is exactly one constant symbol ca ∈ FL,
called a value. The set of all value symbols is denoted Val. For instance, if the
sort of integers occurs in FL then Val ⊆ FL contains a value ci for every i ∈ Z.

Moreover, we assume a fixed interpretation J that assigns to every theory
symbol f ∈ FL a function fJ of appropriate sort, and such that (ca)J = a for
value symbols ca, i.e., value symbols are interpreted as the represented element.
The interpretation J naturally extends to theory terms without variables by
setting [f(t1, . . . , tn)]J = fJ ([t1]J , . . . , [tn]J ). In particular, we assume a sort
bool such that I(bool) = {>,⊥} with values Valbool = {true, false} such that
trueJ = >, and falseJ = ⊥. We also assume that FL contains equality symbols
≈ι for every theory sort ι, and a symbol ∧ interpreted as logical conjunction.

Theory terms of sort bool are called constraints, and a constrained term is
a pair (t, ϕ) of a term t and a constraint ϕ. A substitution γ is a valuation if
its range is a subset of Val. A constraint ϕ is valid, denoted |= ϕ, if [ϕγ]J = >
for all valuations γ, and satisfiable if [ϕγ]J = > for some valuation γ. We write
ψ |= ϕ if all valuations that satisfy ψ also satisfy ϕ.

Logically Constrained Rewriting. A constrained rewrite rule is a triple `→ r [ϕ]
where `, r ∈ T (F ,V), ` 6∈ V, ϕ is a constraint, and root(`) ∈ FT . If ϕ = true then
the constraint is omitted. For a rule ρ : `→ r [ϕ] we use lhs(ρ) = ` and rhs(ρ) = r
to denote its left- and right-hand sides, respectively. A set of constrained rewrite

5



rules is called a logically constrained term rewrite system (LCTRS for short). For
an LCTRS R, its defined symbols FD are all root symbols of left-hand sides,
that is, FD = {root(`) | ` → r [ϕ] ∈ R}. In the remainder we assume that
LCTRSs are left-linear, that is, all variables occur at most once in the left-hand
side ` of a rule `→ r [ϕ].1 An LCTRS R is a transition system if all rules in R
are of the form f(`1, . . . , `n)→ g(r1, . . . , rm) [ϕ] such that f, g ∈ FT , all `i ∈ V,
and all rj are in T (FL,V); if moreover the background theory associated with
FL is the theory of integers then R is an integer transition system (ITS).

The fixed rewrite system Rcalc is the (infinite) set of rules f(`1, . . . , `n)→ u
such that f ∈ FL \Val, `i ∈ Val for all 16 i6n, and u ∈ Val is the value symbol
of [f(`1, . . . , `n)]J . A rewrite step using Rcalc is called a calculation step and
denoted →calc. A rule step s →σ

ρ t using a rule ρ : ` → r [ϕ] and substitution
σ satisfies s = C[`σ], t = C[rσ], and σ respects ϕ; where a substitution σ is
said to respect a constraint ϕ if ϕσ is valid and σ(x) ∈ Val for all x ∈ Var(ϕ).
The substitution in the notation →σ

ρ is mostly omitted, and a rule step simply
denoted→ρ. For an LCTRS R, we denote the relation→calc∪{→ρ}ρ∈R by→R.
The above rewrite step is innermost, denoted s

i→ρ t, if all proper subterms of
`σ are in normal form with respect to →R. Given binary relations R and S, we
write R/S for S∗ · R · S∗. For LCTRSs R and S we abbreviate

i→R /
i→S by

i→R/S , and
i→R /→calc by

i→R/calc.

Example 4 (continued from Ex. 2). The LCTRS R2 indicated in Ex. 2, ex-
pressing the predicate max length/3, makes use of the sorts int, list and bool.
Furthermore, FL consist of symbols :: and [] for lists, ·, +, −, 6, and > as well as
values n for all n ∈ Z, with the usual interpretations on Z and lists of integers.
Then R admits the following rewrite steps:

len([1, 2], 2)→ len([2], 2− 1)→calc len([2], 1)→ len([], 1− 1)→calc len([], 0)

Note that in LCTRS rewriting, calculation steps like the subtractions in Ex. 4
are explicit in the →calc relation, in contrast to ITSs or related formalisms [32],
where simplification is implicit. Moreover, innermost rewriting is a rather nat-
ural restriction for LCTRSs: By the definition of a rule step using some rule ρ,
variables in the constraint of ρ need to be substituted by values. Hence non-
innermost steps are only possible if nested redexes occur below unconstrained
variables. For instance, in a term f(f(2)) only the inner f call constitutes a redex
for the rule f(x)→ x [x > 0].

Algebras. We assume mappings | · |ι : I(ι) → N for every sort ι, playing the
role of norms to measure size. For instance, one might take the absolute values
for integers, the size function for arrays, and the unsigned integer value for bit-
vectors. The subscript ι in |t|ι is omitted if the sort of t is clear from the context.

1 Non-left-linear rules are rare in practice; and moreover repeated occurrences of a
variable x in ` can be substituted by a fresh variable x′, adding x ≈ x′ to ϕ. Though
this implies that x can only be substituted by theory terms in rewrite sequences, for
innermost evaluation this is not a limitation.

6



We consider well-founded algebras A over the natural numbers and the
Booleans, with interpretation functions fA for all f ∈ FT ∪ FL, cf. [6,37]. By
tA we denote the interpretation of a term t based on A, and by [α]A(t) the
interpretation of t based on A and valuation α. In order to bound complexity,
we use algebras that incorporate the given complexity measures:

Definition 1. A measure interpretation is given by an algebra M with carrier
N, and measures | · |ι for all sorts ι. The interpretation tM of a term t is |t|ι
if t ∈ V has sort ι, and fM(tM1 , . . . , tMm ) if t = f(t1, . . . , tm). In addition, we
demand that fM([t1]MJ , . . . , [tn]MJ ) > [f(t1, . . . , tn)]MJ for all values t1, . . . , tn.

In the following we suit interpretations (aka ranking functions) to LCTRSs.
The ternary relation >M[·] is defined as s >M[ϕ] t if and only if [α]M(s) > [α]M(t)

is satisfied for all valuations α that respect ϕ. Similarly, s >M[ϕ] t if and only if

[α]M(s) > [α]M(t) holds for all valuations α that respect ϕ.

Definition 2. We call an LCTRS R weakly compatible with a measure inter-
pretation M if ` >M[ϕ] r for all ` → r [ϕ] ∈ R, and strictly compatible if R is

weakly compatible and in addition ` >M[ϕ] r for some `→ r [ϕ] ∈ R.

Example 5. Consider the measure interpretation M such that mM3 (x, y, z) = y,
mergeM(x, y, z) = x, x +M y = x +N y, x −M y = max(x −N y, 0), >M is >N,
and vM = max(v, 0) for all v ∈ Z. The LCTRS R′ consisting of the rules (2),
(4), and (8) from Ex. 1 is strictly compatible with M, since the rules (2) and
(8) are weakly decreasing, while (4) is strictly decreasing.

4 Complexity Framework

An LCTRS R is terminating if →R is well-founded. In applications like static
analysis, termination of a program is often not enough and more precise resource
guarantees are needed. In this section we propose suitable runtime complexity
notions for LCTRSs.

Following common notions in complexity analysis [4], the derivation height
of a term t wrt. a binary relation → is defined as follows: dh(t0,→) := sup {k |
∃ t1, . . . , tk. t0 → · · · → tk}. We assume that an LCTRS R is associated with
a unique initial state (t0, ϕ0) such that ϕ0 is a constraint and t0 = init(x) is
the initial term, for a vector of input variables x = (x1, . . . , xn) and a function
symbol init that does not occur on any right-hand side. The intention is that we
consider only rewrite sequences starting at t0σ, such that σ is a valuation that
respects ϕ0. Sometimes s0 will be used as a shorthand for (t0, ϕ0).

For u, v ∈ Nk, let u 6k v abbreviate
∧k
i=1 ui 6 vi. Given t = (t1, . . . , tk), |t|

denotes (|t1|, . . . , |tk|), and tσ denotes (t1σ, . . . , tkσ) for any substitution σ. For
a term t, we write Var(t) for a vector containing Var(t) in a fixed order.

Definition 3. For an LCTRS R and a constrained term (t, ϕ) such that x =

Var(t), the (innermost) runtime complexity rc
(t,ϕ)
R : Nn → N∪ {ω} is defined as

rc
(t,ϕ)
R (m) = sup {dh(tσ,

i→R/calc) | |xσ| 6n m for some σ that respects ϕ}.

7



Thus, the runtime complexity of an LCTRS is the maximal number of innermost
rule steps in a rewrite sequence that starts with a size-bounded instance of
the initial state (t, ϕ); calculation steps are not counted. This is common in
cost analysis, it also corresponds to the runtime complexity of a program or
ITS [8], where the number of transitions are counted but not simplifications of
expressions.

Dependency pairs are commonly used in termination and complexity analysis
of rewrite systems. For termination of LCTRSs they were already used in earlier
work [27]. For complexity analysis, stronger notions were developed for standard
rewriting: dependency tuples (DTs) [34], weak [25], and grouped dependency
pairs [4]. Since we consider innermost rewriting, we can use an LCTRS variant
of dependency tuples. To that end, for every defined symbol f we consider a fresh
symbol f ], and for a term t = f(t1, . . . , tn) write t] to denote f ](t1, . . . , tn).

Definition 4. Consider a rule ρ : ` → r [ϕ] such that PosFD (r) is sorted as
p1, . . . , pk with respect to a fixed order on positions. Then the dependency tuple
DT(ρ) of ρ is the constrained rule `# → 〈(r|p1)#, . . . , (r|pk)#〉k [ϕ]. For an
LCTRS R, DT(R) =

⋃
ρ∈R DT(ρ).

Here 〈. . . 〉k is a fresh tuple symbol for every arity k (but the subscript will
be dropped for simplicity).

Definition 5 (Dependency Graph). Let R be an LCTRS and D ⊆ DT(R).
The dependency graph (DG) is the directed graph with node set D and edges from

s# → 〈t#1 , . . . , t#n 〉 [ϕ] to u# → v [ψ] if there is some t#i such that t#i σ →∗R u#τ ,
for some substitutions σ and τ and some i, 1 6 i 6 n.

The DG is not computable in general, but approximation techniques are well-
known [27,34,5,22]. For instance, the graph in Sect. 2 constitutes a dependency
graph approximation for the LCTRS from Ex. 1. Following Noschiniski et al. [34],
we assume particular interpretation functions for the tuple operators 〈. . . 〉. To
this end, let a DT-measure interpretation M be a measure interpretation that
interprets 〈t1, . . . , tk〉M = t1 + · · ·+ tk, for all k > 0.

Let the set of bound expressions UB be inductively defined as follows: (i)
|x|ι ∈ UB for x ∈ V of sort ι, (ii) Z ⊆ UB and ω ∈ UB, (iii) if p, q ∈ UB then
p+ q, pq, and max(p, q) are in UB, and (iv) if p ∈ UB and k ∈ N then kp, p/k,
and logk(p) are in UB. Given p, q ∈ UB, we write p 6 q if [α]N(p) 6 [α]N(q) for
all substitutions α : V → N. For a bound expression p ∈ UB and m ∈ Nn we also
write p(m) to denote the substituted bound expression p[mi/xi]16i6n, assuming
x ∈ Vn are the variables in the initial term t0 = init(x).

A triple P = ((t, ϕ),D,R) of a constrained term (t, ϕ), a set of DTs D, and
an LCTRS R is called a (complexity) problem. Following Brockschmidt et al. [8],
we next define time and size bound approximations.

Definition 6. For a complexity problem ((t, ϕ),D,R) with x = Var(t), a func-
tion T : D → UB is a runtime approximation if, for all ρ ∈ D and m ∈ Nn,

T (ρ)(m) > sup {dh(tσ,
i→{ρ}/D∪R) | |xσ| 6n m and σ respects ϕ}.

8



In words, a runtime approximation T (ρ) over-approximates how often a DT
ρ ∈ D can be used in a rewrite sequence starting from the initial state, expressed
in terms of the input variables. For instance, consider Ex. 1 and let (1#) be the
DT corresponding to rule (1). Then the function T such that T (1#) = 1 and
T (ρ)(|x0|, |y0|, |z0|) = |x0|2 for all other DTs ρ ∈ D is a valid (though not
optimal) runtime approximation.

For a complexity problem ((t, ϕ),D,R), the set of entry variables EV is the
set of all tuples (ρ, y) such that ρ ∈ D and y ∈ Var(lhs(ρ)).

Definition 7. For a complexity problem ((t, ϕ),D,R) with x = Var(t), a func-
tion S : EV→ UB is a size approximation if

S(ρ, y)(m) > sup {|yτ | | ∃σ, u. tσ i→
∗
R∪D ·

i→
τ

ρ u, |xσ| 6n m}

for (ρ, y) ∈ EV such that substitution σ respects ϕ, and m ∈ Nn.

A size approximation over-approximates how large a variable in the left-hand side
of a rule in D can get in a rewrite sequence from the initial state, again expressed
in terms of the input variables. A tuple (T, S) is a bound approximation for a
complexity problem P if T and S are runtime and size approximations for P .
We next define a complexity framework in the spirit of Avanzini and Moser [4].

Definition 8. Given a complexity problem P = (s0,D,R), a (complexity) judge-
ment is a statement `P : (T, S), for functions T : D → UB and S : EV→ UB.
The judgement is valid if (T, S) is a bound approximation for P . A complexity
processor is an inference rule on complexity judgements of the following form:

`P1 : (T1, S1), . . . ,`Pk : (Tk, Sk)

`P : (T, S)
Proc

and it is sound if `P : (T, S) is valid whenever all `Pi : (Ti, Si) are valid.

For a problem P = (s0,D,R) with initial state s0 = (init(x), ϕ), a DT ` →
r [ψ] ∈ D is initial if root(`) = init#. The initial processor for P is given by

`P : (T, Sω)
Initial

where T (ρ) = 1 if ρ is initial and T (ρ) = ω otherwise; and Sω(ρ, x) = ω for all
(ρ, x) ∈ EV. Since init# does not occur on any right-hand side by assumption,
the processor Initial is sound. For instance, the DT init#(x, y, z) → m#(x, y, z)
originating from rule (1) in Ex. 1 is initial. For a problem P = (s0,D,R) and an
expression C ∈ UB, we sometimes write `P : ((C)Σ , S) to express that there is
a runtime approximation T such that `P : (T, S) and C =

∑
ρ∈D T (ρ).

The next result states that valid judgements bound the runtime complexity
of LCTRSs. It can be proven in a similar way as [4, Theorem 6], using the
properties of dependency tuples for innermost rewriting.

Theorem 1. If an LCTRS R with initial state (t, ϕ) admits the valid judgement

` ((t#, ϕ),DT(R),R∪Rcalc) : (T, S) then rc
(t,ϕ)
R 6

∑
ρ∈DT(R) T (ρ) holds.

9



5 Processors

This section presents processors that implement the complexity framework from
Sect. 4, in particular showing how the respective ITS techniques [8] carry over.

Interpretation Processors. Compatible interpretations are a standard tool in
resource analysis, cf. [34,4,8]. We first present a processor using a measure inter-
pretation that orients all rules and DTs (cf. [8, Theorem 3.6]). For p ∈ UB, let
[p] denote the bound expression obtained from p by replacing all coefficients in p
by their absolute values (such that the resulting expression is weakly monotone).

Lemma 1. Let P = ((t0, ϕ0),D,R) and M a DT-measure interpretation with
which R is weakly, and D is strictly compatible. Then the following processor is
sound, where T ′(ρ) = [(t0)M] for all ρ ∈ D>, and T ′(ρ) = T (ρ) otherwise:

`P : (T, S)

`P : (T ′, S)
Interpretation

For instance, for Ex. 1 one can take the interpretation M such that splitM = 0
and fM = 1 for all other f ∈ FT , and symbols in FL are interpreted as in
Ex. 5. R1 is strictly compatible since all rules are weakly and rule (5) is strictly
decreasing. This justifies a runtime approximation setting by T (5#) = 1 =
init#(x)M.

Next, we adapt [8, Theorem 3.6] to our setting, by which runtime bounds
can be obtained using an interpretation that orients the given LCTRS partially.
For a dependency graph G and some D′ ⊆ D, let pre(D′) be the set of all edges
(ρ1, ρ2) in G, such that ρ1 ∈ D \ D′ and ρ2 ∈ D′. Moreover, for a DT ρ with
Var(lhs(ρ)) = (y1, . . . , yk), let Sρ denote (S(ρ, y1), . . . , S(ρ, yk)).

Lemma 2. Suppose P = (s0,D,R) is a complexity problem such that D′ ⊆ D
has no initial DTs, R is weakly, and D′ is strictly compatible with a DT-measure
interpretation M. Then the following processor is sound:

`P : (T, S)

`P : (λρ.

{∑
(γ,δ)∈pre(D′) T (γ) · [lhs(δ)M](Sδ) if ρ ∈ D′>

T (ρ) otherwise

}
, S)

TimeBounds

where D′> is the set of rules `→ r [ϕ] in D′ such that ` >M[ϕ] r.

Next, we define a proceessor to compute size approximations.

Size Bounds. Size approximations were developed for ITSs and tend to be less
precise for LCTRSs due to nested terms. However, in many practical examples,
a sufficient approximation is feasible. Next, we thus adapt the relevant notions
to the LCTRS setting. First, the local size approximation overapproximates the
size of entry variables in terms of variable sizes in predecessor rules.

10



Definition 9. For δ, ρ ∈ D and (ρ, y) ∈ EV, let Sδ→ρ : V → UB be a local size
approximation if

Sδ→ρ(y)(m) > sup {|yτ | | ∃t, σ. `σ →σ
δ · →τ

ρ t and zσ 6n m}

where ` = lhs(δ), z = Var(`), and σ is a valuation.

The intention is that for an entry variable (ρ, y), such that y occurs in the left-
hand side of ρ, the expression Sδ→ρ(y) upper-bounds y in terms of the variables
in δ, for the case where ρ is applied after δ. While such an expression is not always
computable, it can often be over-approximated. For instance, in Ex. 1 a local size
approximation S(9)→(2)(y) could be (|x| + 1)/2 or |x|: the subterm m#

3 (x, u, v)
on the right-hand side of (9) matches the left-hand side of (2), instantiating the
variable y by u, and the side condition of (9) ensures x+ 1 > 2u. We next define
the entry variable graph to track the dependence of entry variables on each other.
For f ∈ UB, let Var(f) be the set of all variables occurring in f .2

Definition 10. An entry variable graph GEV for (s0,D,R) with DG G has
node set EV(D), and there is an edge from (δ, z) to (ρ, y) labeled Sδ→ρ(y) if G
has an edge from δ to ρ and z ∈ Var(Sδ→ρ(y)).

We illustrate the concept on our running example.

Example 6. Consider again Ex. 1. We first apply chaining, a standard technique
in termination an complexity analysis [15,5], to compress the cycles (9)−(3)−(9)
and (9)− (7)− (9) into single-step cycles, such that (9) is replaced by

m(x, y, z)→ 〈m0(x, u, v),m(u, u, v),m(v, u, v),m3(x, u, v)〉 [ψ]

ψ = x > 2 ∧ u > 0 ∧ v > 0 ∧ x+ 1 > 2u ∧ 2u > x ∧ x > 2v ∧ 2v + 1 > x.

Then we obtain the following entry variable graph:

1, x

1, y

1, z

9, x

9, y

9, z

2, x

2, y

2, z

5, x

5, y

5, z

6, x

6, y

6, z

4, x

4, y

4, z

8, x

8, y

8, z

where a triple arrow a b means that there are arrows from (a, x) to (b, x),
(a, y) to (b, y), and (a, z) to (b, z). For all (a, u) ∈ EV, all outgoing edges from
(a, u) can be labelled |u|, though more precise approximations are possible.

Next, we use the entry variable graph GEV to obtain size bound refinements,
following the approach of [8]. To that end, we define two processors Striv and
Sscc that refine bounds for trivial and non-trivial SCCs in GEV, respectively.
Here, an SCC is trivial if it consists of a single node without an edge to itself.

2 For more precision one could restrict to active variables, as done in [8].

11



Definition 11. For size bounds S, we define Striv as follows: (i) Striv(ρ, y) =
|y| if ρ is initial; (ii) Striv(ρ, y) = max{α(Sδ) | (δ, z)→α (ρ, y) in GEV}, if (ρ, y)
is not in any non-trivial SCC of GEV; (iii) otherwise Striv(ρ, y) = S(ρ, y).

We distinguish three types of edges in GEV, by partitioning their labels into
the three sets E=, E+, and E×: for an edge labelled α, (i) α ∈ E= if α = aα ∈ N
or α = |x| for some x ∈ V; (ii) α ∈ E+ if |x|+aα > α for some x ∈ V and aα ∈ N;
(iii) α ∈ E× if c +

∑
x∈X ax|x| > α for c, ax ∈ N and X ⊆ V. For an SCC C in

GEV, let Cα denote the set of edge labels α of edges in C. For an entry variable
graph GEV, let pre(ρ, y) be the set of all direct predecessors of (ρ, y) in GEV.

Definition 12. Let (T, S) be a bound approximation and C a non-trivial SCC in
GEV. Then Sscc is defined as (i) if Cα ⊆ E= then Sscc(ρ, y) = max{α | α ∈ Cα},
(ii) if Cα ⊆ E+ then let αpre = max{S(ρ′, z) | (ρ′, z) ∈ pre(ρ, y) \ C} and

Sscc(ρ, y) = max({αpre} ∪ {aα | α ∈ Cα}) +
∑
ρ∈D

T (ρ) ·max{aα | α ∈ C \ E=}

(iii) and Sscc(ρ, y) = S(ρ, y) otherwise, for all ρ ∈ C and (ρ, y) ∈ EV.

Both Striv and Sscc are similar to the bounds developed in [8], though we omitted
the case for E× for reasons of space. We obtain soundness by similar proofs.

Lemma 3. The following processors are sound:

` (s0,D,R) : (T, S)

` (s0,D,R) : (T, Striv)

` (s0,D,R) : (T, S)

` (s0,D,R) : (T, Sscc)
Size Bounds

6 Processors for Splitting and Loop Summary

In this section we present new processors to decompose a problem into subprob-
lems, as well as to analyse loops based on recurrence relations.

Splitting. We first consider a processor that allows to decompose a problem of
a certain shape into two subproblems. To that end, let a subgraph be forward
closed if it is closed under successors.

Definition 13. Consider a problem P = (s0,D,R) whose DG G exhibits sub-
graphs G0 and G1 with node sets D0 and D1, respectively, such that D = D0]D1,
all initial DTs of P are in D0, and G1 is forward closed. Then (D0,D1) is a
splitting for P .

A splitting thus decomposes a problem according to the scheme illustrated in
Fig. 1a. The idea is that we first analyse the subproblems P0 and P1 correspond-
ing to D0 and D1 separately, considering as initial states for P1 all possible entry
points γi. For DTs in D0 their time bounds in P0 constitute overall time bounds
since G1 is forward closed; on the other hand, for every ρ ∈ D1, we compute
time bounds via each entry point γi, and obtain an overall time bound by taking

12



δ1

δ2

δm

γ1

γ2

γm

·

·

· ·

·

·

D0 D1
. . .

(a) splitting

δ

γ1

γ2

γm ·

·

·

D′. . .

1, . . . , p

(b) recurrence

Fig. 1: Problems of special shapes.

the sum over all γi. To that end, given γi, the time bound for ρ in P1 is applied
to the size bound for γi, and multiplied by the time bound for the respective δi,
which upper-bounds the number of applications of δi followed by γi.

Lemma 4. If (s0,D,R) is a problem with splitting (D0,D1) such that pre(D1) =
{(δi, γi) | 16 i6m} and γi = (`i → ri [ϕi]), the following processor is sound:

`P : (T, S) ` (s0,D0,R) : (T0, S0)
∧m
i=1 ` ((`i, ϕi),D1,R) : (Ti, Si)

`P : (λρ.

{
T0(ρ) if ρ ∈ D0∑m
i=1 T0(δi) · Ti(ρ)(Sγi) if ρ ∈ D1

}
, S)

Split

Several improvements are conceivable, for instance the conditions of the initial
states (`i, ϕi) could be strengthened using reachability analysis in the DG.

Summarising Self-Loops. We next propose a technique for the analysis of
(sub)problems whose DG is of the shape shown in Fig. 1b. For vectors a, b, let
a >k b be a shorthand for the expression a >k b ∧ (

∨
j aj > bj).

Definition 14. Let P = ((f(x), ϕ),D,R) with DG G such that D can be written
as D = {δ} ] D′, the graph G|D′ is forward-closed in G, and δ is of the form:

f(x)→ 〈f(r1), . . . , f(rp), lhs(γ1), . . . , lhs(γm)〉 [ψ] (2)

for {γ1, . . . , γm} ⊆ D′, such that x, ri ∈ T (FL,V)k and ϕ∧ψ |= |x| >k |ri| for all
16 i6 p. If there is moreover some b ∈ (N∪{−∞})k such that ϕ∧ψ |= |x| >k b,
then P is cyclic with termination condition b.

Lemma 5. Let P = (s0,D,R) be a cyclic complexity problem with termination
condition b and a DT δ of the form (2), and let γi = (`i → ri [ϕi]), for all i,
16 i6m. Then the following processor is sound:

`P : (T, S)
∧m
i=1 ` ((`i, ϕi),D′,R) : (Ti, Si)

` (s0,D,R) : (F (x)Σ , S)
Recurrence

where F is a solution to a recurrence f(x) = f(r1)+ . . .+f(rp)+H(x), f(b) = 0
for some H(x) >

∑
ρ∈D′

∑m
i=1 Ti(ρ)(Sγi).

This processor is key to analyse the main loop in our running example.

Example 7. Consider Ex. 1 with chaining as applied in Ex. 6. For the subprob-
lems P1 = (m#

0 (x, u, v), ψ),D,R) and P2 = (m#
3 (x, u, v), ψ),D,R) the judge-

ments `P1 : ((x+ 1)Σ , S) and `P2 : (u+ v + 1)Σ , S) are valid, so we can set

13



H(x, u, v) = 2|x|+1 > x+u+v+1 since u, v 6 x/2. Thus, we solve the recurrence
(1) given in Sect. 2. According to one of the cases of the Master Theorem, (1)
has a solution in O(|x| · log(|x|)) which is a complexity approximation according
to Lem. 5.

To simplify the presentation, we only considered cycles formed by a single
DT, as indicated in Fig. 1b. The result generalizes to longer cycles, but chaining
can often reduce these cases to the simpler situation discussed here.

7 Evaluation

To evaluate the viability of the presented framework, we prototyped our ap-
proach in the complexity analyser TCT [5].

Implementation. We added a new module tct-lctrs to the TCT tool suite,
below we call the resulting tool TCT-LCTRS.3 It currently supports the theory
of integers, as well as some operations on lists. All processors described in this
paper are implemented, using the modular processor framework of TCT. They are
arranged in the following strategy, where the loop indicates exhaustive repetition:

dependency
tuples

simp size bounds time bounds simp chain split recurrence

We mention some implementation aspects that seem noteworthy.

– The simp processor combines some straightforward simplification processors:
unsatisfiable paths, unreachable rules, and unused arguments are eliminated,
and leaves in the DG obtain their time bound from their predecessors.

– Suitable algebras instantiating the interpretation and time bounds processors
(Lems. 1 and 2) are searched for by means of an SMT encoding, as done in
the ITS module of TCTpreviously using well-known techniques [35,7].

– Before applying the recurrence processor, TCTfirst applies chaining to obtain
loops that involve only a single DT (see Appendix B for details).

– In the recurrence processor (Lem. 5),TCT first attempts to solve subprob-
lems corresponding to the functions h1, . . . , hm separately, obtaining bound
approximations (Ti, Si) for all i, 1 6 i 6 m (see the notation of Lem. 5).
Then, it is checked whether a function H corresponding to one of the known
recursion patterns satisfies H(x) >

∑
i

∑
ρ∈D′ Ti(ρ) using an SMT call.

– The splitting processor (Lem. 4) leaves a lot of choice to the implementa-
tion where to split. We currently use it to enable the loop processor, which
requires a very particular problem shape.

If a subroutine requires an SMT query, TCT interfaces Yices [14] and Z3 [12].

Experiments. We evaluated TCT-LCTRS on the ITS benchmarks considered by
Brockschmidt et al. [8], using a timeout of 60 seconds. Tab. 1 compares our
implementation with KoAT [8], CoFloCo [17,16], the ITS version of TCT [5], and
PUBS [1], giving the number of problems for which a bound was derived at all,

3 The code is available from https://github.com/bytekid/tct-lctrs.

14

https://github.com/bytekid/tct-lctrs


the number of constant bounds, and the number of bounds that are at most
linear, quadratic, and cubic, respectively. The new splitting and recurrence pro-

TCT-LCTRS KoAT CoFloCo TCT-ITS PUBS

solved problems 359 404 347 309 285

constant 119 131 117 118 109

6 O(n) 282 298 270 250 240

6 O(n2) 345 376 336 300 270

6 O(n3) 356 383 345 306 278

Table 1: Comparison of tools on ITS benchmarks.

cessors allow TCT-LCTRS to derive sublinear bounds. This is the case for all
problems where PUBS derives a (precise) logarithmic bound, such as the exam-
ples divByTwo and direct n log n. (KoAT and CoFloCo do not support sublin-
ear bounds, and hence output linear bounds for these examples.) Moreover, we
can precisely analyse subproblems produced by a divide-and-conquer approach
like divide and conquer, where TCT (as well as KoAT) produces the tight lin-
ear bound, while CoFloCo fails and PUBS gives an exponential bound. Detailled
results, including a complete table and TCT output, are available on-line.4

We moreover tested TCTon the set of logic programs collected by Mesnard and
Neumerkl [31],5 restricted to deterministic programs. A list of solved problems
is available on-line as well.

8 Conclusion

This paper presented the first complexity framework for LCTRSs. We conclude
by relating to earlier work in the area, before indicating leads for future research.

Related work. In the last decades there has been significant progress in the area
of fully automated resource analysis, showing that it can be both practicable and
scalable, see e.g. [39,1,24,2,36,40,3,18,26,32]. In the following, we indicate related
work that directly influenced our framework, or employed similar methods.

Our framework differs from earlier work by Avanzini and Moser [4] in three
important respects: first, constraints over arbitrary background theories are sup-
ported, second, complexity is not expressed in terms of the size of the initial term
but in terms of measure functions, and third, sublinear bounds can be derived.
While innermost rewriting is a rather natural restriction for LCTRSs, call by
need strategies could be considered in the future for LCTRSs, too.

LCTRSs generalise ITSs, the complexity analysis of which is subject to a
comprehensive line of research [8,34]. Our approach gracefully extends the alter-
nating time and size bound technique by Brockschmidt et al. [8], as the ITS case

4 See http://cl-informatik.uibk.ac.at/users/swinkler/lctrs complexity/
5 See http://www.complang.tuwien.ac.at/cti/bench/.

15

http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/
http://www.complang.tuwien.ac.at/cti/bench/


is fully covered. In addition, we can obtain sublinear bounds, and support further
modularization. Moreover, LCTRSs offer native support for full recursion.

Sublinear bounds are beyond the scope of this earlier work, but can be in-
ferred by some other tools. Albert et al. [1] apply refinements to linear ranking
functions and support sufficient criteria for divide-and-conquer patterns. This
allows the tool PUBS to recognize logarithmic and O(n log(n)) bounds for some
problems. Chatterjee et al. [9] use synthesis ranking functions extended by log-
arithmic and exponential terms, making use of an insightful adaption of Farkas’
and Handelman’s lemmas. The approach is able to handle examples such as
mergesort. In contrast to our work this amounts to a whole-program analysis.
Further, extensibility to a constraint formalism like LCTRS is unclear. Wang et
al. [38] present an ML-like language with type annotations, also using the Mas-
ter Theorem to handle divide-and-conquer-like recurrences. To estimate lower
bounds for logic programs based on divide-and-conquer, Debray et al. [13] con-
sider non-deterministic recurrence relations and propose a technique to obtain a
closed-form bound for some cases.

Future work. We see exciting directions for future work both on a theoretical
and an application level. Various additional processors can be conceived for our
complexity framework, for instance forms of dependency pairs for non-innermost
rewriting [34,25], knowledge propagation and narrowing [34].

Simplification systems as, for instance, employed in compiler toolchains (cf.
Ex. 3) or SMT solvers constitute a highly relevant application domain, since
these routines operate in performance-critical contexts. In order to tackle such
systems, techniques for derivational complexity of LCTRSs need to be developed.

On the application level, LCTRSs constitute a natural backend for com-
plexity analysis of constraint logic programs, since constraints can be natively
expressed. Our experiments with logic programs did not take backtracking into
account, but suitably adapting the transformational frameworks as established
by Giesl et al. [23] to LCTRSs, this is not a showstopper: There the authors pro-
vide an automated complexity and termination analysis of full Prolog programs.
In particular, the aforementioned restriction to deterministic programs can be
overcome. We thus plan to support CLP as a frontend of our analysis, possibly
taking into account labelling strategies that control the instantiation of query
terms. We furthermore plan to support C programs as a frontend. C programs
with integers, as considered in the Termination Competition6 can be expressed
as ITSs. LCTRSs offer more flexibility and can support also strings and floats,
as the respective theories are supported by SMT solvers. Just like for the case of
CLP, this requires the development of suitable complexity-reflecting transforma-
tions. More experiments are planned to evaluate our method on (constrained)
logic programs [31] and problems from the software competition.7

6 http://termination-portal.org/
7 https://sv-comp.sosy-lab.org/

16

http://termination-portal.org/
https://sv-comp.sosy-lab.org/


References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic inference of upper
bounds for recurrence relations in cost analysis. In Proc. 15th SAS, volume 5079
of LNCS, pages 221–237, 2008. https://doi.org/10.1007/978-3-540-69166-2 15.

2. E. Albert, S. Genaim, and A. N. Masud. On the inference of re-
source usage upper and lower bounds. ACM TOCL, 14(3):22, 2013.
https://doi.org/10.1145/2499937.2499943.

3. M. Avanzini, U. Dal Lago, and G. Moser. Analysing the complexity of functional
programs: Higher-order meets first-order. In Proc. 20th ICFP, pages 152–164.
ACM, 2015. https://doi.org/10.1145/2784731.2784753.

4. M. Avanzini and G. Moser. A combination framework for complexity. Inf. Comput.,
248:22–55, 2016. https://doi.org/10.1016/j.ic.2015.12.007.

5. M. Avanzini, G. Moser, and M. Schaper. TcT: Tyrolean Complexity Tool.
In Proc. 22nd TACAS, volume 9636 of LNCS, pages 407–423. Springer, 2016.
https://doi.org/10.1007/978-3-662-49674-9 24.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998. https://doi.org/10.1017/CBO9781139172752.

7. R. Bagnara and F. Mesnard. Eventual linear ranking functions. In Proc. 15th
PPDP, pages 229–238, 2013. https://doi.org/10.1145/2505879.2505884.

8. M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing run-
time and size complexity of integer programs. ACM Trans. Program. Lang. Syst.,
38(4):13:1–13:50, 2016. https://doi.org/10.1145/2866575.

9. K. Chatterjee, H. Fu, and A. K. Goharshady. Non-polynomial worst-case analysis
of recursive programs. In Proc. 29th CAV, volume 10427 of LNCS, pages 41–63,
2017. https://doi.org/10.1007/978-3-319-63390-9 3.

10. Ş. Ciobâcă and D. Lucanu. A coinductive approach to proving reachability prop-
erties in logically constrained term rewriting systems. In Proc. 9th IJCAR, volume
10900, pages 295–311, 2018. https://doi.org/10.1007/978-3-319-94205-6 20.

11. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott, editors. All About Maude—A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of LNCS.
Springer, 2007. https://doi.org/10.1007/978-3-540-71999-1.

12. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. 14th TACAS,
volume 4963 of LNCS, pages 337–340, 2008. https://doi.org/10.1007/978-3-540-
78800-3 24.

13. S. K. Debray, P. López-Garćıa, M. V. Hermenegildo, and N. Lin. Lower Bound
Cost Estimation for Logic Programs. In Proc. 14th ILPS, pages 291–305, 1997.
https://doi.org/10.7551/mitpress/4283.003.0035.

14. B. Dutertre. Yices 2.2. In Proc. 26th CAV, volume 8559 of LNCS, pages 737–744,
2014. https://doi.org/10.1007/978-3-319-08867-9 49.

15. S. Falke, D. Kapur, and C. Sinz. Termination analysis of C programs using compiler
intermediate languages. In Proc. 22nd RTA, volume 10 of LIPIcs, pages 41–50,
2011. https://doi.org/10.4230/LIPIcs.RTA.2011.41.

16. A. Flores-Montoya. Upper and lower amortized cost bounds of programs expressed
as cost relations. In Proc. 21st FM, volume 9995 of LNCS, pages 254–273, 2016.
https://doi.org/10.1007/978-3-319-48989-6 16.

17. A. Flores-Montoya. Cost Analysis of Programs Based on the Refinement of Cost
Relations. PhD thesis, Universität Darmstadt, 2017.

17

https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1145/2499937.2499943
https://doi.org/10.1145/2784731.2784753
https://doi.org/10.1016/j.ic.2015.12.007
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/2505879.2505884
https://doi.org/10.1145/2866575
https://doi.org/10.1007/978-3-319-63390-9_3
https://doi.org/10.1007/978-3-319-94205-6_20
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.7551/mitpress/4283.003.0035
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.4230/LIPIcs.RTA.2011.41
https://doi.org/10.1007/978-3-319-48989-6_16


18. F. Frohn and J. Giesl. Complexity analysis for Java with AProVE. In Proc. 13th
CAV, volume 10510 of LNCS, pages 85–101, 2017. https://doi.org/10.1007/978-3-
319-66845-1 6.

19. C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termina-
tion of integer term rewriting. In Proc. 20th RTA, volume 5595 of LNCS, pages
32–47, 2009. https://doi.org/10.1007/978-3-642-02348-4 3.

20. C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via
constrained rewriting induction. ACM TOCL, 18(2):14:1–14:50, 2017.
https://doi.org/10.1145/3060143.

21. Y. Furuichi, N. Nishida, M. Sakai, K. Kusakari, and T. Sakabe. Approach to
procedural program verification based on implicit induction of constrained term
rewriting systems. IPSJ Trans. Inf. and Syst., 1(2):100–121, 2008. In Japanese.

22. J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and
R. Thiemann. Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reasoning, 58(1):3–31, 2017. https://doi.org/10.1007/s10817-
016-9388-y.

23. J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Sym-
bolic evaluation graphs and term rewriting—a general methodology for ana-
lyzing logic programs. In Proc. 14th PPDP, pages 1–12. ACM Press, 2012.
https://doi.org/10.1007/978-3-642-38197-3 1.

24. S. Gulwani. SPEED: Symbolic complexity bound analysis. In Proc. 21st CAV, vol-
ume 5643 of LNCS, pages 51–62, 2009. https://doi.org/10.1007/978-3-642-02658-
4 7.

25. N. Hirokawa and G. Moser. Automated complexity analysis based on the depen-
dency pair method. In Proc. 4th IJCAR, volume 5195 of LNCS, pages 364–379,
2008. https://doi.org/10.1007/978-3-540-71070-7 32.

26. J. Hoffmann, A. Das, and S.-C. Weng. Towards automatic resource bound
anaysis for OCaml. In Proc. 44th POPL, pages 359–373. ACM, 2017.
https://doi.org/10.1145/3009837.

27. C. Kop. Termination of LCTRSs. In Proc. 13th WST, pages 59–63, 2013.

28. C. Kop and N. Nishida. Term rewriting with logical constraints. In Proc. 9th
FroCoS, volume 8152 of LNAI, pages 343–358, 2013. https://doi.org/10.1007/978-
3-642-40885-4 24.

29. C. Kop and N. Nishida. Constrained term rewriting tool. In Proc. 20th LPAR,
volume 9450 of LNAI, pages 549–557, 2015. https://doi.org/10.1007/978-3-662-
48899-7 38.

30. N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Practical verifica-
tion of peephole optimizations with Alive. Commun. ACM, 61(2):84–91, 2018.
https://doi.org/10.1145/3166064.

31. F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. In Proc. 8th SAS, volume 2126 of LNCS,
pages 93–110, 2001. https://doi.org/10.1007/3-540-47764-0 6.

32. G. Moser and M. Schaper. From Jinja bytecode to term rewriting: A
complexity reflecting transformation. Inf. Comput., 261(Part):116–143, 2018.
https://doi.org/10.1016/j.ic.2018.05.007.

33. N. Nishida and S. Winkler. Loop detection by logically constrained term rewrit-
ing. In Proc. 10th VSTTE, volume 11294 of LNCS, pages 309–321, 2018.
https://doi.org/10.1007/978-3-030-03592-1 18.

18

https://doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/978-3-319-66845-1_6
https://doi.org/10.1007/978-3-642-02348-4_3
https://doi.org/10.1145/3060143
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-642-38197-3_1
https://doi.org/10.1007/978-3-642-02658-4_7
https://doi.org/10.1007/978-3-642-02658-4_7
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1145/3009837
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1145/3166064
https://doi.org/10.1007/3-540-47764-0_6
https://doi.org/10.1016/j.ic.2018.05.007
https://doi.org/10.1007/978-3-030-03592-1_18


34. L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity
of term rewriting by dependency pairs. J. Autom. Reasoning, 51(1):27–56, 2013.
https://doi.org/10.1007/s10817-013-9277-6.

35. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In Proc. 5th VMCAI, volume 2937 of LNCS, pages 239–251,
2004. https://doi.org/10.1007/978-3-540-24622-0 20.

36. A. Serrano, P. López-Garćıa, and M. Hermenegildo. Resource usage analysis of
logic programs via abstract interpretation using sized types. TPLP, 14(4-5):739–
754, 2014. https://doi.org/10.1017/S147106841400057X.

37. TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

38. P. Wang, D. Wang, and A. Chlipala. TiML: A functional language for practical
complexity analysis with invariants. Proc. ACM Program. Lang., 1(OOPSLA),
2017. https://doi.org/10.1145/3133903.

39. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time prob-
lem - overview of methods and survey of tools. ACM Trans. Prog. Lang. Syst.,
7(3), 2008. https://doi.org/10.1145/1347375.1347389.

40. R. Wilhelm and D. Grund. Computation takes time, but how much? Commun.
ACM, 57(2):94–103, 2014. https://doi.org/10.1145/2500886.

41. S. Winkler and A. Middeldorp. Completion for logically constrained rewrit-
ing. In Proc. 3rd FSCD, volume 108 of LIPIcs, pages 30:1–30:18, 2018.
https://doi.org/10.4230/LIPIcs.FSCD.2018.30.

42. S. Winkler and G. Moser. Runtime complexity analysis of logically constrained
rewriting (extended version). Available from http://cl-informatik.uibk.ac.at/
users/swinkler/lctrs complexity/paper.pdf.

19

https://doi.org/10.1007/s10817-013-9277-6
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1017/S147106841400057X
https://doi.org/10.1145/3133903
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/2500886
https://doi.org/10.4230/LIPIcs.FSCD.2018.30
http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/paper.pdf
http://cl-informatik.uibk.ac.at/users/swinkler/lctrs_complexity/paper.pdf

	Runtime Complexity Analysis of Logically Constrained Rewriting

