
Termination Tools in Automated
Reasoning

dissertation

by

Sarah Winkler

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Doktor der technischen Wissenschaften

advisor: Univ.-Prof. Dr. Aart Middeldorp

Innsbruck, 17 April 2013

dissertation

Termination Tools in Automated
Reasoning

Sarah Winkler (0019379)
sarah.winkler@uibk.ac.at

17 April 2013

advisor: Univ.-Prof. Dr. Aart Middeldorp

mailto:sarah.winkler@uibk.ac.at

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass
ich die vorliegende Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich
oder inhaltlich den angegebenen Quellen entnommen wurden, sind als solche
kenntlich gemacht.
Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht
als Magister-/Master-/Diplomarbeit/Dissertation eingereicht.

Datum Unterschrift

Abstract

Automated reasoning gained considerable interest over the last two decades and
has by now a variety of applications in formal methods of computer science,
such as formal specification of software and hardware systems or verification of
cryptographic protocols. Automated reasoning systems are also used in mathe-
matical research, where mathematical software provides proof assistance using
automated reasoning techniques. Computing systems in automated reasoning
are often based on decision calculi which require a well-founded term ordering
as input. Such a term ordering is always critical for success, but an appropriate
choice is hard to determine in advance. For standard Knuth-Bendix comple-
tion, different approaches to automate this choice were proposed by exploiting
recent progress in research on automatic termination proving techniques on one
hand, and satisfiability checking on the other hand. Since modern termination
tools employ far more sophisticated techniques than classical term orderings,
this approach contributes to more flexible and powerful automated reasoning
and theorem proving technology. Automation techniques relying on satisfiabil-
ity checkers allow for efficient implementations. This thesis explores the use
of these approaches in different deduction calculi of equational reasoning. Be-
sides standard Knuth-Bendix completion also ordered completion, normalized
completion and rewriting induction are considered.

Acknowledgments

First of all, I am grateful to Aart Middeldorp for introducing me into the
fascinating world of computational logic. His inspiring teaching led me to work
on term rewriting, and his knowledge, guidance, continuous support, and careful
checking were invaluable when writing this thesis. I am also greatly obliged to
Nao Hirokawa for giving me a glance into the magic of functional programming,
and to Georg Moser for getting me acquainted with the mind-boggling world
of set theory. Special thanks go to Chris, Harald, and Martin K. for producing
all this neat TTT2 code. It was a real pleasure to work in the Computational
Logic group. All of you CL people not only provided an inspiring working
environment and a source of highly useful expertise, but also made many fun
hiking events and lab parties happen.

Concerning funding, I am indebted to the Austrian Academy of Science for
providing me with a docfForte grant that made my PhD studies possible, and
to the University of Innsbruck for earlier financial support.

My outstanding appreciation goes to my parents—for giving me the oppor-
tunity to study, but even more for their continuous encouragement, care, and
patience with a daughter spending her studies on a lot of strange symbols.

Last but not least I am most happy to have shared this time of my studies with
such great people. Eva, Robert, and Wolfi—without your company everywhere
between the Malaysian jungle, the Cuban sea and the coffee machine, these
years are unthinkable. Eva, thanks for sharing an apartment and a climbing
rope as well as so many other things, and for always lending an ear—you truly
are the best. Extra thanks go to Andi, Matthias, and Zugi for all those exciting
ski tours, bike rides, and climbs. Simon and Julia, the relaxing evenings with
you were always a wonderful distraction. But certainly, without Wolfi’s cheerful,
supportive and simply terrific companionship in our joint adventures nothing
would have been this way.

vii

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Term Rewriting . 5

2.2 Reduction Orders . 6

2.3 Equational Proofs . 10

2.4 Rewriting Modulo a Set of Equalities 11

2.5 AC Rewriting . 12

3 Knuth-Bendix Completion 17
3.1 Abstract Equational Inference Systems 18

3.2 Standard Completion . 20

3.2.1 Finite Runs . 30

3.2.2 Critical Pair Criteria . 32

4 Multi-Completion with Termination Tools 37
4.1 Multi-Completion . 37

4.2 Completion with Termination Tools 44

4.3 Multi-Completion with Termination Tools 47

4.3.1 Critical Pair Criteria . 63

4.3.2 Isomorphisms . 64

5 Ordered Completion Systems 69
5.1 Ordered Completion . 69

5.1.1 Refutational Theorem Proving 75

5.1.2 Finite Runs . 78

5.1.3 Critical Pair Criteria . 80

5.2 Ordered Multi-Completion . 83

5.3 Ordered Completion with Termination Tools 84

5.4 Ordered Multi-Completion with Termination Tools 88

6 Normalized Completion Systems 93
6.1 Normalized Completion . 94

6.1.1 Special Normalizing Pairs 106

6.1.2 AC Completion . 109

6.1.3 Finite Runs . 110

6.1.4 Critical Pair Criteria . 112

6.2 Normalized Completion with Termination Tools 115

6.3 Normalized Multi-Completion with Termination Tools 118

ix

7 Constrained Equalities in Completion-like Procedures 127
7.1 Constrained Equalities . 128
7.2 Standard Completion . 131
7.3 Ordered Completion . 133
7.4 Normalized Completion . 134
7.5 Rewriting Induction . 138

8 Implementation and Experiments 141
8.1 A Multi-Completion Tool . 141

8.1.1 Implementation . 141
8.1.2 Usage . 145

8.2 A Constrained Completion Tool 146
8.2.1 Automation of the Constrained Equality Framework . . . 146
8.2.2 Implementation . 149
8.2.3 Usage . 149

8.3 Experiments . 149
8.3.1 Standard Completion . 150
8.3.2 Ordered Completion . 157
8.3.3 Normalized Completion 159

9 Conclusion 161

Publications 163

Bibliography 164

Index 174

Chapter 1

Introduction

Reasoning refers to the ability to draw conclusions from certain facts. Auto-
mated reasoning aims to design computing systems that automate this process.
This requires a precise algorithmic description of some formal deduction calcu-
lus such that reasoning can be efficiently implemented.

In automated theorem proving (ATP), one of the branches of automated
reasoning which receives a lot of interest, conjectures are checked against sets
of axioms and hypotheses. Automated reasoning gained considerable attention
over the last two decades, in particular, developments in the area of automated
theorem proving have resulted in a variety of application areas in mathematics
and different branches of computer science. These include formal specification
and verification of software and hardware systems, planning and scheduling
problems requiring deduction involving constraints and goals, verification of
cryptographic protocols, and also semantic web applications. Research as well
as teaching in mathematics benefited from automated theorem provers and
proof assistants, which have been used to provide evidence for conjectures in
a variety of mathematical contexts. ATP techniques are used to enhance the
capabilities of mathematical software like Mathematica.

On a theoretical level, the reasoning methods underlying theorem provers
rely on deduction calculi. A deduction calculus is usually specified by inference
rules which describe how to draw conclusions from a set of facts.

Knuth-Bendix completion [57] constitutes a classical example of a deduction
calculus for equational theories. It attempts to derive a program from a given set
of equations, thus extracting a decision procedure for the associated equational
theory. More precisely, it aims to transform a set of equations into a term
rewrite system which is terminating, confluent and has the same equational
theory. If such a rewrite system can be found for an equational theory then it
can be used to effectively decide the theory.

Example 1.1. For instance, Knuth-Bendix completion can transform the fol-
lowing three equations axiomatizing group theory:

e · x ≈ x i(x) · x ≈ e x · (y · z) ≈ (x · y) · z

into a terminating and confluent rewrite system:

e · x→ x i(x) · x→ e x · (y · z)→ (x · y) · z
x · e→ x x · i(x)→ e (x · y) · i(y)→ x

i(e)→ e i(i(x))→ x (x · i(y)) · y → x

i(x · y)→ i(y) · i(x)

1

1 Introduction

Although on an abstract level, this rewrite system constitutes a program that
can decide validity of any conjecture concerning pure group theory.

Further common inference systems for equational reasoning include ordered
completion [13] and different approaches for completion modulo theories, with
normalized completion [75] being the most recent method. Paramodulation is
widely employed in theorem provers [14,15]. Congruence closure algorithms [17]
are used to obtain decision procedures for the simpler case of equational theories
without variables. Calculi such as inductionless induction [58] and rewriting
induction [86] are applied in the area of inductive theorem proving.

All the above-mentioned calculi are described by an inference system which
requires a well-founded term ordering as input. This reduction order guides the
search process and guarantees termination of the resulting rewrite system. Vir-
tually all ATP tools accomplish this requirement by implementing well-known
reduction orders such as LPO, KBO, or their AC-compatible counterparts. But
these orders have inherent limitations.

Example 1.2. Consider the following set of equations CGE3 describing the
algebraic structure of a group with three commuting group endomorphisms:

e · x ≈ x f1(x · y) ≈ f1(x) · f1(y) f1(x) · f2(y) ≈ f2(y) · f1(x)

i(x) · x ≈ e f2(x · y) ≈ f2(x) · f2(y) f1(x) · f3(y) ≈ f3(y) · f1(x)

x · (y · z) ≈ (x · y) · z f3(x · y) ≈ f3(x) · f3(y) f2(x) · f3(y) ≈ f3(y) · f2(x)

A decision procedure for this theory has applications in SMT solvers for the the-
ory of uninterpreted function symbols [99]. However, no Knuth-Bendix comple-
tion tool relying on LPO and KBO can succeed in this case because termination
of the equations in the last column cannot be established.

For all of the above-mentioned deduction calculi the restriction to classical
reduction orders is a severe limitation with respect to computational power.
Moreover, the ordering typically needs to be supplied by the user. It is always
critical for success, but an appropriate choice is hard to determine in advance.
It is hence desirable to have fully automatic procedures for equational reasoning,
where no reduction order is required as input.

The aim of this thesis is thus to develop powerful and fully automatic methods
for equational theorem.

For standard Knuth-Bendix completion, this research direction was already
tackled in different ways: (1) Kondo and Kurihara proposed multi-completion,
which employs multiple reduction orders in parallel [62], (2) Wehrman, Stump,
and Westbrook showed that the use of automatic termination tools can replace a
fixed ordering, thereby considerably extending the class of applicable reduction
orders [107], and (3) Klein and Hirokawa proposed to formulate completion as
a constraint satisfaction problem and presented a competitive implementation
via an encoding as a maximal satisfiability problem [56].

2

Multi-completion with termination tools combines the ideas of (1) and (2) [90].
The potential of this approach was demonstrated by the prototype implemen-
tation mkbTT, which was the first tool to automatically complete CGE3. This
PhD thesis focuses on thoroughly exploring approaches (1)–(3) in the settings
of standard, ordered and normalized completion. Our aims can thus be sum-
marized by the following central research questions:

– Can the tool mkbTT benefit from well-established optimizations in ATP
such as term indexing, selection strategies, and critical pair criteria?

– How can the approach of multi-completion with termination tools be car-
ried over to ordered completion and normalized completion?

– How can maximal completion procedures for ordered completion and nor-
malized completion be designed?

We will furthermore comment on maximal completion-like procedures in rewrit-
ing induction.

These aims are reflected in this thesis as follows.

In Chapter 2 we collect preliminaries required in the remainder of the thesis.
Chapter 3 defines an abstract notion of an inference system and derives some
general results. These are then used to describe classical Knuth-Bendix com-
pletion. We include a simpler presentation for finite runs. Chapter 4 gives an
account of multi-completion and completion of termination tools before describ-
ing their combination in multi-completion with termination tools. We conclude
this chapter by proposing critical pair criteria and isomorphisms as optimiza-
tions. Ordered completion is investigated from a similar viewpoint in Chapter 5.
We first recall the well-known calculus of ordered completion, including refuta-
tional theorem proving, critical pair criteria and a simplification for finite runs.
Then the applications and limitations of termination tools in ordered comple-
tion are investigated. Finally, a method embedding the use of termination tools
in a multi-completion setting is presented. We turn to normalized completion in
Chapter 6. Our presentation of normalized completion slightly differs from the
original proposal as a central ingredient was found to require corrections. Again
a simplification for finite runs and the use of critical pair criteria are discussed.
Moreover, normalized completion with termination tools as well as its use in
a multi-completion setting are described. In Chapter 7 we outline completion
procedures based on the constrained equality framework, which constitutes a
generalization of maximal completion. This approach is then carried over to
ordered completion and normalized completion. We also recall a rewriting in-
duction procedure based on the constrained equality framework. Chapter 8
describes our tool mkbTT performing standard, ordered, and normalized multi-
completion with termination tools. We also outline a prototype implementation
of a tool based on the constrained equality framework. The chapter is concluded
by an evaluation of our tools for all completion variants discussed. For mkbTT,
we report on experiments with critical pair criteria, term indexing techniques,
selection strategies, and isomorphisms. The usefulness of different termination
methods is evaluated for both tools. Finally, Chapter 9 draws conclusions.

3

Chapter 2

Preliminaries

In this section basic concepts, terminology and notation related to rewriting
are introduced. For further details we refer to [4, 101].

2.1 Term Rewriting

We consider a finite set of function symbols F with fixed arities, also called a
signature, and an infinite disjoint set of variables V. Function symbols with arity
0 are called constants. We write T (F ,V) for the set of terms built over F and
V. By |t|x we denote how often a variable x occurs in a term t. Terms without
variables are called ground, and the set of ground terms built over F is denoted
by T (F). The root symbol of a term t is defined as root(t) = f if t = f(t1, . . . , tn)
and root(t) = t if t ∈ V. The set of variables occurring in a term t is denoted
by Var(t). For a term t its set of positions Pos(t) is inductively defined such
that Pos(x) = {ε} if x ∈ V and Pos(t) = {ε}∪{i.p | p ∈ Pos(ti) and 1 6 i 6 n}
if t = f(t1, . . . , tn). The set Pos(t) is the union of the set of variable positions
PosV(t) and the set of function symbol positions PosF (t). We define the subterm
of t at position p, denoted by t|p, as t if p = ε and ti|q if t = f(t1, . . . , tn) and
p = i.q for some 1 6 i 6 n. We write t D s if s is a subterm of t at some position
p ∈ Pos(t). If t D s and s 6= t we write tB s and call s a proper subterm of t.
The result of replacing the subterm of t at position p by some term s is denoted
t[s]p. A context C is a term with a single occurrence of a designated constant
� called hole. If � in C is replaced by some term t then the result is denoted
by C[t].

A substitution σ is a mapping from variables to terms such that σ(x) 6= x for
only finitely many variables x. The domain Dom(σ) is the set {x ∈ V | σ(x) 6=
x}. The natural extension of σ from terms to terms is ambiguously also denoted
by σ and defined as tσ = σ(x) if x ∈ V, and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). A
substitution σ is ground if σ(x) is ground for all x ∈ Dom(σ), and grounding for
a term t if tσ is ground. A term s is called an instance of a term t if there exists
a substitution σ such that s = tσ. Then t is also said to subsume s, which is
expressed by writing t ·6 s. We also define the encompassment relation ·D on
terms, where t encompasses s, denoted by t ·D s, if t D sσ for some substitution
σ. The proper encompassment relation ·B is defined as the strict part of ·D,
i.e., t ·B s holds if t encompasses s but not vice versa. We denote by

.
= the

equivalence relation associated with ·D, and call s a variant of t if s
.
= t holds.

We consider equations s ≈ t between terms, and sets of equations E called
equational systems (ESs). We write s ' t to denote s ≈ t or t ≈ s. The

5

2 Preliminaries

equational theory induced by E is denoted by ↔∗E . A rewrite rule ` → r is a
directed equation such that ` /∈ V and Var(r) ⊆ Var(`), and a set of rewrite
rules R is called a term rewrite system (TRS). For an ES E and a TRS R
we sometimes write E ∪ R to denote the ES consisting of the equations in E
together with all equations ` ≈ r such that ` → r ∈ R. Given a TRS R, the
set FD = {root(`) | `→ r ∈ R} is the set of defined function symbols. The set
FC = F \ FD is the set of constructor symbols.

A TRS R induces a rewrite relation →R on terms, where t →R s holds if
t = C[`σ] and s = C[rσ] for some context C, substitution σ and rewrite rule
`→ r in R. The transitive (and reflexive) closure is denoted by→+

R (→∗R). The
conversion of R is the smallest equivalence relation containing →R, denoted
by ↔∗R. A term t is called a normal form with respect to R if there is no term
u such that t →R u. If s →∗R t and t is a normal form we also write s →!

R t.
In the sequel subscripts will be omitted if the TRS is clear from the context.
A TRS R is terminating if the relation →R is well-founded. We write s ↓R t
and call s and t joinable if there exists a term u such that s→∗R u ∗

R← t. A
TRS R is locally (ground) confluent if for every (ground) peak s R← u →R t
we have s ↓R t, and (ground) confluent if s ∗R← u →∗R t implies s ↓R t. If R
is both terminating and (ground) confluent it is called (ground) convergent. A
TRS R is convergent for a set of equations E if R is convergent and↔∗R =↔∗E .
Furthermore, a rewrite system R is reduced if for every rewrite rule `→ r in R
the term r is in normal form with respect to R and ` is in normal form with
respect to R\{`→ r}. If a TRS is both convergent and reduced it is also called
canonical. An overlap is a triple 〈`1 → r1, p, `2 → r2〉σ where `1 → r1 and
`2 → r2 are rewrite rules without common variables such that p ∈ PosF (`2), `2|p
and `1 are unifiable with most general unifier σ, and if `1 → r1 and `2 → r2 are
variants then p 6= ε. The term `2σ = `2σ[`1σ]p can be rewritten in two different
ways, resulting in the terms `2σ[r1σ]p and r2σ. The equation `2σ[r1σ]p ≈ r2σ
is called a critical pair and often written as `2σ[r1σ]p ←o→ r2σ. We write
s ←×→ t to denote s ←o→ t or t ←o→ s, for any terms s and t. The
set of critical pairs among rules in R is denoted by CP(R). We sometimes
write CP(R1,R2) to denote the critical pairs stemming from overlaps such that
`1 → r1 ∈ R1 and `2 → r2 ∈ R2 A peak s p

r1←`1← · →
q
`2→r2 t is sometimes

called a non-overlap if it is not an instance of an overlap. Formally, this is the
case if either p ‖ q, or q = pq′ and q′ 6∈ PosF (`1), or p = qp′ and p′ 6∈ PosF (`2)
hold.

2.2 Reduction Orders

Before discussing reduction orders as a means to show termination of TRSs we
recall the lexicographic and multiset extensions of arbitrary orders.

Definition 2.1. Let (>1,∼1), . . . , (>n,∼n) be a sequence of pairs of a proper
order >i and an equivalence ∼i on some set Ai, for all 1 6 i 6 n. Their
lexicographic combinations (>lex,∼lex) on A1 × · · · ×An are defined as follows:

– (a1, . . . , an) ∼lex (b1, . . . , bn) if ai ∼i bi for all 1 6 i 6 n, and

6

2.2 Reduction Orders

– (a1, . . . , an) >lex (b1, . . . , bn) if n = 1 and a1 >1 b1, or n > 1 and (i)
(a1, . . . , an−1) >lex (b1, . . . , bn−1) or (ii) (a1, . . . , an−1) ∼lex (b1, . . . , bn−1)
and an >n bn.

Definition 2.2. Let (>,∼) be a proper order and an equivalence on a set
A. The multiset extensions >mul and ∼mul are defined on multisets over A as
follows:

– M ∼mul N if M = {x1, . . . , xn}, N = {y1, . . . , yn}, and xi ∼ yi for all
1 6 i 6 n.

– M >mul N if there are multisets X ⊆ M and Y ⊆ N such that X 6= ∅,
M \X ∼mul N \ Y and for every y ∈ Y there is some x ∈ X with x > y.

A pair (>,∼) of a proper order and an equivalence is an order pair if
compatibility ∼ · > · ∼ ⊆ > holds. It is well known that for all order pairs
(>1,∼1) . . . , (>n,∼n) their lexicographic combination (>lex,∼lex) is an order
pair as well, and for any order pair (>,∼) also (>mul,∼mul) is an order pair.
If in addition >1, . . . , >n and > are well-founded then >lex and >mul are well-
founded [34]. For the sake of brevity, the lexicographic combination of proper or-
ders >1, . . . , >n refers to the lexicographic combination of (>1,=), . . . , (>n,=).
Similarly, the multiset extension of a proper order > refers to the multiset
extension of (>,=).

Reduction orders constitute a basic means to establish termination of a TRS.
In general, a reduction order > is a well-founded order on terms that is closed
under contexts and substitutions, i.e., s > t implies C[sσ] > C[tσ] for all
contexts C and substitutions σ. In the sequel, we call a relation R on terms
compatible with a TRS R if ` R r holds for all rules ` → r in R. The interest
in reduction orders is due to the following result.

Theorem 2.3. A TRS terminates if and only if it is compatible with a reduction
order.

A reduction order > is a simplification order if it contains the proper supert-
erm relation, so B ⊆ >. A TRS is simply terminating if it compatible with a
simplification order. Furthermore, a reduction order will be called ground-total
if its restriction to T (F) is total. It is known that any ground-total reduction
order is a simplification order [39].

One way to define reduction orders is via well-founded algebras. A well-
founded F-algebra (A, >) consists of a non-empty carrier A, a well-founded
relation > on A, and an interpretation function fA for every f ∈ F . By [α]A(·)
we denote the usual evaluation function of A according to an assignment α.
An algebra (A, >) is called monotone if every fA is monotone with respect
to >. Any algebra (A, >) induces an order on terms: we set s >A t if for any
assignment α the condition [α]A(s) > [α]A(t) holds. We say that a TRS R is
compatible with an algebra A if ` → r ∈ R implies ` >A r. It is well-known
that the relation >A constitutes a reduction order, so a TRS that is compatible
with a monotone algebra is terminating.

7

2 Preliminaries

A TRS R is totally terminating if it is compatible with a well-founded mono-
tone algebra (A, >) such that > is total [39]. Note that in this case the relation
>A is ground-total.

We will now recall the lexicographic path order (LPO) [50] and the Knuth-
Bendix order (KBO) [57], two of the most widely used reduction orders in
termination analysis and theorem proving.

Lexicographic Path Order

LPO was originally introduced by Kamin and Lévy [50]. Dershowitz proposed
a more powerful variant which allows the use of quasi-orders as precedence [31].
Weiermann showed that the derivation length of a TRS compatible with LPO
is bound by a multiply recursive function [108]. With their proposal to encode
LPO as a satisfaction problem using binary decision diagrams (BDDs) [21],
Kondo and Kurihara [63] paved the way towards simple yet highly efficient
implementations of reduction orders. Codish et al. [26] proposed a more efficient
encoding of precedences, and replaced BDDs by modern SAT solvers.

We will now recall the standard definition of LPO.

Definition 2.4 ([31,50]). Let � be a precedence. The lexicographic path order
�lpo is inductively defined as follows: s �lpo t if s = f(s1, . . . , sn) and one of
the following alternatives holds:

(1) si �=
lpo t for some 1 6 i 6 n, or

(2) t = g(t1, . . . , tm), f � g, and s �lpo ti for all 1 6 i 6 m, or

(3) t = f(t1, . . . , tn) and there is some k with 1 6 k 6 n such that s1 =
t1, . . . , sk−1 = tk−1, sk �lpo tk, and s �lpo tj for all k < j 6 n.

Here �=
lpo refers to the reflexive closure of �lpo.

Theorem 2.5 ([50]). The relation �lpo is a simplification order.

A TRS R is compatible with LPO if there exists some precedence � such
that R is compatible with �lpo.

Theorem 2.6 ([39]). A TRS is totally terminating if it is compatible with
LPO.

Example 2.7. Let the TRS R consist of the following two rules:

f(x)→ g(g(x)) (1)

g(g(g(g(x))))→ g(x) (2)

Termination of R can be proven by LPO using precedence f � g: Rule (1)
is oriented by case (2) in Definition 2.4, and rule (2) is oriented because the
right-hand side is a subterm of the left-hand side and LPO is a simplification
order.

8

2.2 Reduction Orders

Example 2.8 ([11]). The following TRS R:

c→ a (1)

g(x)→ x (2)

f(b, x)→ x (3)

f(g(x), y)→ f(x, g(y)) (4)

f(x, b)→ c (5)

can be shown terminating by LPO with precedence f � c � g � b � a. Rule
(1) is oriented by case (2) in Definition 2.4. Rules (2) and (3) are oriented by
case (1). Rule (4) can be handled by case (3) as g(x) �lpo x constitutes a strict
decrease in the first argument, and f(g(x), y) �lpo g(y). Finally, also rule (5) is
oriented by case (2).

Knuth-Bendix Order

KBO was invented by Knuth and Bendix in connection with the first pro-
posal for a completion procedure [57]. Several extensions were proposed to en-
hance the semantic component beyond plain weight functions [30,31,41,81,96].
For standard KBO, Lepper could prove that the derivation length of a KBO-
terminating TRS is bound by a multiply recursive function [69]. In [35], Dick,
Kalmus, and Martin presented the first automation of KBO, which turned out
to be quite intricate despite the fact that KBO orientability is decidable in
polynomial time [59]. Recent automations relying on SAT, pseudo-boolean,
and SMT encodings turned out to be far more efficient and easier to imple-
ment [114,115].

We recall the standard definition of KBO. A weight function for the signa-
ture F is a pair (w,w0) consisting of a mapping w : F → N and a positive
constant w0 ∈ N such that w(c) > w0 for every constant c ∈ F . A weight
function (w,w0) is admissible for a precedence � if for every unary f ∈ F with
w(f) = 0 we have f � g for all g ∈ F\{f}. The weight of a term is computed as
follows: w(x) = w0 for x ∈ V and w(f(t1, . . . , tn)) = w(f) +w(t1) + · · ·+w(tn).

Definition 2.9 ([35, 57, 96]). Let � be a precedence and (w,w0) a weight
function. We define the Knuth-Bendix order �kbo inductively as follows: s �kbo

t if |s|x > |t|x for all variables x ∈ V and either w(s) > w(t), or w(s) = w(t)
and one of the following alternatives holds:

(1) s = fk(x) and t = x for some k > 0, or

(2) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g, or

(3) s = f(s1, . . . , sn), t = f(t1, . . . , tn), s1 = t1, . . . , sk−1 = tk−1, and sk �kbo

tk with 1 6 k 6 n.

Theorem 2.10 ([35,57]). The relation �kbo is a simplification order.

A TRS R is called compatible with KBO if there exists a weight function
(w,w0) admissible for a precedence � such that R is compatible with �kbo

using (w,w0).

9

2 Preliminaries

Theorem 2.11 ([39]). A TRS is totally terminating if it is compatible with
KBO.

Example 2.12. For k > 1, let the TRS Rk consist of the following rules:

fk+2(g(x))→ gk(x) (1)

g(g(x))→ f(g(x)) (2)

Termination of anyRk can be proven by KBO using the weight function (w0, w)
with w0 = w(f) = w(g) = 1 and precedence g > f: First of all, note that Rk
is non-duplicating. Moreover, for rule (1), we have w(fk+2(g(x))) = k + 4 >
k + 1 = w(gk(x)). For rule (2) we have w(g(g(x))) = 3 = w(f(g(x))) but g � f
such that the rule can be oriented by case (2) in Definition 2.9. Note that the
TRSs Rk cannot be oriented by LPO.

Example 2.13. Consider the TRS consisting of the single rule

h(x, x)→ f(x)

Termination can be shown by KBO using (w0, w) with w0 = 3, w(h) = 0, and
w(f) = 2 as the constraint on the weight gives 6 > 5.

It has recently been shown that if a TRS R is compatible with �kbo using
some weight function (w,w0), then there also exist weight functions (wk, k) such
that R is compatible with �kbo using (wk, k), for all positive numbers k [113].

Example 2.14. For the TRS in Example 2.13, setting w0 = 1 yields 2 6> 3 in
the weight comparison. But a valid KBO proof with w0 = 1 can be obtained
by adapting the weights of other function symbols as well, for example when
setting w(h) = w(f) = 2 the weight comparison amounts to 4 > 3.

For the sake of simplicity, we will thus in later examples set w0 = 1, and
write �wkbo to indicate the weight function used for �kbo.

2.3 Equational Proofs

Let the tuple (E ,R) consist of a set of equations E and a set of rewrite rules R.
An equational proof step s↔p

e t in (E ,R) is an equality step if e is an equation
` ' r in E or a rewrite step if e is a rule `→ r in R, and either s = u[`σ]p and
t = u[rσ]p or s = u[rσ]p and t = u[`σ]p hold for some substitution σ and term
u with position p. We sometimes write s ↔ t to express the existence of some
proof step, omitting the position p and equation or rule e. An equational proof
P of an equation t0 ≈ tn is a finite sequence

t0
p0←→
e0

t1
p1←→
e1
· · · pn−1←−−→

en−1

tn (2.1)

of equational proof steps, where n > 0. Note that (E ,R) admits an equational
proof of s ≈ t if and only if s ↔∗E∪R t holds. A sequence Q of the form
ti ↔ · · · ↔ tj with 0 6 i 6 j 6 n is a subproof of P . We write P [Q] to

10

2.4 Rewriting Modulo a Set of Equalities

express that P contains Q as a subproof. If P is an equational proof and σ a
substitution then Pσ denotes the instantiated proof

t0σ
p0←→
e0

t1σ
p1←→
e1
· · · pn−1←−−→

en−1

tnσ

For a term u with position q and a proof P of the shape (2.1) we write u[P]q
to denote the sequence

u[t0]q
qp0←−→
e0

u[t1]q
qp1←−→
e1
· · · qpn−1←−−→

en−1

u[tn]q

which is again an equational proof. Proofs of the shape t0 → · · · → ti ← · · · ←
tn are called rewrite proofs. A proof order �� is a well-founded order on
equational proofs such that

i. P ��Q implies u[Pσ]p ��u[Qσ]p for all terms u, positions p ∈ Pos(u) and
substitutions σ, and

ii. if P and P ′ prove the same equation then P �� P ′ implies Q[P]��Q[P ′]
for all proofs Q.

A proof reduction relation ⇒ additionally satisfies

iii. P ⇒ Q holds only if P and Q prove the same equation.

We will write ⇒= to denote the reflexive closure of ⇒.

2.4 Rewriting Modulo a Set of Equalities

A term s rewrites to t in R modulo T , denoted by s →R/T t, whenever
s ↔∗T · →R · ↔∗T t holds. The system R terminates modulo T whenever
the relation →R/T is well-founded. It is convergent modulo T if in addition for
every conversion s↔∗T ∪R t we have s→∗R/T · ↔

∗
T · ∗
R/T← t. To check termina-

tion of R modulo T one can use T -compatible reduction orders � which satisfy
↔∗T · � · ↔∗T ⊆ �. Since the relation→R/T is undecidable in general, one often
considers the rewrite relation →R,T where s →R,T t holds if s|p ↔∗T `σ and
t = s[rσ]p for some p ∈ Pos(s), rule ` → r in R and substitution σ [83]. We
obviously have →R ⊆ →R,T ⊆ →R/T . Thus, if →R is convergent modulo T
then also→R,T is convergent modulo T [6], and defines the same normal forms
as→R/T . Hence, if T -matching is decidable then→R,T constitutes a decidable
way to compute with respect to →R/T .

We now extend the notion of critical pairs to critical pairs modulo T . A
substitution σ constitutes a T -unifier of two terms s and t if sσ ↔∗T tσ holds.
If unification with respect to T is finitary and decidable, then there is a complete
set of T -unifiers Σ for every pair of terms s and t. More precisely, this means
that every σ ∈ Σ is a T -unifier of s and t, and conversely for every T -unifier τ
of the two terms there is some σ ∈ Σ and substitution ρ such that xτ ↔∗T xσρ
for all variables x.

11

2 Preliminaries

Definition 2.15. Let T be a theory for which unification is finitary and de-
cidable. A T -overlap is a quadruple

〈`1 → r1, p, `2 → r2〉Σ (2.2)

consisting of rewrite rules `1 → r1, `2 → r2, a position p ∈ PosF (`2), and
a complete set Σ of T -unifiers of `2|p and `1. Then `2σ[r1σ]p ←o→ r2σ
constitutes a T -critical pair for every σ ∈ Σ. Again s ←×→ t abbreviates
s←o→ t or t←o→ s, for any terms s and t. For two sets of rewrite rules R1

and R2, we also write CPT (R1,R2) for the set of all T -critical pairs emerging
from an overlap (2.2) where `1 → r1 ∈ R1 and `2 → r2 ∈ R2, and CPT (R1) for
the set of all T -critical pairs such that `1 → r1, `2 → r2 ∈ R1.

Again we will call a peak s p
r←`← · ↔

∗
T · →

q
u→v t a non-overlap if it is not an

instance of a T -overlap. In contrast to standard critical pairs, even if two rules
lack T -critical pairs, they can still give rise to a non-joinable overlap.

Example 2.16. Consider the TRS R = {a + b→ c, a + c→ b}, where + is an
AC symbol. Despite the absence of AC-critical pairs, the term a + b + c can be
reduced to both b + b and c + c, and these terms are not joinable.

This problem gave rise to the notion of extended rules.

Definition 2.17 ([83]). Let `→ r be a rewrite rule in a TRS R and u ' v be
a variable-disjoint equation in T . If u|p is T -unifiable with ` then u[`]p → u[r]p
is a T -extended rule of R. The set of all T -extended rules of R is denoted by
EXTT (R).

To achieve convergence modulo some theory T , completion procedures thus
have to consider critical pairs involving extended rules, too. Note that in general
extended rules create extended rules themselves: For instance, if + is an AC
symbol a rule of the form s+ t→ u gives rise to the extended rule x+(s+ t)→
x+ u, which can in turn be extended to y + (x+ (s+ t))→ y + (x+ u).

2.5 AC Rewriting

We will now focus on the theory AC of associative and commutative opera-
tors. Such operators occur in many practical problems based upon algebraic
structures such as commutative monoids, groups, rings or modules. Unification
modulo AC is finitary and decidable, much work has been dedicated to the
implementation of efficient unification algorithms (for an overview see [5]). But
also AC termination and AC completion techniques have been subject to exten-
sive research. Since AC completion and normalized completion, which is based
upon AC rewriting, are treated in later sections, the basics of AC rewriting will
be recalled here.

Let FAC ⊆ F denote the set of all AC operators in the signature F . The the-
ory AC is then given by AC = {f(x, y) ≈ f(y, x), f(f(x, y), z) ≈ f(x, f(y, z)) |
f ∈ FAC}.

12

2.5 AC Rewriting

We will write DAC for the subterm relation modulo AC defined as ↔∗AC · D
· ↔∗AC, and BAC for its proper part, i.e., the relation DAC\↔∗AC. Furthermore,
·DAC denotes encompassment modulo AC, where s ·DAC t holds if and only if
there exists some substitution σ such that s DAC tσ. The proper encompass-
ment relation modulo AC is denoted by ·BAC, where s ·BAC t holds if and only
if s ·DAC t but not t ·DAC s.

Extended Rules

As remarked above, extended rules generally produce extended rules themselves.
Fortunately, in case of AC it suffices to consider a finite set of extended rules
Re ⊆ EXTAC(R).

Definition 2.18 ([6]). For a rewrite rule `→ r with f ∈ FAC we write (`→ r)e

for the rule f(`, x) → f(r, x), where x ∈ V is fresh. The TRS Re contains all
rules in R plus all rules f(`, x) → f(r, x) such that ` → r ∈ R, f ∈ FAC

and there is no rule `′ → r′ and substitution σ such that f(`, x) ↔∗AC `′σ and
f(r, x)→∗AC∪(R/AC) r

′σ.

Lemma 2.19 ([6]). Every TRS R satisfies (Re)e = Re.

Termination Modulo AC

Considerable efforts have been devoted to the adaptation of standard reduc-
tion orders to the AC case. Concerning orderings resembling the recursive
path order (RPO), these include [7, 16, 32, 53, 88]. A first version of an AC-
compatible Knuth-Bendix order was presented by Steinbach [94], and Korovin
and Voronkov proposed another version in [59]. Polynomial interpretations have
been adapted to the AC setting by Ben Cherifa and Lescanne [19]. It is not
hard to adapt their criterion to matrix interpretations [37], as argued in [111].

We will now describe AC-RPO as presented by Rubio [87] in order to illustrate
examples in Chapter 6.

Let � be a precedence on F . We will restrict to the case where � is total,
although AC-RPO can also be defined for partial precedences [87]. Let moreover
all non-AC function symbols with positive arity be partitioned into disjoint sets
Lex and Mul having lexicographic and multiset status, respectively.

The order �acrpo requires some preliminary definitions. First of all, top-
flattening with respect to a function symbol f is defined as

tff (t) =

{
t1, . . . , tn if t = f(t1, . . . , tn)

t if root(t) 6= f

Next we consider a restricted notion of embedding. The set EmbSmall(s)
consists of all terms which are embedded in s through a direct subterm that is
rooted by a smaller symbol.

Definition 2.20. Let s = f(s1, . . . , sn) be a term such that f ∈ FAC. The
multiset EmbSmall(s) consists of all terms f(s1, . . . , si−1, tff (uj), si+1, . . . , sn)
such that si = h(u1, . . . , um) and f � h, where 1 6 j 6 m and 1 6 i 6 n.

13

2 Preliminaries

Example 2.21. Consider the signature F = {+, ·,−, 0, 1} to describe an asso-
ciative and commutative ring, where FAC = {+, ·}. Let · � − � + � 1 � 0.
Then EmbSmall((x+ y) · z) = {x · z, y · z} and EmbSmall((−x) · y) = {x · y}.

For another example, consider the signature F = {N, L,max, s, 0} where
FAC = {N}. Let s � L � N � max � 0. For s = N(max(N(x, 0)),max(y), L(z))
we obtain EmbSmall(s) = {N(x, 0,max(y), L(z)), N(max(N(x, 0)), y, L(z))}. For
the terms t = N(L(max(N(y, z))), x) and u = N(x, y, z) we have EmbSmall(t) =
EmbSmall(u) = ∅.

We need notions to refer to two kinds of subsets of direct subterms.

Definition 2.22. For a term s = f(s1, . . . , sn) such that f ∈ FAC the multisets
BigHead(s) and NoSmallHead(s) are defined as BigHead(s) = {si | root(si) �
f} and NoSmallHead(s) = {si | root(si) 6< f}.

While BigHead(s) contains all direct subterms whose root symbol is greater
than f , the multiset NoSmallHead(s) includes also all direct subterms whose
root symbol is not smaller than f . Thus the former includes variables but the
latter does not.

Example 2.23. Consider the terms t = N(L(max(N(y, z))), x) and u = N(x, y, z)
with the above precedence. We have NoSmallHead(t) = {L(max(N(y, z))), x}
and NoSmallHead(u) = {x, y, z}, but BigHead(t) = {L(max(N(y, z)))} and
BigHead(u) = ∅.

Definition 2.24. For a term s = f(s1, . . . , sn) and f ∈ FAC we define #(s) =
#(s1) + . . .+ #(sn) such that #(x) = x if x ∈ V and #(si) = 1 otherwise.

For instance, #(x ·z ·1) = x+z+1, #((x+y) ·z) = z+1 and #(x ·z) = x+z.
When comparing these linear polynomials we assume N>0 as a carrier. Thus
for instance #(x · z · 1) > #(x · z) and #(x · z · 1) > #((x+ y) · z) hold, but also
#(x · z) > #((x+ y) · z).

Definition 2.25 ([87]). Let s and t be terms such that s = f(s1, . . . , sn). Then
s �acrpo t if and only if

(1) si �acrpo t for some 1 6 i 6 n,

(2) t = g(t1, . . . , tm), f � g, and s �acrpo tj for all 1 6 j 6 m

(3) t = f(t1, . . . , tn), f ∈ Lex , (s1, . . . , sn) �lex
acrpo (t1, . . . , tn), and s �acrpo tj

for all 1 6 j 6 n,

(4) t = f(t1, . . . , tn), f ∈ Mul , and {s1, . . . , sn} �mul
acrpo {t1, . . . , tn},

(5) t = f(t1, . . . , tm), f ∈ FAC, and s′ �acrpo t for some s′ ∈ EmbSmall(s), or

(6) t = f(t1, . . . , tm), f ∈ FAC, s �acrpo t′ for all terms t′ ∈ EmbSmall(t),
NoSmallHead(s) �mul

acrpo NoSmallHead(t), and

(6a) BigHead(s) �mul
acrpo BigHead(t), or

(6b) #(s) > #(t), or

14

2.5 AC Rewriting

(6c) #(s) > #(t) and {s1, . . . , sn} �mul
acrpo {t1, . . . , tn}.

where �acrpo denotes �acrpo ∪↔∗AC.

Theorem 2.26 ([87]). The relation �acrpo is an AC-compatible simplification
order.

Example 2.27. Let F = {+, ·,−, 0, 1} and FAC = {+, ·}. The following TRS
describing an associative and commutative ring is compatible with AC-RPO.

0 + x→ x (1)

−x+ x→ 0 (2)

−0→ 0 (3)

−(−x)→ x (4)

−(x+ y)→ (−x) + (−y) (5)

1 · x→ x (6)

(x+ y) · z → x · z + y· (7)

0 · x→ 0 (8)

(−x) · y → −(x · y) (9)

Let · � − � + � 1 � 0 and Lex = {−}.
– Rules (1), (3), (4), (6), and (8) can be oriented by repeatedly applying

case (1) in Definition 2.25 since the right-hand sides are subterms of the
respective left-hand sides.

– Rule (2) can clearly be oriented by case (2) as + � 0.

– Rule (5) can also be handled by case (2): since − � + it remains to check
that −(x+ y) �acrpo −x and −(x+ y) �acrpo −y. This holds by cases (3)
and (1) as − ∈ Lex and x, y are subterms of x+ y.

– Case (2) also applies to rule (7) as · � +. It remains to check that
(x+y)·z �acrpo x·z and (x+y)·z �acrpo y·z. Since EmbSmall((x+y)·z) =
{x · z, y · z} this holds by case (5).

– Finally, we can apply case (2) to rule (9) since · � −. The remaining goal
(−x) · y �acrpo x · y holds by case (5) as x · y ∈ EmbSmall((−x) · y).

Note that in some of the comparisons required to orient rules (5), (7), and (9)
one could also argue that �acrpo is a simplification order and thus contains the
embedding relation.

The following TRS is a variation of a system presented in [64].

Example 2.28. Let F = {N, L,max, s, 0} and FAC = {N} such that s � L �
N � max � 0 and Lex = {max, s}. Termination of the following TRS describing
the maximum of a binary tree can be shown by AC-RPO.

max(L(x))→ x (1)

max(N(L(0), L(x)))→ x (2)

s(max(N(L(x), L(y))))→ max(N(L(s(x)), L(s(y)))) (3)

max(N(L(max(N(y, z))), x))→ max(N(x, y, z)) (4)

15

2 Preliminaries

– Rules (1) and (2) can be oriented by repeated application of case (1) in
Definition 2.25.

– Concerning rule (3), we can repeatedly apply case (2) as s is greater than
all of max, N, and L. This leaves to check s(max(N(L(x), L(y)))) �acrpo s(x)
and s(max(N(L(x), L(y)))) �acrpo s(y), which holds by cases (3) and (1).

– To rule (4) we can apply case (3). It remains to check that the terms
s = N(L(max(N(y, z))), x) and t = N(x, y, z) satisfy s �acrpo t. Here case
(5) is not applicable as EmbSmall(s) = ∅. But case (6) applies since
EmbSmall(t) = ∅, and we have NoSmallHead(s) �mul

acrpo NoSmallHead(t)
because NoSmallHead(s) = {L(max(N(y, z))), x} and NoSmallHead(t) =
{x, y, z}. As BigHead(s) = {L(max(N(y, z)))} �mul

acrpo ∅ = BigHead(t)
subcase (6a) can be applied such that rule (4) is oriented.

The final example illustrates cases (6b) and (6c) in Definition 2.25.

Example 2.29 ([87]). Let F = {f, g, h}, Lex = {g, h}, and FAC = {f} such
that h � f � g and consider the following TRS:

f(g(f(h(x), x)), x)→ f(h(x), x, x) (1)

f(h(x), g(x))→ f(g(h(x)), x) (2)

f(g(h(x)), x, x, y)→ f(g(f(h(x), y)), x) (3)

f(g(g(x)), x)→ f(g(x), g(x)) (4)

– Rule (1) is oriented by case (5) as for ` = f(g(f(h(x), x)), x) and r =
f(h(x), x, x) we have r ∈ EmbSmall(`).

– In case of rule (2), for ` = f(h(x), g(x)) and r = f(g(h(x)), x) one ob-
tains ` �acrpo r by case (6a): We have EmbSmall(r) = {f(h(x), x)} and
` �acrpo f(h(x), x) by case (5), NoSmallHead(`) = {h(x)} �mul

acrpo {x} =

NoSmallHead(r), and BigHead(`) = {h(x)} �mul
acrpo ∅ = BigHead(r).

– In case of rule (3), for ` = f(g(h(x)), x, x, y) and r = f(g(f(h(x), y)), x)
we conclude ` �acrpo r by case (6b): NoSmallHead(`) = {x, x, y} �mul

acrpo

{x} = NoSmallHead(r), and #(`) = 2x + y + 1 > x + 1 = #(r). More-
over, EmbSmall(r) is singleton containing r′ = f(h(x), y, x) and we have
` �acrpo r′: by case (5), it suffices to show that `′ = f(h(x), x, x, y) ∈
EmbSmall(`) satisfies `′ �acrpo r′, and this holds by case (6b) because
NoSmallHead(`′) = {h(x), x, x, y} �mul

acrpo {h(x), y, x} = NoSmallHead(r′),
EmbSmall(r′) = ∅, and #(`′) = 2x + y + 1 > x + y + 1 = #(r′). Note
that cases (5) and (6a) do not apply here.

– In case of rule (4), for ` = f(g(g(x)), x) and r = f(g(x), g(x)) we can apply
case (6c). First of all, the terms in EmbSmall(r) = {f(g(x), x), f(x, g(x))}
are smaller than ` by case (5). Next, NoSmallHead(`) = {x} �mul

acrpo ∅ =
NoSmallHead(r) and #(`) = x + 1 > 2 = #(r). Finally, we conclude
` �acrpo r as {g(g(x)), x} �mul

acrpo {g(x), g(x)} by case (3). Note that none
of the other cases applies here.

16

Chapter 3

Knuth-Bendix Completion

Since the landmark paper by Knuth and Bendix [57], completion and its vari-
ants have been among the most influential approaches in automated reasoning.
A completion procedure attempts to transform a set of input equalities E into
a convergent rewrite system R with the same equational theory. It is param-
eterized by a reduction order �, the choice of which is critical to the outcome
of a deduction. If successful, the derived TRS R constitutes a simple decision
procedure for the validity problem of the theory under consideration: given an
equation s ≈ t, the two terms are convertible in E if and only if both terms
reduce to the same normal form with respect to R. As the validity problem
is undecidable in general and decision procedures for equational theories have
applications in many areas of formal methods and symbolic computation, such
procedures are of great interest.

Although the first completion procedure is due to Knuth and Bendix, the
method actually bears significant similarities with Buchberger’s algorithm to
compute Gröbner bases [22]. Since then completion procedures have been sub-
ject to extensive research. To name only some of the more influential contribu-
tions, Huet [46] gave the first correctness proof of a completion procedure with
inter-reduction. Allowing for the simplification of already derived rewrite rules,
inter-reduction significantly increases a completion procedure’s efficiency. Ab-
stracting from concrete algorithms, Bachmair, Dershowitz, and Hsiang [6, 12]
provide a more flexible presentation of completion by means of an inference
system. Plaisted and Sattler-Klein [85] showed that the proof lengths in com-
pletion procedures can get very long. Several tools implementing Knuth-Bendix
completion were developed, e.g. [23,25,70]. To avoid failure due to unorientable
equations, classical completion was extended to unfailing completion (see Chap-
ter 5). As equational systems in algebra frequently feature common subtheo-
ries such as associative-commutative operators, completion procedures modulo
built-in theories were developed (see Chapter 6). More recently, different com-
pletion approaches such as multi-completion and the use of termination tools
and modern SAT/SMT solvers were developed (see Chapter 4).

In this chapter we will in Section 3.1 recall abstract equational inference
systems as presented by Bachmair and Dershowitz [11]. This abstract setting
allows us to state preliminaries about different completion-like procedures. Sec-
tion 3.2 deals with classical Knuth-Bendix completion.

17

3 Knuth-Bendix Completion

3.1 Abstract Equational Inference Systems

Let ⇒ be a proof reduction relation, which is to capture some notion of a
proof being preferable to another one. We will in the sequel consider inference
sequences where each step can be simulated by applications of the following,
very general inference rules.

Definition 3.1. Let T be a fixed equational theory, E a set of equations, and
R a set of rewrite rules. For a proof reduction relation ⇒, let expansion and
contraction rules be defined as follows:

expand
E ,R

E ∪ {s ≈ t},R
if s↔∗E∪R∪T t

E ,R
E ,R∪ {s→ t}

if s↔∗E∪R∪T t

contract
E] {s ' t},R

E ,R
if s↔ε

s≈t t⇒= s↔∗E∪R∪T t

E ,R] {s→ t}
E ,R

if s↔ε
s→t t⇒= s↔∗E∪R∪T t

A derivation γ of the form (E0,R0) `S (E1,R1) `S (E2,R2) `S · · · with respect
to a set of inference rules S where each step can be simulated by a combination
of expansion and contraction steps is called an equational inference sequence
with respect to ⇒ and T .

Note that this abstract notion of equational inference sequences resembles the
approach taken in [11]. In contrast to [11] we distinguish between equations
and rules since the inference systems discussed in the next sections strongly
rely on this distinction. In particular, replacing an equation by a rule as done
in the orient rule in KB needs to be reflected in the proof order.

In the remainder of this section we will consider equational inference se-
quences with respect to an inference system S, a proof reduction relation ⇒
and some fixed theory T . We write (E ,R) `S (E ′,R′) if (E ′,R′) was obtained
from (E ,R) by applying an inference rule in S. An inference sequence

(E0,R0) `S (E1,R1) `S (E2,R2) `S · · ·

is also called a run. The sets of persistent equations and rules are defined as
Eω =

⋃
i>0

⋂
j>i Ei and Rω =

⋃
i>0

⋂
j>iRi, respectively. For finite inference

sequences (E0,R0) `∗S (En,Rn) the limit (Eω,Rω) coincides with (En,Rn). We
will write `=

S to denote the reflexive closure of `S . Sometimes we will also write
(E0,R0) `αS (Eα,Rα) to indicate that the sequence has length α, where α = ω
if it is infinite.

It is not hard to see that equational inference systems are sound in that the
equational theory is not modified in the course of a derivation.

Soundness Lemma 3.2. For any equational run γ : (E0,R0) `αS (E ,R) such
that α 6 ω the conversion ↔∗E0∪R0∪T coincides with ↔∗E∪R∪T .

18

3.1 Abstract Equational Inference Systems

Proof. As γ is an equational run it can be simulated by an inference sequence
(E0,R0) ` (E1,R1) ` (E2,R2) ` · · · using expand and contract steps such that
(Eα,Rα) = (E ,R) for some α 6 ω.

We apply transfinite induction on α and abbreviate ↔∗Eβ∪Rβ∪T by ↔∗β for
any β 6 ω. The statement clearly holds for α = 0. Now consider an inference
sequence (E0,R0) `∗ (Eα,Rα) ` (Eα+1,Rα+1). By the induction hypothesis
s ↔∗0 t if and only if s ↔∗α t. Assume in step (Eα,Rα) ` (Eα+1,Rα+1) an
expand rule is applied. Clearly, ↔∗α ⊆ ↔∗α+1 as no equation or rule is removed,
and ↔∗α+1 ⊆ ↔∗α is true because the only additional equation s ' t in Eα+1

or rule s → t in Rα+1 satisfies s ↔∗Eα∪RαT t by definition. If a contract rule
is applied then ↔∗α+1 ⊆ ↔∗α is obvious, and the reverse direction holds as for
the only removed equation s ' t or rule s→ t the side condition demands the
existence of an equational proof s↔∗α+1 t.

If α = ω then by the induction hypothesis all ↔∗n coincides with s ↔∗0 t for
all n < ω. By the definition of Eω and Rω this also holds for ↔∗ω.

The following two lemmas from [11] show that equational proofs are preserved
by inference steps and never increase with respect to ⇒. In particular, every
equational proof which is possible in some state of an inference sequence has a
persisting proof in the limit.

Reflection Lemma 3.3. For any finite equational run γ : (E0,R0) `∗S (E ,R)
and equational proof P in (E0∪T ,R0) there exists a proof Q in (E ∪T ,R) such
that P ⇒= Q.

Proof. As γ is an equational run it can be simulated by an inference sequence
(E0,R0) ` (E1,R1) ` (E2,R2) ` · · · ` (En,Rn) using expand and contract steps
such that (En,Rn) = (E ,R).

We apply induction on the length n of this sequence. If n = 0 then we can
set Q = P such that P ⇒= Q. Now consider an inference sequence (E0,R0) `
(En,Rn) ` (En+1,Rn+1) and some proof P in (E0 ∪ T ,R0). By the induction
hypothesis there is some proof Q′ in (En ∪ T ,Rn) such that P ⇒= Q′. If an
expand rule is applied in the last step, or if contract is applied but the removed
equation s ' t or rule s → t does not occur in Q′ then we can set Q = Q′.
Otherwise, Q′ = Q′[u ↔s≈t v] or Q′ = Q′[u ↔s→t v], so let u = C[sσ] and
v = C[tσ] for some context C and substitution σ. By definition of contract
there is a proof P ′ : s ↔En+1∪Rn+1∪T t which is smaller or equal than s ↔ε

s≈t t
or s ↔ε

s→t t, correspondingly. Thus we also have Q′ ⇒ Q′[C[P ′σ]], and hence
P ⇒ Q′[C[P ′σ]].

Persistence Lemma 3.4. Let (E0,R0) `S (E1,R1) `S (E2,R2) `S · · · be a
(possibly infinite) equational run and P a proof in (Ei ∪ T ,Ri) for some i > 0.
Then there is a proof Q in (Eω ∪ T ,Rω) such that P ⇒= Q.

Proof. By Lemma 3.3, for any proof Pi in (Ei ∪ T ,Ri) for some i there are
proofs Pj in (Ej ∪ T ,Rj) for all j > i such that Pi ⇒= Pi+1 ⇒= Pi+2 ⇒= · · · .
Since ⇒ is terminating, there must be some k such that Pj = Pk for all j > k.
Hence Pk can use only equations in Eω∪T and rules in Rω, so the proof Q = Pk
persists in the limit.

19

3 Knuth-Bendix Completion

In Chapters 3, 5, and 6, different inference systems for variants of completion
will be discussed. In order to exploit results of this section, the presentations of
completion-like procedures will pursue the following plan. We will first define
a suitable proof reduction relation ⇒ and identify a class of desirable normal
form proofs. We next present a set of inference rules and show that every
derivation constitutes an equational inference sequence with respect to⇒. The
results on fairness, correctness, and completeness will then frequently rely on
the soundness and persistence properties discussed on an abstract level in this
section.

3.2 Standard Completion

The presentation of standard completion adopted here follows the similar ap-
proach pursued in [11] to match the results for equational inference systems in
Section 3.1.

Given a set of input equalities E , Knuth-Bendix completion aims to construct
a TRS R such that for all terms s, t with s ↔∗E t there is a rewrite proof
s →∗R · ∗R← t in R. An equational proof is considered in normal form if
and only if it is a rewrite proof. Let � be a reduction order. Knuth-Bendix
completion operates on tuples (E ,R) of a set of equations E and a set of rewrite
rules R. The latter will always be contained in �. We will use the following
proof reduction relation ⇒�KB (cf. [11]).

Definition 3.5. Let E be a set of equations, R a rewrite system and � a
reduction order containingR. The cost of an equational proof step differentiates
rewrite steps from equation steps and is defined as follows:

c(s
p←−→

`→r
t) = c(t

p←−→
r←`

s) = ({s}, s|p, `, t) if `→ r ∈ R

c(s←−→
u≈v

t) = ({s, t},⊥,⊥,⊥) if u ' v ∈ E

To compare cost tuples we use the lexicographic combination of �mul, B, ·B
and �, where ⊥ is considered minimal in the latter three orderings. The cost
of an equational proof is the multiset consisting of the costs of its steps. The
proof order ��KB on equational proofs is the multiset extension of the order
on proof step costs, and ⇒�KB is the restriction of ��KB such that P ⇒�KB Q
holds only if P and Q prove the same equation.

Lemma 3.6 ([11]). The relation ⇒�KB is a proof reduction relation.

Figure 3.1 displays the inference system KB of standard completion. A KB
inference sequence of the form (E0,R0) ` (E1,R1) ` (E2,R2) ` · · · will be
referred to as a run. We will in the sequel assume that R0 = ∅ although all
results in the remainder of this section generalize to the setting where R0 is
non-empty, provided that R0 ⊆ �. It is easy to see that this implies Ri ⊆ �
for all i > 0. A run fails if Eω is not empty, it succeeds if Eω is empty and Rω
is convergent for E0.

The following lemma shows that KB runs are equational inference sequences
(where the theory T from Definition 3.1 is empty). We will drop the subscript

20

3.2 Standard Completion

orient
E] {s ' t},R
E ,R∪ {s→ t}

if s � t

deduce
E ,R

E ∪ {s ≈ t},R
if s←o→ t ∈ CP(R)

delete
E] {s ≈ s},R

E ,R

simplify
E] {s ' t},R
E ∪ {s ' u},R

if t→R u

compose
E ,R] {s→ t}
E ,R∪ {s→ u}

if t→R u

collapse
E ,R] {t→ s}
E ∪ {u ≈ s},R

if t→R u using `→ r such that t ·B `

Figure 3.1: The inference system KB of standard completion.

and write �� instead of ��KB if the intended definition is clear from the
context.

Lemma 3.7. Every KB run (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · is an equational
inference sequence with respect to ⇒�KB.

Proof. We show that every step (Ei,Ri) ` (Ei+1,Ri+1) i > 0 can be modeled
by expand and contract according to Definition 3.1. Note that we use the fact
that Ri ⊆ �.

– Every orient inference can be modeled by an expansion step adding s→ t
and a subsequent contraction step removing s ' t. These steps are valid
because s↔s≈t t has cost ({s, t}, . . .) but s↔s→t t has cost ({s}, . . .).

– A deduce step is an instance of expand as CP(Ri) ⊆ ↔∗E∪Ri .

– A delete step constitutes a contraction as clearly s↔s≈s s⇒�KB s.

– An application of simplify can be viewed as an expansion inference adding
s ' u followed by a contraction step removing s ' t. The contraction
is valid as the proof transformation s↔s≈t t⇒�KB s↔s≈u u

p
Ri← t is de-

creasing since t � u implies {({s, t}, . . .)} ��{({s, u}, . . .), ({t}, . . .)}. The
expansion inference replaces s ↔s≈t t →Ri u by s ↔s≈u u. Decreasing-
ness of this proof transformation is a consequence of the previous cost
assessment.

– A compose step can be viewed as an expansion adding s → u followed
by a contraction step removing s → t. The latter is valid as the proof
transformation s↔ε

s→t t ⇒�KB s↔ε
s→u u Ri← t results in the decrease

{({s}, s, s, t)} �� {({s}, s, s, u), ({t}, . . .)} because of s � t and t � u.

21

3 Knuth-Bendix Completion

From this comparison it also follows that the expansion replacing s↔ε
s→t

t→Ri u by s↔ε
s→u u constitutes a decrease.

– Finally, a collapse step can be obtained by an expansion adding u ≈ s
followed by a contraction step removing t → s. By the definition of col-
lapse there must be a rewrite step t →p

`→r u for some rule ` → r and
position p ∈ Pos(t) such that t ·B `. The contraction amounts to a cost
decrease since t↔ε

t→s s ⇒�KB t↔p
`→r u↔u≈s s because t � u, t � s,

t D t|p and t ·B ` imply {({t}, t, t, . . .)} �� {({t}, t|p, `, . . .), ({u, s}, . . .)}.
Consequently also the expansion performing the proof transformation
u↔`←r t→t→s s⇒�KB u↔u≈s s constitutes a cost reduction.

We next recall the Critical Pair Lemma, a result originally due to Knuth and
Bendix [57]. It shows that critical pairs deserve their name in that these peaks
are the only critical overlaps as far as local confluence is concerned, and thus
justifies restricting deduce steps to critical pairs.

Critical Pair Lemma 3.8. Suppose a set of rewrite rules R admits a peak
s R← u →R t. Then s ↓R t unless s = C[s′σ] and t = C[t′σ] for some critical
pair s′ ←×→ t′ in CP(R).

Proof. Assume there is an overlap 〈`1 → r1, p, `2 → r2〉τ which gives rise to a
peak `2τ [r1τ]p ← `2τ → r2τ such that s′ = `2τ [r1τ]p, t

′ = r2τ and s = C[s′σ],
t = C[t′σ] for some context C and substitution σ (see also Figure 3.2(a)).
Clearly, s′ ←×→ t′ is a critical pair in CP(R).

It remains to consider a peak s p,σ
r1←`1← u →q,σ

`2→r2 t which does not contain
an overlap. Note that we assume the two rules to be variable-disjoint such that
the same substitution σ is used in both rewrite steps. If `1 → r1 and `2 → r2

are variants and p = q then s = t and s ↓ t trivially holds.

Otherwise, if p ‖ q the situation is as illustrated in Figure 3.2 (b). In this
case we have s→q,σ

`2→r2 u[r1σ]p[r2σ]q
p,σ

r1←`1← t.

If p 6‖ q one position must be below the other. Without loss of generality
we assume that q = ε and p > ε, as illustrated in Figure 3.2 (c). So the peak
under consideration is of the form s p,σ

r1←`1← u →ε,σ
`2→r2 t and we have u = `2σ,

s = u[r1σ]p = `2σ[r1σ]p and t = r2σ. As the peak does not constitute an
overlap there must be some q′ ∈ PosV(`2) such that `2|q′ = x and p = q′p′. We
have σ(x)|p′ = `1σ. Let the substitution σ′ be defined as

σ′(y) =

{
σ(x)[r1σ]p′ if y = x

σ(y) otherwise

Then σ(x) →∗ σ′(x) for all x ∈ V and therefore r2σ →∗ r2σ
′. Moreover, we

have `2σ[r1σ]p = `2σ[σ′(x)]q′ →∗`1→r1 `2σ
′. This combines to

s = `2σ[r1σ]p →∗ `2σ′ →ε
`2→r2 r2σ

′ ∗← r2σ = t

which proves s ↓R t.

22

3.2 Standard Completion

`2τσ

`1τσ

r1τσ

r2τσ

(a) proper overlap

`1σ `2σ

r1σ `2σ `1σ r2σ

r1σ r2σ

(b) parallel redexes.

`2σ

`1σ `1σ `1σ

r2σ

`1σ `1σ`1σ r1σ `1σ

*

r2σ
′

r1σ r1σ

*

`2σ
′

r1σ r1σ r1σ

(c) variable overlap

Figure 3.2: Peak analysis.

23

3 Knuth-Bendix Completion

Using the Critical Pair Lemma it is also easy to show that commutation
of non-overlaps as well as critical pairs give rise to smaller proofs than the
respective peaks. This result will be required in later proofs.

Corollary 3.9. Let a set of rewrite rules R admit a peak P : s R← u→R t.

(a) If P constitutes a proper overlap then there is some s′ ←×→ t′ ∈ CP(R)
such that P ⇒�KB s↔s′≈t′ t,

(b) otherwise there exists a rewrite proof Q in R such that P ⇒�KB Q.

Proof.

(a) By Lemma 3.8 we have s = C[s′σ] and t = C[t′σ] for some critical pair
s′ ←×→ t′ ∈ CP(R). The costs of the respective equational proofs are
c(P) = {({u}, . . .), ({u}, . . .)} and c(s ↔s′≈t′ t) = {({s, t}, . . .)} such that
P ⇒�KB s↔s′≈t′ t because of u � s, t.

(b) According to Lemma 3.8 there is a rewrite proof Q : s →∗R · ∗R← t. While
c(P) = {({u}, . . .), ({u}, . . .)} the cost of Q involves only tuples ({v}, . . .)
such that s � v or t � v holds, so P ⇒�KB Q.

A KB run is intended to eventually admit rewrite proofs for all valid equations.
Obviously, not even all nonfailing runs have this property, for instance if all
equations get oriented but no critical pairs are computed. We thus use the
notion of fairness to characterize runs that allow to simplify non-rewrite proofs:

Definition 3.10. A nonfailing KB run (E0,R0) ` (E1,R1) ` (E2,R2) ` · · · is
fair if for any proof P in Rω which is not a rewrite proof there is a proof Q in
some (Ei,Ri) such that P ⇒�KB Q.

Note that this definition coincides with the notion of fairness in [6, 11] when
restricted to nonfailing runs. In practice, fairness is often ensured by the fol-
lowing sufficient condition.

Lemma 3.11 ([11]). If a nonfailing KB run satisfies CP(Rω) ⊆
⋃
i Ei then it

is fair.

Proof. Note that in a nonfailing run the set Eω is empty. We show that for
every proof P in Rω which is not a rewrite proof there exists a proof Q in Rω
such that P ⇒�KB Q. Since P is not a rewrite proof it must contain a peak
P ′ : s ← u → t. According to Corollary 3.9 there exists a smaller proof unless
this peak constitutes a proper overlap. So assume s = C[`σ] and t = C[rσ] for
some critical pair ` ←×→ r ∈ CP(Rω), hence P ′ ⇒�KB s↔

ε
`≈r t according to

Corollary 3.9. By assumption ` ' r occurs in some set Ei. By the Persistence
Lemma 3.4 there is a proof Q′ in Rω such that s↔ε

`≈r t (⇒�KB)= Q′, and as
⇒�KB is a proof reduction relation we have P = P [P ′]⇒�KB P [Q′].

Correctness of KB runs can now be proven in the same fashion as in [6].

Correctness Theorem 3.12. Any nonfailing KB run which uses a reduction
order � and is fair with respect to ⇒�KB succeeds.

24

3.2 Standard Completion

Proof. Let γ : (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · be the run under considera-
tion. In order to show convergence of Rω, we show that for all terms s, t such
that s↔∗E0 t there is a persisting rewrite proof in the limit. By the Persistence
Lemma 3.4 the TRS Rω admits a proof of any such equation s ≈ t. Let P
be a minimal such proof, and assume it is not a rewrite proof. By fairness,
there exists a proof Q in (Ei,Ri) for some i > 0 such that P ⇒�KB Q. By the
Persistence Lemma 3.4, there is a proof Q′ in Rω such that Q (⇒�KB)= Q′, and
hence P ⇒�KB Q′. This contradicts minimality of P , so P must be a rewrite
proof. Since Rω has the same equational theory as E0 according to Lemma 3.2
it is convergent for E0.

The following result states completeness in the sense that whenever a finite
canonical TRS exists, a nonfailing fair KB run using a compatible reduction
order succeeds in finite time [11].

Completeness Theorem 3.13. Let R be a finite convergent TRS for E such
that R ⊆ �. Then any nonfailing fair KB run γ starting from (E ,∅) using �
derives a finite convergent TRS R′ in finitely many steps.

Proof. We denote by Q the TRS obtained from R when replacing each right-
hand side by its R-normal form. Obviously Q is terminating as it is contained
in �, and it is also convergent: For every equation s ≈ t such that s↔∗E t there
is a rewrite proof of the form s→∗R u ∗

R← t. Let P be such a proof where u is
in normal form with respect to R. Now, as normal forms in Q and R coincide,
there is also a rewrite proof s→∗Q u ∗

Q← t, so Q is convergent.
Let Rω be the set of persistent rules of γ. We next show that for every

rule ` → r in Q we have ` →∗Rω r. Since each rule ` → r in Q belongs to
the equational theory of E the run γ admits a persistent equational proof P of
` ≈ r after a finite number of steps. As Rω is convergent by Theorem 3.12 this
must be a rewrite proof. Note that r cannot be reducible in Rω: suppose to
the contrary there was a rewrite step r →Rω r′. As R′ and Q have the same
equational theory, there must also be a proof of r ' r′ in Q. But r →Rω r′

implies r � r′, so r need also be reducible in Q, which contradicts irreducibility
of right-hand sides in Q. Therefore P must have the form `→∗Rω r.

Finally, this finite number of rewrite proofs ` →∗Rω r derived in a finite

number of steps requires only a finite subset of rulesR′ ⊆ Rω. Since→Q ⊆ →+
R′

also R′ is convergent.

It has been shown that if an equational theory allows for an equivalent canon-
ical TRS compatible with some reduction order � then it is unique modulo
variable renaming [24,80]. We call a run simplifying if Rω is reduced. Thus the
following result immediately follows from Theorem 3.13.

Corollary 3.14. Let R be a finite canonical TRS for E such that R ⊆ �. Then
any nonfailing simplifying run γ starting from E using � succeeds with a TRS
R′ in finitely many steps, and R coincides with R′ modulo variable renaming.

In the following example we derive two convergent systems for a given equa-
tional theory using different reduction orders.

25

3 Knuth-Bendix Completion

Example 3.15. Consider the following set of equations:

f(f(x)) ≈ g(x) (1)

f(g(f(x))) ≈ f(x) (2)

We consider an LPO with precedence f � g. In two orient steps we can thus
direct both equations from left to right. This gives rise to the four critical
overlaps 〈(1), 1, (1)〉, 〈(1), 11, (2)〉, 〈(2), 1, (1)〉, and 〈(2), 11, (2)〉. Respective
deduce steps add the following equalities:

f(g(x)) ≈ g(f(x)) (3)

f(g(g(x))) ≈ f(f(x)) (4)

f(f(x)) ≈ g(g(f(x))) (5)

f(g(f(x))) ≈ f(g(f(x))) (6)

Equation (6) can be removed by delete. Next, orient may turn (3) into the rule

f(g(x))→ g(f(x)) (3)

Now a collapse step applying rule (3) to rule (2) removes the latter, instead
adding an equation g(f(f(x))) ≈ f(x) which is in a simplify step using rule (1)
further reduced to

g(g(x)) ≈ f(x) (7)

Now, orient can be applied to this equation, which results in the rewrite rule

f(x)→ g(g(x)) (7)

With rule (7) both (4) and (5) are simplified into the same trivial equation
g(g(g(g(x)))) ≈ g(g(g(g(x)))), which is removed by delete. Another trivial
equation g(g(g(x))) ≈ g(g(g(x))) is obtained when applying rule (7) in a com-
pose and a collapse step to rule (3). Another collapse step using rule (7) turns
(1) into the equation g(g(g(g(x)))) ≈ g(x), which is subsequently oriented into
the rewrite rule

g(g(g(g(x))))→ g(x) (8)

This new rule (8) gives rise to three critical pairs such that deduce adds the
equations

g(g(x)) ≈ g(g(x))

g(g(g(x))) ≈ g(g(g(x)))

g(g(g(g(x)))) ≈ g(g(g(g(x))))

which can be deleted. Thus all critical pairs among the remaining rules (7) and
(8) were considered, such that by Lemma 3.11 the run is fair. As no equations
are left, it is also nonfailing. Thus by Theorem 3.12 the TRS consisting of the
rules (7) and (8) is convergent. Note that it is also reduced.

26

3.2 Standard Completion

A different canonical TRS is obtained when taking LPO with precedence
g � f. Then equation (1) is reversed, such that we have

g(x)→ f(f(x)) (1)

and a simplify step can reduce equation (2) to

f(f(f(f(x)))) ≈ f(x) (9)

which is subsequently oriented into the rule

f(f(f(f(x))))→ f(x) (9)

Rule (9) gives rise to three trivial critical pairs, which are deleted. Thus all
critical pairs among the remaining rules (1) and (9) were considered and no
equations are left. It follows that the TRS consisting of the rules (1) and (9) is
also convergent.

Note that the second run in the previous example is considerably shorter
than the first one, which hints at the significant impact the reduction order
has on the length of a run. But an unfortunate choice of the reduction order
can also lead to failure or prevent a completion procedure from finding a finite
convergent TRS, as illustrated by the following examples.

Example 3.16. Assume a KB run starts with the initial equations

f(g(x), h(y)) ≈ k(x, y) (1)

f(h(y), g(x)) ≈ k(x, y) (2)

Both equations can be oriented from left to right, for example with an LPO
setting f � k. Then we immediately obtain a convergent TRS as there are no
overlaps. On the other hand, if we choose as reduction order LPO with some
precedence � such that k � f, k � g, and k � h then the two rules produce an
unorientable equation f(g(x), h(y)) ≈ f(h(y), g(x)), and the run fails.

Example 3.17. Consider the following set of equations:

f(f(g(x))) ≈ x (1)

g(g(x)) ≈ f(g(x)) (2)

and choose as reduction order a KBO with w0 = w(f) = w(g) = 1 and prece-
dence g � f. We thus orient both equations from left to right:

f(f(g(x)))→ x (1)

g(g(x))→ f(g(x)) (2)

From the overlap 〈(2), 11, (1)〉 the critical pair f(f(f(g(x))))←o→ g(x) is cre-
ated, which is oriented as

f(f(f(g(x))))→ g(x) (3)

27

3 Knuth-Bendix Completion

This in turn allows for a deduce step from the overlap 〈(2), 111, (3)〉 such that
the equation f(f(f(f(g(x))))) ≈ g(g(x)) is added and subsequently oriented as

f(f(f(f(g(x)))))→ g(g(x)) (4)

When continuously performing respective deduce and orient steps with the new
rules, the run will ultimately succeed in the limit with the infinite TRS consist-
ing of rules

fn+2(g(x))→ gn(x) g(g(x))→ f(g(x))

for all n > 0.
On the other hand, when using an LPO with precedence with f � g, equation

(2) is oriented as

f(g(x))→ g(g(x)) (2)

such that equation (1) is in two steps simplified to

g(g(g(x))) ≈ x (5)

When orienting (5), the resulting rule

g(g(g(x)))→ x (5)

gives rise to two trivial critical overlaps that are deleted. Moreover, the overlap
〈(5), 1, (2)〉 creates the equation f(x) ≈ g(g(g(g(x)))) which can be simplified
using rule (5) to obtain f(x) ≈ g(x). This equation is oriented as

f(x)→ g(x) (6)

such that (2) collapses into the trivial equation g(g(x)) ≈ g(g(x)), which can
be deleted. As there are no further critical overlaps to be considered and no
equations are left the TRS consisting of rules (5) and (6) is convergent.

However, not only the reduction order has significant impact on success. Also
the order in which equations are processed influences whether a run succeeds,
as the following example shows.

Example 3.18 ([6,33]). Take LPO with precedence a � b � c � d and consider
the following set of equations:

a(x, y) ≈ b(x) (1)

a(x, y) ≈ c(y) (2)

f(b(x)) ≈ b(x) (3)

f(a(x, y)) ≈ d (4)

Assume a completion run starts by orienting (2):

a(x, y)→ c(y) (2)

28

3.2 Standard Completion

If simplification is applied eagerly then equations (1) and (4) are simplified to

c(y) ≈ b(x) (5)

f(c(y)) ≈ d (6)

Then equations (3) and (6) can be oriented:

f(b(x))→ b(x) (3)

f(c(y))→ d (6)

The rules (2), (3), and (6) have no critical pairs such that no further step is
possible. Hence the run fails as equation (5) remains unorientable. Note that
after the decision to start with equation (2) we did not have a choice in this run
(and no reduction order could have performed different orientations). Hence we
conclude that any completion procedure which initially picks (2) and applies
eager simplification necessarily fails.

Now assume a run uses the same reduction order but starts by orienting (1):

a(x, y)→ b(x) (1)

This allows to simplify equations (2) and (4):

b(x) ≈ c(y) (5)

f(b(x)) ≈ d (7)

Both (3) and (7) can be oriented:

f(b(x))→ b(x) (3)

f(b(x))→ d (7)

and these two rule give rise to a critical pair, which is oriented as

b(x)→ d (8)

Now rule (8) can be applied to terms in (1), (3), (5), and (7). Orienting the
resulting equations yields the following TRS R:

a(x, y)→ d b(x)→ d c(x)→ d f(d)→ d

As no equations are left and the TRS R has no critical pairs it is convergent.

The inference system KB might raise the question why the collapse rule pro-
hibits rewrite steps where the left-hand side of the applied rule ` is a variant of
the reduced term t. The following example shows how such an inference step
can prevent success.

Example 3.19 ([11]). The following rewrite rules can be oriented by LPO with
precedence f � c � g � b � a (cf. Example 2.8):

c→ a (1)

g(x)→ x (2)

f(b, x)→ x (3)

f(g(x), y)→ f(x, g(y)) (4)

f(x, b)→ c (5)

29

3 Knuth-Bendix Completion

collapse
E ,R] {t→ s}
E ∪ {u ≈ s},R

if t→R u

Figure 3.3: The collapse rule in KB′.

When orienting the critical pairs associated with 〈(3), ε, (5)〉 and 〈(4), ε, (5)〉

c→ b (6)

f(x, g(b))→ c (7)

are added. Without inter-reduction, these rules create the overlaps 〈(3), ε, (7)〉
and 〈(4), ε, (7)〉, resulting in critical pairs that are oriented as

c→ g(b) (8)

f(x, g(g(b)))→ c (9)

With a relaxed collapse rule, (8) can be used to simplify (6) to g(b)→ b, which
is simplified away by (2). Thus, as (6) is not persistent the critical pair between
(1) and (6) need not be considered. But in the next step additional rules

c→ g(g(b)) (10)

f(x, g(g(g(b))))→ c (11)

are created, such that (10) can in turn be used to collapse (8). Repeating
respective deduce steps yields the infinite TRS Rω consisting of the rules

c→ a g(x)→ x f(b, x)→ x f(g(x), y)→ f(x, g(y)) f(x, gn(b))→ c

for all n > 0. But Rω is not confluent as a and b are not joinable, despite the
peak b← f(b, b)→ c→ a.

3.2.1 Finite Runs

Example 3.19 shows that the side condition of the rewrite step applied in a
collapse inference is essential for correctness. However, it was shown that for
finite runs arbitrary rewrite steps in collapse inferences are sound [97].

We define the inference system KB′ to consist of the relaxed collapse rule
in Figure 3.3 together with all remaining rules from KB. In order to prove
correctness of this relaxed completion procedure a modified definition of the
corresponding proof order is required. In this new definition we need to uniquely
identify rewrite rules, i.e., we need to distinguish between (variants of) the same
rewrite rule developed in the course of a run. For this purpose we assume that
all equations and rewrite rules occurring during a run are variable-disjoint, i.e.,
whenever a new equation or rule is created it contains only fresh variables. We
will in the sequel of Section 3.2.1 restrict to finite KB′ runs of some length
n ∈ N:

(E0,∅) ` (E1,R1) ` (E2,R2) ` · · · ` (En,Rn) (3.1)

30

3.2 Standard Completion

A run fails if En 6= ∅, and it succeeds if En = ∅ and Rn is convergent for E0.
We define a modified proof order ⇒�,nKB . In contrast to the proof orders

defined earlier, it depends on the actual length n of the run.

Definition 3.20. Consider a run of the form (3.1) which has length n ∈ N and
uses the reduction order �. The cost cn of an equational proof step in

⋃
i Ei∪Ri

is defined as follows:

cn(s
p←−→

`→r
t) = cn(t

p←−→
r←`

s) = ({s}, s|p, n− k) where k is maximal such that
`→ r ∈ Rk

cn(s←−→
u≈v

t) = ({s, t},⊥, 0)

To compare cost tuples we use the lexicographic combination of �mul, B, and
the standard order > on N, where ⊥ is considered minimal in B. Again the
cost of an equational proof is the multiset of its steps’ costs, the proof order
��nKB is the multiset extension of the order on proof step costs, and P ⇒�,nKB Q
holds if and only if P ��nKB Q and P and Q prove the same equation.

As a lexicographic combination of well-founded orders �� is terminating, the
following result is easily established.

Lemma 3.21. The relation ⇒�,nKB is a proof reduction relation.

Like KB also KB′ yields a decrease with respect to ⇒�,nKB in every inference
step (where the theory T from Definition 3.1 is again empty). We will write
�� instead of ��nKB if the intended definition is clear from the context.

Lemma 3.22. Every KB′ run of the form (3.1) is an equational inference
sequence with respect to ⇒�,nKB .

Proof. We show that every KB′ step (Ei,Ri) `KB′ (Ei+1,Ri+1) for 1 6 i < n
can be modeled by expand and contract steps according to Definition 3.1. Note
that the third and fourth component of the cost given in Definition 3.5 are only
needed for compose and collapse steps in Lemma 3.7. Except for these cases we
can thus argue as in this earlier proof.

A compose step can be viewed as an expansion inference adding s → u
followed by a contraction step removing s→ t. Note that by the assumption on
variable-disjoint rules i must be maximal such that Ri contains s→ t, while for
the maximal number j such that s→ u ∈ Rj we have j > i. The cost of the step
s ↔ε

s→t t is thus ({s}, s, n − i) while the cost of s ↔ε
s→u u ← t is {({s}, s, n −

j), ({t}, . . .)}. So because of s � t and n − i > n − j we have s↔ε
s→t t ⇒

�,n
KB

s↔ε
s→u u← t. The expansion replaces s ↔ε

s→t t → u by s ↔ε
s→u u, which

results in the decrease {({s}, s, n− i), ({t}, . . .)} �� {({s}, s, n− j)}.
Also a collapse step is obtained by an expansion inference adding u ≈ s

and a subsequent contraction step which removes t → s because t →p
`→r u.

By the assumption on variable-disjoint rules i must be maximal such that Ri
contains t→ s, while for the maximal number j such that `→ r ∈ Rj we have
j > i. The cost of the step t↔ε

t→s s is therefore ({t}, t, n− i) while the cost of
t↔p

`→r u↔u≈s s is {({t}, t|p, n − j), ({u, s}, . . .)}. Since t � u, s, t D t|p, and

31

3 Knuth-Bendix Completion

n− i > n−j we have t↔ε
t→s s⇒

�,n
KB t↔p

`→r u↔u≈s s. The expansion replaces
u ↔p

r←` t →
ε
t→s s by u ↔u≈s s and as {({t}, . . .), ({t}, . . .)} �� {({u, s}, . . .)}

also this step is decreasing.

Due to this result, the Persistence Lemma 3.4 holds for KB′. Fairness of
nonfailing KB′ runs is defined exactly as in Definition 3.10, except that the
modified proof order ⇒�,nKB is used. We can then prove the following results on
fairness, correctness, and completeness in exactly the same way as for KB.

Lemma 3.23. If a nonfailing and finite KB′ run (E ,∅) `n (∅,Rn) satisfies
CP(Rn) ⊆

⋃
i Ei then it is fair with respect to ⇒�,nKB .

Correctness Theorem 3.24. A nonfailing, finite KB′ run (E ,∅) `n (∅,Rn)
which uses a reduction order � and is fair with respect to ⇒�,nKB succeeds.

Completeness Theorem 3.25. Let R be a finite convergent TRS for E such
that R ⊆ �. Then any nonfailing fair KB′ run γ which starts from E and uses
� succeeds with a TRS R′ in finitely many steps.

3.2.2 Critical Pair Criteria

In order to limit the number of equations deduced in a completion run, several
critical pair criteria were proposed as a means to filter out critical pairs that
can be ignored without compromising completeness [9, 51, 61, 109]. In a later
work, Bachmair and Dershowitz [11] showed that all these criteria match the
more general criterion of compositeness.

Let E be a set of equations and R be a set of rewrite rules. Formally, a critical
pair criterion CPC maps (E ,R) to a subset CPC(E ,R) of CP(R). Intuitively,
CPC(E ,R) contains those critical pairs that are considered redundant.

Definition 3.26. A KB run (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · is fair with
respect to a criterion CPC and a proof order ⇒ if for every critical overlap
P associated with a critical pair s ←o→ t ∈ CP(Rω) \

⋃
i CPC(Ei,Ri) there

exists a proof Q in
⋃
i Ei ∪ Ri such that P ⇒ Q. We say that a criterion is

correct for ⇒ if a nonfailing run is fair whenever it is fair with respect to CPC
and ⇒.

Obviously, correct critical pair criteria do not harm fairness. We will focus
on the following abstract criterion of compositeness.

Definition 3.27. Let E be a set of equations, R a set of rewrite rules, and
�� a proof order using reduction order �. An equational proof P that has the
form of a peak s← u→ t is composite with respect to (E ,R) and a proof order
�� if there exist terms u0, . . . , un+1 such that s = u0, t = un+1, and u � ui
for all 1 6 i 6 n, together with proofs P0, . . . , Pn in (E ,R) such that Pi proves
ui ≈ ui+1 and P �� Pi holds for all 1 6 i 6 n.

For a fixed proof order ��, the compositeness criterion CCP(E ,R) returns all
critical pairs between rules in R for which the associated overlaps are composite
with respect to (E ,R) and �� . We can now relax the result of Lemma 3.11
and show that ignoring composite critical pairs does not compromise fairness.

32

3.2 Standard Completion

Lemma 3.28. Consider a nonfailing KB run γ : (E0,∅) ` (E1,R1) ` (E2,R2) `
· · · and let C be a subset of

⋃
i CCP(Ei,Ri), where CCP is computed with respect

to ��KB . If CP(Rω) \ C ⊆
⋃
i Ei then γ is fair.

Proof. Just like in the proof of Lemma 3.11 we show that any non-rewrite proof
in Rω can be transformed into a rewrite proof.

We apply induction on ��KB . Any non-rewrite proof must contain a peak
P : s← u→ t. If this peak does not constitute a proper overlap then according
to Corollary 3.9 there exists a proof P ′ such that P ⇒�KB P

′, and by induction
hypothesis P ′ can be transformed into a rewrite proof. Otherwise, s = C[`σ]
and t = C[rσ] for some critical pair ` ←×→ r in CP(Rω). We have P ⇒�KB
s↔ε

`≈r t. If ` ' r occurs in some set Ei then by the Persistence Lemma 3.4 there
is a proof P ′ in Rω such that s↔ε

`≈r t (⇒�KB)= P ′. By the induction hypothesis
there is a rewrite proof for P ′ in Rω, and thus also for P . If ` ' r does not
occur in any set Ei then we must have ` ←×→ r ∈ CCP(Ei,Ri) for some
i. Let the corresponding overlap be P ′ : ` ← v → r. By definition, there are
terms v1, . . . , vn+1 such that ` = v0, r = vn+1 and v � vi, and (Ei,Ri) admits
proofs Pi of vi ≈ vi+1 which are smaller than P ′. Thus the proofs C[Piσ] prove
C[viσ] ≈ C[vi+1σ] for all 1 6 i 6 n, and by the Persistence Lemma 3.4 there
are respective proofs P ′i in Rω such that C[Piσ] (⇒�KB)= P ′i . By the induction
hypothesis all these proofs P ′i can be transformed into rewrite proofs Qi in
Rω. Consequently all terms in the combined proof Q1 · · ·Qn must be smaller
than u = C[vσ], and therefore we have P ⇒�KB Q1 · · ·Qn. By the induction
hypothesis Q1 · · ·Qn can be transformed into a rewrite proof, and thus this also
holds for P .

A completely analogous proof can be used to show a corresponding result for
KB′, thereby relaxing Lemma 3.23.

Lemma 3.29. The compositeness criterion using ��nKB is correct for⇒�,nKB .

Note that compositeness is not computable, so this general criterion cannot
be applied in practice. However, criteria to filter out superfluous critical pairs in
completion procedures that were previously proposed in the literature actually
turned out to be special cases of compositeness.

Primality

Kapur et al. [51] introduced the notion of primality for critical pairs. An overlap
〈`1 → r1, p, `2 → r2〉σ is prime if `2σ is not reducible at any position strictly
below p. The primality criterion PCP(E ,R) returns all critical pairs among
rules in R for which the associated overlaps are not prime.

Lemma 3.30. Every non-prime critical pair is composite with respect to ��KB

and ��nKB .

Proof. Let R be a TRS such that `1 → r1, `2 → r2 ∈ R admit an overlap
〈`1 → r1, p, `2 → r2〉 which corresponds to the peak P : s p

r1←`1← u →ε
`2→r2

t. Suppose the critical pair s ←o→ t is not prime since u →q
R v for some

33

3 Knuth-Bendix Completion

position q > p. We obviously have u � s, t, v as R ⊆ �. Let proofs P1 and
P2 be defined by P1 : s p

r1←`1← u →q
R v and P2 : v q

R← u →ε
`2→r2 t. Note

that P1P2 proves s ≈ t. For the cost measures underlying both ��KB and
��nKB we obtain costs of the form c(P) = {({u}, u|p, . . .), ({u}, u, . . .)}, c(P1) =
{({u}, u|p, . . .), ({u}, u|q, . . .)}, and c(P2) = {({u}, u|q, . . .), ({u}, u, . . .)}. Since
u D u|p D u|q both P �� P1 and P �� P2 hold, independent of whether �� is
��KB or ��nKB . Hence P is composite.

A special case of PCP is captured by the unblockedness criterion BCP [9]. A
critical pair stemming from a peak `2σ[r1σ]p r1←`1← `2σ[`1σ]p = `2σ →`2→r2
r2σ is blocked if xσ is irreducible in R for all variables x ∈ Var(`1) ∪ Var(`2).
The set BCP(E ,R) contains all unblocked critical pairs among rules in R.

Connectedness

Küchlin [61] introduced the notion of connectedness to limit equational con-
sequences deduced in a completion procedure. Given a set of equations E
and a set of rewrite rules R, a critical pair s ←o→ t originating from an
overlap s ← u → t is connected below u if there exists a proof of the form
s = u0 ↔ u1 ↔ · · · ↔ un+1 = t in (E ,R) such that u � ui for all 1 6 i 6 n.

Lemma 3.31. If a critical pair s ←×→ t originating from a peak s ← u → t
is connected below u then it is composite with respect to ��KB and ��nKB .

Proof. Let P denote the peak s ← u → t and Pi the single-step proof ui ↔
ui+1 in (E ,R) for all 0 6 i 6 n. For both proof orders under consideration
c(P) = {({u}, . . .), ({u}, . . .)} while c(Pi) contains only a single tuple ({ui}, . . .),
({ui+1}, . . .), or ({ui, ui+1}, . . .) such that u � ui, ui+1. Therefore P �� Pi for
all 0 6 i 6 n. As P0 · · ·Pn proves s ≈ t the critical pair is composite.

In practice, this still very general connectedness criterion needs to be approxi-
mated. Küchlin concentrates on finding terms u1, . . . , un such that u→+ ui. As
a special case the following weak connectivity test is proposed. Given an overlap
〈`1 → r1, p, `2 → r2〉 which corresponds to the peak P : s p

r1←`1← u →ε
`2→r2 t

between rules `1 → r1 and `2 → r2, the associated critical pair is weakly con-
nected if there exists a reduction step u →q

`3→r3 v such that the following
(non-exclusive) properties are satisfied:

(i) if q ∈ PosF (`2) then the overlap 〈`3 → r3, q, `2 → r2〉 was already consid-
ered,

(ii) if q = pq′ and q′ ∈ PosF (`1) then 〈`3 → r3, q
′, `1 → r1〉 was already

considered, and

(iii) if p = qp′ and p′ ∈ PosF (`3) then 〈`2 → r2, p
′, `3 → r3〉 was already

considered.

It is easy to see that all weakly connected critical pairs are indeed connected and
thus composite. This criterion can also be generalized to a full connectivity test

34

3.2 Standard Completion

where the critical pair is connected via an arbitrary sequence v1, . . . , vn instead
of a single intermediate term v.

In the sequel the connectedness criterion returning weakly connected critical
pairs among rules in R will be referred to as WCP(E ,R).

Since both WCP and PCP are special cases of compositeness these criteria
can also be combined. This mixed criterion filters out critical pairs that are
redundant according to one of the criteria, it will in the sequel be referred to
as MCP.

Example 3.32. A KB (or KB′) run on group theory may encounter the follow-
ing rules:

e · x→ x (1)

i(x) · x→ e (2)

x · e→ x (3)

i(e)→ e (4)

i(i(x))→ x (5)

(y · i(x)) · x→ y (6)

Consider the overlap 〈(2), 1, (6)〉 corresponding to the peak e · x 1← (i(i(x)) ·
i(x)) ·x→ε i(i(x)). Note that (i(i(x)) · i(x)) ·x→11

(5) (x · i(x)) ·x, and position 11

is a variable position in the left-hand side of rule (6). Hence the critical pair is
not blocked (and consequently also not prime), so it can be ignored according
to the criteria BCP and PCP.

Consider the overlap 〈(2), ε, (3)〉 corresponding to the peak e ε← i(e) · e →ε

i(e). Since i(e) · e →1
(4) e · e the corresponding critical pair is not prime (but

nevertheless blocked). Thus it can be ignored according to the criterion PCP.
The overlap 〈(4), 1, (2)〉 corresponds to the peak P : e · e 1← i(e) · e→ε e. We

also have i(e) · e→ε
(3) i(e), but PCP is not applicable. When applying the weak

connectivity test the peak P gets decomposed as follows:

e · e 1
(4)← i(e) · e→ε

(3) i(e) and i(e) ε
(3)← i(e) · e→ε

(2) e

Indeed the first peak is only a variable overlap and the critical pair emerging
from the second peak was already considered. Therefore the overlap is weakly
connected and can be ignored according to WCP.

35

Chapter 4

Multi-Completion with Termination
Tools

Classical Knuth-Bendix completion requires a reduction order as input. As
illustrated by several examples in Chapter 3, this parameter is critical for success
but an appropriate choice is hard to determine in advance. Bofill et al. [20]
described a non-failing completion procedure which can even be applied with a
non-total and non-monotonic reduction order. But since their method relies on
enumerating all equational consequences it is of rather theoretical nature and
hardly applicable in practice.

Kondo and Kurihara [62] challenged the limitation of a single ordering in a
different way by proposing completion with multiple reduction orders. In this
method several classical runs are simulated in parallel, but common inference
steps are shared to gain efficiency. For the sake of brevity we will in the sequel
refer to this idea by multi-completion. Completion with termination tools [107]
constitutes another approach to tackle the challenge of picking the right order-
ing: Wehrman, Stump, and Westbrook proposed to employ modern termination
tools for the orientation of equations that are generated in a completion run.
This not only relieves users from a tricky choice. Automatic termination analy-
sis also emerged as a highly active research area over the past years. This gave
rise to a wide variety of sophisticated techniques that can be employed to estab-
lish termination of a TRS. Hence completion procedures relying on termination
tools exhibit a considerable gain in power—they can complete far more systems
than those compatible with standard reduction orders like LPO or KBO.

In this chapter we will recall multi-completion in Section 4.1 and completion
with termination tools in Section 4.2 before we present a unified approach in
Section 4.3.

4.1 Multi-Completion

We consider a set of reduction order O = {�1, . . . ,�n}. Multi-completion
simulates the parallel execution of completion runs for all of these orderings
but shares common inference steps. The key idea to sharing is a data structure
called node.

Definition 4.1. A node is a tuple 〈s : t, R0, R1, E〉 where the data s : t consist
of terms s, t and the labels R0, R1, E are subsets of O. The node condition
requires that R0, R1 and E are mutually disjoint, s �i t holds for all �i ∈ R0,
and t �i s for all �i ∈ R1.

37

4 Multi-Completion with Termination Tools

orient
N] {〈s : t, R0, R1, E]R〉}
N ∪ {〈s : t, R0 ∪R,R1, E〉}

if s �i t for all �i ∈ R and R 6= ∅

deduce
N

N ∪ {〈s : t,∅,∅, R ∩R′〉}

if N contains 〈`1 : r1, R, . . .〉 and 〈`2 : r2, R
′, . . .〉, R ∩ R′ 6= ∅ and

s←o→ t ∈ CP(`1 → r1, `2 → r2)

delete
N] {〈s : s,∅,∅, E〉}

N

if E 6= ∅

rewrite1
N] {〈s : t, R0, R1, E〉}

N ∪ {〈s : t, R0 \R,R1, E \R〉, 〈s : u,R0 ∩R,∅, E ∩R〉}

if 〈` : r,R, . . .〉 ∈ N , t→`→r u such that t
.
= `, and (R0 ∪ E) ∩R 6= ∅

rewrite2
N] {〈s : t, R0, R1, E〉}

N ∪ {〈s : t, R0 \R,R1 \R,E \R〉, 〈s : u,R0 ∩R,∅, (E ∪R1) ∩R〉}

if 〈` : r,R, . . .〉 ∈ N , t→`→r u such that t ·B`, and (R0∪R1∪E)∩R 6= ∅

gc
N] {〈s : t,∅,∅,∅〉}

N

subsume
N] {〈s : t, R0, R1, E〉, 〈s′ : t′, R′0, R

′
1, E

′〉}
N ∪ {〈s : t, R0 ∪R′0, R1 ∪R′1, E′′〉}

if s : t, s′ : t′ are variants, and E′′ = (E \ (R′0 ∪R′1)) ∪ (E′ \ (R0 ∪R1))

Figure 4.1: The inference system MKB of multi-completion.

Intuitively, a node 〈s : t, R0, R1, E〉 captures the state of the term pair s : t
in all simulated completion processes. All orders in the equation label E regard
the data as an equation s ≈ t while orders in the rewrite labels R0 and R1

consider it as rewrite rules s → t and t → s, respectively. Hence the node
〈s : t, R0, R1, E〉 is identified with 〈t : s,R1, R0, E〉.

Multi-completion is described by the inference system MKB operating on sets
of nodes as displayed in Figure 4.1. The rules gc and subsume are optional, they
serve the purpose of garbage collection and avoiding redundant nodes. To relate
a node set N to the simulated KB processes, projection functions are used.

Definition 4.2. For a node n = 〈s : t, R0, R1, E〉 and an order �i ∈ O, equation

38

4.1 Multi-Completion

and rule projections of n to �i are defined as

E[n, i] =

{
{s ≈ t} if �i ∈ E
∅ otherwise

R[n, i] =


{s→ t} if �i ∈ R0

{t→ s} if �i ∈ R1

∅ otherwise

These projections are naturally extended to node sets by defining E[N, i] =⋃
n∈N E[n, i] and R[N, i] =

⋃
n∈N R[n, i].

For a set of input equalities E , an MKB run N0 `MKB N1 `MKB N2 `MKB · · ·
starts with the initial node set N0 = NE = {〈s : t,∅,∅,O〉 | s ≈ t ∈ E}. We
define the set of persistent nodes as Nω =

⋃
i

⋂
j>iNj . The projection functions

can now be used to express relationships between MKB inference sequences and
simulated KB runs for orders �i ∈ O. The following simulation results [62] are
crucial to establish correctness of MKB.

Simulation Soundness Lemma 4.3. If N0 `αMKB Nα then for all �i ∈ O
there is some β 6 α such that (E[N0, i], R[N0, i]) `βKB (E[Nα, i], R[Nα, i]).

Proof. We first consider a single step N `MKB N ′ and apply case analysis to
prove validity of the KB step (E[N, i], R[N, i]) `=

KB (E[N ′, i], R[N ′, i]) which we
refer to by (∗).

– Assume orient replaced the node n = 〈s : t, R0, R1, E] R〉 by n′ = 〈s :
t, R0∪R,R1, E〉. For all �i ∈ O we have E[N \{n}, i] = E[N ′\{n′}, i] and
R[N \{n}, i] = R[N ′ \{n′}, i]. A case distinction reveals two possibilities:
If �i ∈ R, then s �i t must hold and we have R[n, i] = ∅ and E[n, i] =
{s ≈ t}, whereas R[n′, i] = {s → t} and E[n′, i] = ∅. Thus (∗) is a valid
orient step in KB. Otherwise, if �i /∈ R then we have E[n, i] = E[n′, i]
and R[n, i] = R[n′, i]. The projection of the considered MKB inference to
�i is thus an identity step, that is, (E[N, i], R[N, i]) = (E[N ′, i], R[N ′, i]).

– If deduce adds a node 〈s : t,∅,∅, R ∩ R′〉 then for all �i ∈ R ∩ R′ both
`1 → r1 and `2 → r2 occur in R[N, i] such that s←×→ t ∈ CP(`1 →
r1, `2 → r2), and s ' t ∈ E[N ′, i]. Therefore (∗) is a valid deduce step in
KB. For all �i /∈ R ∩R′ an identity step is obtained.

– Assume delete removes a node 〈s : s,∅,∅, E〉 and �i ∈ E. Then s ≈ s ∈
E[N, i] and s ≈ s /∈ E[N ′, i], hence (∗) is a valid delete step in KB. For
all �i /∈ E an identity step is obtained.

– Next, assume rewrite1 was used. For every order �i /∈ (R0 ∪ E) ∩R we
obtain an identity step. Otherwise, two cases have to be distinguished,
which are distinct due to the node condition.

i. If �i ∈ R0∩R then R[N, i] contains rules s→ t and `→ r such that
t→`→r u. Hence compose can be applied to replace s→ t by s→ u.
Indeed we have s→ t /∈ R[N ′, i] but s→ u ∈ R[N ′, i], so (∗) holds.

39

4 Multi-Completion with Termination Tools

ii. If �i ∈ E ∩R there is an equation s ' t in E[N, i] and a rule `→ r
in R[N, i] such that t→`→r u. Thus, in a KB step simplify can turn
s ' t into s ' u. As we have s ' t /∈ E[N ′, i] but s ' u ∈ E[N ′, i],
the step (∗) is valid in KB.

– In the case where rewrite2 was applied, the inference is an identity step
for every order �i /∈ (R0 ∪R1 ∪ E) ∩R. Otherwise, three disjoint possi-
bilities can be distinguished. If �i ∈ R0 ∩R or �i ∈ E ∩R then compose
or simplify can be applied, as argued in the case for rewrite1.

iii. If �i ∈ R1 ∩ R then there are rules ` → r and t → s in R[N, i]
such that a collapse step can turn the latter into an equation u ≈ s
because t ·B `. As we have t→ s /∈ R[N ′, i] but u ≈ s ∈ E[N ′, i], (∗)
is a valid KB inference.

– If gc was applied then (∗) obviously corresponds to an identity step on
the level of KB for every �i ∈ O, and the same holds for subsume.

By transfinite induction on α, we show that for a run N0 `αMKB Nα and �i ∈ O
there is some β 6 α such that there is a valid KB run (E[N0, i], R[N0, i]) `βKB
(E[Nα, i], R[Nα, i]). The claim clearly holds if α = 0. Let α = n + 1 ∈ N
and �i ∈ O. By the induction hypothesis there is some m 6 n admitting a
run (E[N0, i], R[N0, i]) `mKB (E[Nn, i], R[Nn, i]). According to the above case
distinction also the step Nn `MKB Nn+1 is reflected in a (possibly empty) KB
step (E[Nn, i], R[Nn, i]) `=

KB (E[Nn+1, i], R[Nn+1, i]), so (E[N0, i], R[N0, i]) `m
′

KB

(E[Nn+1, i], R[Nn+1, i]) for m′ 6 n + 1. Finally, if α = ω then by the induc-
tion hypothesis for all n ∈ N and �i ∈ O there is some m 6 n such that
(E[N0, i], R[N0, i]) `mKB (E[Nn, i], R[Nn, i]) is a valid KB run. Since E[Nω, i] =
E[
⋃
k

⋂
j>kNj , i] =

⋃
k

⋂
j>k E[Nj , i] and similarly R[Nω, i] =

⋃
k

⋂
j>k R[Nj , i],

in the limit also (E[N0, i], R[N0, i]) `ωKB (E[Nω, i], R[Nω, i]) is valid.

Thus any MKB run γ can be projected to a valid KB run for every �i ∈ O,
which we denote by γi.

Simulation Completeness Lemma 4.4. Let N0 be a node set such that E0 =
E[N0, i] and R0 = R[N0, i] for some �i ∈ O and there is a run (E0,R0) `αKB
(Eα,Rα). Then there is a node set Nα such that N0 `αMKB Nα, Eα = E[Nα, i],
and Rα = R[Nα, i] hold.

Proof. We first show that for any single step (E ,R) `KB (E ′,R′) such that
E = E[N, i] and R = R[N, i] for some �i ∈ O there is a node set N ′ such
that N `MKB N

′, E ′ = E[N ′, i], and R′ = R[N ′, i] hold. In the following case
analysis on the applied KB rule, (∗) refers to the proof obligations E ′ = E[N ′, i]
and R′ = R[N ′, i].

– Assume orient was applied to replace some equation s ' t ∈ E by the
rule s → t ∈ R′. Then there must be a node n = 〈s : t, R0, R1, E〉 in
N such that �i ∈ E and s �i t. We can thus apply orient in MKB with
R = {�i} to obtain N ′ = (N \ {n}) ∪ {〈s : t, R0 ∪ {�i}, R1, E \ {�i}〉},
so s ' t /∈ E[N ′, i] but s→ t ∈ R[N ′, i] such that (∗) holds.

40

4.1 Multi-Completion

– If deduce generates s ≈ t from an overlap involving rules `1 → r1 and
`2 → r2, there are nodes 〈`1 : r1, R, . . . 〉 and 〈`2 : r2, R

′, . . . 〉 in N such
that �i ∈ R∩R′. So we can apply deduce in MKB to obtain N ′ = N∪{〈s :
t,∅,∅, {�i},∅,∅〉} and as s ≈ t ∈ E[N ′, i] (∗), is satisfied.

– If delete removes some equation s ≈ s from E then N must contain a
node n = 〈s : s,R0, R1, E] {�i}〉. Since no reduction order can orient
the equation s ≈ s, the sets R0 and R1 must be empty. Thus n can be
removed by delete in MKB, and obviously (∗) holds.

– If simplify reduces an equation s ' t to s ' u using a rule `→ r, there are
nodes n = 〈s : t, R0, R1, E〉 and 〈` : r,R, . . . 〉 in N such that �i ∈ E ∩R.
If t is a variant of ` we can therefore use rewrite1 and otherwise rewrite2

to infer N ′ = (N \ {n})∪ {〈s : t, R0, R1, E \ {�i}〉} ∪ {〈s : u,∅,∅, {�i}〉}
Since s ' u instead of s ' t occurs in E[N ′, i], (∗) holds.

– If compose rewrites s→ t to s→ u using a rule `→ r, N contains nodes
n = 〈s : t, R0, R1, E〉 and 〈` : r,R, . . . 〉 such that �i ∈ R0 ∩ R. Thus
rewrite1 or rewrite2 applies, depending on whether t

.
= ` or t ·B `. We

obtain N ′ = (N \ {n}) ∪ {〈s : t, R0 \ {�i}, R1, E〉, 〈s : u, {�i},∅,∅〉} and
as s→ u instead of s→ t occurs in R[N ′, i], (∗) is satisfied.

– Finally, assume collapse turns a rule t → s into an equation u ≈ s using
`→ r. Then t ·B ` must hold, and the set N must contain nodes n = 〈s :
t, R0, R1, E〉 and 〈` : r,R, . . . 〉 such that �i occurs in R1∩R. So again (∗)
can be satisfied if N ′ is obtained from N with an application of rewrite2

such that N ′ = (N \{n})∪{〈s : t, R0, R1\{�i}, E〉}∪{〈s : u,∅,∅, {�i}〉}.
Since t→ s /∈ R[N ′, i] but s ≈ u ∈ E[N ′, i], (∗) holds.

By transfinite induction on α, we now show that whenever E0 = E[N0, i] and
R0 = R[N0, i] for some �i ∈ O and there is a run (E0,R0) `αKB (Eα,Rα)
then there is also a node set Nα such that N `αMKB Nα, Eα = E[Nα, i], and
Rα = R[Nα, i] hold. The claim clearly holds if α = 0. If α = n + 1 ∈ N then
by the induction hypothesis there is some Nn such that N `nMKB Nn, En =
E[Nn, i], and Rn = R[Nn, i] hold. According to the above case distinction also
the step (En,Rn) `KB (En+1,Rn+1) can be reflected in a step Nn `MKB Nn+1

such that En+1 = E[Nn+1, i] and Rn+1 = R[Nn+1, i] hold. Finally, if α = ω
then by the induction hypothesis there are valid MKB runs N `nMKB Nn such
that En = E[Nn, i] and Rn = R[Nn, i] for all n ∈ N. Thus in the limit also
N `ωMKB Nω is valid, and we have

Eω =
⋃
k

⋂
j>k

Ej =
⋃
k

⋂
j>k

E[Nj , i] = E[
⋃
k

⋂
j>k

Nj , i] = E[Nω, i]

and similarly also Rω = R[Nω, i].

Definition 4.5. A run γ succeeds if γi succeeds for some �i ∈ O, and it fails
if γi fails for all �i ∈ O. It is fair if it is finite and some γi is a nonfailing and

41

4 Multi-Completion with Termination Tools

fair1 KB run, or if it is infinite and all γi are either failing or fair.

From the simulation properties it is straightforward to derive correctness and
completeness results for MKB.

Correctness Theorem 4.6. Any nonfailing and fair run NE `αMKB N with
α 6 ω succeeds.

Proof. By Lemma 4.3 and fairness there is some �i ∈ O such that the KB run
γi is fair and nonfailing. By Theorem 3.12 the run γi succeeds.

Completeness Theorem 4.7. Let R be a finite convergent TRS for E such
that R ⊆ �i for some �i ∈ O. If the KB run γi associated with an MKB run
γ starting from NE is fair and nonfailing then γ succeeds with a TRS R′ in
finitely many steps.

Proof. As γi is fair and nonfailing this is immediate from Theorem 3.13 and
Definition 4.5.

Example 4.8. Consider the set of equations from Example 3.17:

f(f(g(x))) ≈ x (1)

g(g(x)) ≈ f(g(x)) (2)

and let �1 and �2 be KBOs with w0 = w(f) = w(g) = 1, where �1 has
precedence g � f while in �2 we have f � g. Then the initial node set NE
contains the nodes

〈f(f(g(x))) : x,∅,∅, {�1,�2}〉 (1)

〈g(g(x)) : f(g(x)),∅,∅, {�1,�2}〉 (2)

When applying orient to both nodes, we obtain

〈f(f(g(x))) : x, {�1,�2},∅,∅〉 (1)

〈g(g(x)) : f(g(x)), {�1}, {�2},∅〉 (2)

As the rules f(f(g(x)))→ x and g(g(x))→ f(g(x)) give rise to a critical overlap,
deduce adds the node

〈f(f(f(g(x)))) : g(x),∅,∅, {�1}〉 (3)

When this node is oriented and the process using �1 is advanced further, a
convergent system is only derived in the limit, generating infinitely many nodes
with data fn+2(g(x)) : gn(x) for all n > 0. But a fair MKB run also needs to
consider the process using �2 at some point. Then rewrite2 can apply node (2)
to (1), which changes (1) and adds a new node:

〈f(f(g(x))) : x, {�1},∅,∅〉 (1)

〈f(g(g(x))) : x,∅,∅, {�2}〉 (4)

1 According to the original definition in [62] a finite MKB run is fair if it fair for some i. But
then a finite, fair and nonfailing MKB run γ need not succeed: a run γ which is fair for only
one i would still be fair even if γi is failing. We thus use the modified notion defined above.

42

4.1 Multi-Completion

rewrite
N] {〈s : t, R0, R1, E〉}

N ∪ {〈s : t, R0 \R,R1 \R,E \R〉, 〈s : u,R0 ∩R,∅, (E ∪R1) ∩R〉}

if 〈` : r,R, . . .〉 ∈ N , t→`→r u, and (R0 ∪R1 ∪ E) ∩R 6= ∅

Figure 4.2: The rewrite rule in MKB′.

Another application of rewrite2 using (2) yields

〈f(g(g(x))) : x,∅,∅,∅〉 (4)

〈g(g(g(x))) : x,∅,∅, {�2}〉 (5)

Node (4) can be removed by gc, and node (5) is oriented as

〈g(g(g(x))) : x, {�2},∅,∅〉 (5)

Now deduce produces the following additional nodes:

〈f(x) : g(g(g(g(x)))),∅,∅, {�2}〉 (6)

〈g(g(g(g(x)))) : g(g(g(g(x)))),∅,∅, {�2}〉 (7)

〈g(g(g(g(g(x))))) : g(g(g(g(g(x))))),∅,∅, {�2}〉 (8)

While (7) and (8) are subject to delete, we can apply (5) in a rewrite2 step to
(6). This results in (5) being empty and a new node which is oriented as

〈f(x) : g(x), {�2},∅,∅〉 (9)

For the current node set N we now have R[N, 2] = {g(g(g(x))) → x, f(x) →
g(x)} and E[N, 2] = ∅. As R[N, 2] admits no further critical pairs, the pro-
jected run γ2 is fair, so R[N, 2] is convergent.

Finite Runs

When restricting to finite runs, multi-completion can be defined to emulate KB′,
which simplifies the inference system in that both rewrite inference rules can
be combined. We thus define finite multi-completion by the inference system
MKB′, which contains the orient, deduce, and delete rules (possibly together with
the optional subsume and gc) from MKB, plus the single rewrite rule displayed
in Figure 4.2.

With proofs very similar to those of Lemmas 4.3 and 4.4, we obtain the
following results.

Simulation Soundness Lemma 4.9. If N0 `∗MKB′ Nn is a finite run then for
all �i ∈ O we have (E[N0, i], R[N0, i]) `∗KB′ (E[Nn, i], R[Nn, i]).

As for MKB, any MKB′ run γ can thus be projected to a valid KB′ run for
every �i ∈ O, which we denote by γi.

43

4 Multi-Completion with Termination Tools

Simulation Completeness Lemma 4.10. Let N0 be a node set such that
E0 = E[N0, i], and R0 = R[N0, i] for some �i ∈ O and there is a finite run
(E0,R0) `∗KB′ (Eα,Rα). Then there is a node set Nn such that N0 `∗MKB′ Nn,
En = E[Nn, i], and Rn = R[Nn, i] hold.

Success, failure and fairness of MKB′ runs is defined as for MKB runs. From
the simulation properties, correctness and completeness of KB′ (Theorems 3.12
and 3.13) it is thus straightforward to derive correctness and completeness re-
sults for MKB′ in the same way as for MKB.

Correctness Theorem 4.11. Any finite nonfailing and fair run NE `nMKB′ N
succeeds.

Completeness Theorem 4.12. Let R be a finite convergent TRS for E such
that R ⊆ �i for some �i ∈ O. If the finite KB′ run γi associated with an MKB
run γ starting from NE is fair and nonfailing then γ succeeds with a TRS R′
in finitely many steps.

4.2 Completion with Termination Tools

As standard completion procedures critically depend on the choice of the re-
duction order supplied as input, the evolution of powerful modern termination
provers offers the potential to guarantee termination by means of automatic
tools instead of a fixed order. This approach due to Wehrman, Stump and
Westbrook [107] was implemented in the tool Slothrop. Some care has to be
taken because it is known that changing the reduction order during a com-
pletion run may result in a non-confluent rewrite system [91]. The inference
system KBtt underlying Slothrop thus operates on triples (E ,R, C) consisting
of a set of equations E , a rewrite system R and an additional rewrite system
C. This extra constraint system ensures that orientations are never reversed
throughout a run, thereby guaranteeing confluence of the derived system.

The resulting inference system is shown in Figure 4.3. A KBtt inference
sequence of the form

(E0,R0, C0) ` (E1,R1, C1) ` (E2,R2, C2) ` · · ·

is called a run. We will in the sequel assume that R0 = C0 = ∅ although all
results in the remainder of this section generalize to the setting where R0 and
C0 are non-empty, provided that R0 = C0 ⊆ �.

Correctness of KBtt can be shown by relating it to a KB run that uses as
reduction order the transitive closure of the rewrite relation induced by the
final constraint system C. Since C is obtained as the union of all oriented
rewrite rules and the limit of a sequence of terminating TRSs need not be
terminating, correctness of KBtt is only guaranteed for finite runs [107]. A
simple counterexample for infinite runs is the following:

Example 4.13. Consider the set of equations consisting of the following two
equations:

f(f(g(x))) ≈ f(g(g(x))) f(g(a)) ≈ f(g(g(a)))

44

4.2 Completion with Termination Tools

orient
E] {s ' t},R, C

E ,R∪ {s→ t}, C ∪ {s→ t}
if C ∪ {s→ t} terminates

deduce
E ,R, C

E ∪ {s ≈ t},R, C
if s←o→ t ∈ CP(R)

delete
E] {s ≈ s},R, C

E ,R, C

simplify
E] {s ' t},R, C
E ∪ {s ' u},R, C

if t→R u

compose
E ,R] {s→ t}, C
E ,R∪ {s→ u}, C

if t→R u

collapse
E ,R] {t→ s}, C
E ∪ {u ≈ s},R, C

if t→R u

Figure 4.3: The inference system KBtt of completion with termination tools.

In a KBtt run both equations can be oriented from left to right:

f(f(g(x)))→ f(g(g(x))) (1)

f(g(a))→ f(g(g(a))) (2)

as the rewrite system {(1), (2)} terminates. The overlap 〈(2), 1, (1)〉 creates
the critical pair f(f(g(g(a))))←o→ f(g(g(a))). The corresponding equation is
simplified to f(g(g(g(a)))) ≈ f(g(g(a))) using rule (1). This equation can be
oriented as

f(g(g(a)))→ f(g(g(g(a)))) (3)

because the constraint system {(1), (2), (3)} terminates. In a similar fashion the
overlap 〈(3), 1, (1)〉 creates a critical pair f(f(g(g(g(a))))) ←o→ f(g(g(g(a)))),
the corresponding equation is simplified using rule (1) and oriented to

f(g(g(g(a))))→ f(g(g(g(g(a))))) (4)

It is easy to see that this run subsequently creates the terminating rewrite
systems Rn = {f(f(g(x)))→ f(g(g(x)))} ∪ {f(gk(a))→ f(gk+1(a)) | 1 6 k 6 n}.
But in the limit we obtain Rω = Cω = {f(f(g(x)))→ f(g(g(x)))} ∪ {f(gk(a))→
f(gk+1(a)) | 1 6 k} which is non-terminating as it admits the infinite sequence

f(g(a))→ f(g(g(a)))→ f(g(g(g(a))))→ · · ·

We thus only consider finite KBtt runs

(E0,R0, C0) ` (E1,R1, C1) ` · · · ` (En,Rn, Cn)

45

4 Multi-Completion with Termination Tools

For this reason Figure 4.3 differs from the original inference system [107] in
that the collapse rule was relaxed as done for KB′. Success, failure and fairness
are defined exactly as for KB′. The following simulation properties relate KBtt
runs to KB′ runs [107].

Simulation Soundness Lemma 4.14. Any run (E0,∅,∅) `nKBtt (En,Rn, Cn)
admits a KB′ run (E0,∅) `nKB′ (En,Rn) using reduction order →+

Cn.

Proof. Let �n denote →+
Cn . We use induction on n. The claim is trivially

true for n = 0. For a run of the form (E0,∅,∅) `∗KBtt (En,Rn, Cn) `KBtt
(En+1,Rn+1, Cn+1), the induction hypothesis yields a corresponding KB′ run
(E0,∅) `∗KB′ (En,Rn) using the reduction order �n. Since constraint rules are
never removed we have Ck ⊆ Cn+1 and hence �k ⊆ �n for all k 6 n so the
same run can be obtained with �n+1. Case distinction on the applied KBtt
rule shows that a step (En,Rn) `KB′ (En+1,Rn+1) using �n+1 is possible: If
orient added the rule s → t then s → t ∈ Cn+1, so s �n+1 t holds by definition
and KB′ can apply orient as well. Clearly, in the remaining cases the inference
step can be simulated by the corresponding KB′ rule since no conditions on the
order are involved.

Simulation Completeness Lemma 4.15. If (E0,∅) `nKB′ (En,Rn) is a valid
KB′ run using � then there is also a valid KBtt run (E0,∅,∅) `nKBtt (En,Rn, Cn)
such that Cn ⊆ �.

Proof. By induction on n. For n = 0 the claim is trivially satisfied. If
α = n + 1 then the induction hypothesis yields a KBtt run (E0,∅,∅) `nKBtt
(En,Rn, Cn) such that Cn ⊆ � An easy case distinction on the last inference
step (En,Rn) `KB′ (En+1,Rn+1) shows that using � for termination checks
allows for a corresponding KBtt step.

If the applied inference rule is orient then En = En+1] {s ' t}, Rn+1 =
Rn] {s→ t} and s � t. Thus also Cn ∪ {s→ t} ⊆ �, ensuring termination of
the extended constraint system Cn+1. Hence the KBtt rule orient can be applied
to obtain (En,Rn, Cn) `KBtt (En \ {s ' t},Rn ∪ {s → t}, Cn ∪ {s → t}). In the
remaining cases one can set Cn+1 = Cn and replace the applied rule by its KBtt
counterpart since no conditions on the order are involved.

Correctness Theorem 4.16. Any finite nonfailing and fair KBtt run suc-
ceeds.

Proof. Let γ be a run (E0,∅,∅) `nKBtt (∅,Rn, Cn) which is finite and fair.
According to Lemma 4.14, there exists a valid nonfailing KB′ run (E0,∅) `nKB′
(∅,Rn) which is also fair. By Theorem 3.24 this run succeeds, and thus also γ
succeeds.

Example 4.17. Convergent rewrite systems representing group theory with
commuting endomorphisms have applications in decision procedures for unin-
terpreted functions, as used in SMT solvers [99]. Consider the set of equations

46

4.3 Multi-Completion with Termination Tools

CGE2 describing two commuting group endomorphisms:

e · x ≈ x f(x · y) ≈ f(x) · f(y)

i(x) · x ≈ e g(x · y) ≈ g(x) · g(y)

x · (y · z) ≈ (x · y) · z f(x) · g(y) ≈ g(y) · f(x)

For this set of equations no completion procedure using LPO or KBO can
construct a convergent TRS since the equation f(x) · g(y) ≈ g(y) · f(x) is not
orientable. Using completion with termination tools, Slothrop [107] was the first
tool to succeed with the following convergent TRS:

e · x→ x f(x) · f(y)→ f(x · y) x · (y · z)→ (x · y) · z
x · e→ x f(e)→ e (x · y) · i(y)→ x

i(x) · x→ e i(f(x))→ f(i(x)) (x · i(y)) · y → x

x · i(x)→ e g(x) · g(y)→ g(x · y) f(x) · (f(y) · z)→ f(x · y) · z
i(e)→ e g(e)→ e g(x) · (g(y) · z)→ g(x · y) · z

i(i(x))→ x i(g(x))→ g(i(x)) g(x) · (f(y) · z)→ f(x) · (g(y) · z)
i(x · y)→ i(y) · i(x) g(x) · f(y)→ f(y) · g(x)

4.3 Multi-Completion with Termination Tools

The reduction order required as input by standard completion procedures is
crucial for success, but hard to predict in advance. Completion with termina-
tion tools (KBtt) as outlined in Section 4.2 circumvents this critical parameter
and instead employs automatic termination tools. But the orient rule in KBtt
is often not deterministic. If given an equation s ≈ t and a set C of previ-
ously oriented rules such that both C ∪ {s → t} and C ∪ {t → s} terminate
then an implementation encounters the challenge how to deal with this choice.
Slothrop uses a best-first strategy to decide which branch to explore further. In
contrast, multi-completion with termination tools keeps track of both orienta-
tions but avoids an explosion of the search space by integrating the concept of
multi-completion to share common inferences. We start with some preliminary
definitions.

Multi-completion with termination tools can be conceived as the parallel
simulation of multiple KBtt branches. Every branch corresponds to a series of
decisions on how to orient nodes, which we call a process and describe by a
sequence of bits.

Definition 4.18. A process p is a bit string in (0 + 1)∗. A set of processes P is
called well-encoded if there are no pairs of processes p and p′ in P such that p′

is a proper prefix of p. The initial process is represented by the empty string ε.

Definition 4.19. Let P and S be well-encoded process sets. The splitting
operation is defined by splitS(P) = (P \ S) ∪ {p0, p1 | p ∈ P ∩ S}.

The following result is easily verified.

47

4 Multi-Completion with Termination Tools

Lemma 4.20. If P and Q are well-encoded process sets then P ∩ Q, P \ Q,
and splitP (Q) are again well-encoded.

Multi-completion procedures share inference steps among multiple processes
by employing a data structure called node. All multi-completion procedures
discussed in this chapter operate on sets of nodes.

Definition 4.21. A node 〈s : t, R0, R1, E, C0, C1〉 contains as data two terms
s and t and as labels sets of processes R0, R1, E, C0, C1. The node condition
requires that R0 ∪ C0, R1 ∪ C1 and E are mutually disjoint.

The process sets R0, R1 are called rewrite labels, E is the equation label and
C0, C1 are the constraint labels. The node 〈s : t, R0, R1, E, C0, C1〉 is identified
with 〈t : s,R1, R0, E, C1, C0〉, as is the case for MKB. The sets of all pro-
cesses occurring in a node n or a node set N are denoted by P(n) and P(N),
respectively.

Definition 4.22. For a set of equations E , the initial node set NE consists of
all nodes 〈s : t,∅,∅, {ε},∅,∅〉 such that s ≈ t is in E .

We call a node n (node set N) well-encoded if P(n) (P(N)) is. A node set
will be said to adhere to the node condition if all its nodes do. Note that for
any set of equations E , the initial node set NE is well-encoded and satisfies the
node condition.

To relate a node set N to the corresponding states of simulated KBtt pro-
cesses, projections are used in a similar way as for MKB.

Definition 4.23. For a node n = 〈s : t, R0, R1, E, C0, C1〉 satisfying the node
condition and a process p the equation, rule, and constraint projections of n to
p are defined as

E[n, p] =

{
{s ≈ t} if p ∈ E
∅ otherwise

R[n, p] =


{s→ t} if p ∈ R0

{t→ s} if p ∈ R1

∅ otherwise

C[n, p] =


{s→ t} if p ∈ C0

{t→ s} if p ∈ C1

∅ otherwise

These projections are naturally extended to node sets by defining E[N, p] =⋃
n∈N E[n, p], R[N, p] =

⋃
n∈N R[n, p] and C[N, p] =

⋃
n∈N C[n, p].

The inference rules of MKBtt are depicted in Figure 4.4. All rules are to
be applied to well-encoded node sets which satisfy the node condition.2 The
following paragraphs add some clarifying remarks on the inference rules.

2 Note that the inference system presented here is slightly simpler than the one given in [112]
as it was observed that the two different rewrite rules could actually be merged.

48

4.3 Multi-Completion with Termination Tools

orient
N] {〈s : t, R0, R1, E, C0, C1〉}

splitS(N) ∪ {〈s : t, R0 ∪Rlr, R1 ∪Rrl, E′, C0 ∪Rlr, C1 ∪Rrl〉}

if Elr, Erl ⊆ E, E′ = E \ (Elr ∪Erl), C[N, p]∪{s→ t} terminates
for all p ∈ Elr and C[N, p] ∪ {t → s} terminates for all p ∈ Erl,
S = Elr ∩ Erl, Rlr = (Elr \ Erl) ∪ {p0 | p ∈ S} and Rrl =
(Erl \ Elr) ∪ {p1 | p ∈ S}, and Elr ∪ Erl 6= ∅

deduce
N

N ∪ {〈s : t,∅,∅, R ∩R′,∅,∅〉}

if there exist nodes 〈`1 : r1, R, . . . 〉 and 〈`2 : r2, R
′, . . . 〉 in N such

that s←o→ t ∈ CP(`1 → r1, `2 → r2) and R ∩R′ 6= ∅

delete
N] {〈s : s,∅,∅, E,∅,∅〉}

N

if E 6= ∅

rewrite
N] {〈s : t, R0, R1, E, C0, C1〉}

N ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (R1 ∪ E) ∩R,∅,∅〉}

if 〈` : r,R, . . . 〉 ∈ N , t→`→r u, and R ∩ (R0 ∪R1 ∪ E) 6= ∅

gc
N] {〈s : t,∅,∅,∅,∅,∅〉}

N

subsume
N] {〈s : t, R0, R1, E, C0, C1〉}] {〈s′ : t′, R′0, R

′
1, E

′, C ′0, C
′
1〉}

N ∪ {〈s : t, R0 ∪R′0, R1 ∪R′1, E′′, C0 ∪ C ′0, C1 ∪ C ′1〉}

if s : t and s′ : t′ are variants, and E′′ = (E \ (R′0 ∪ R′1 ∪ C ′0 ∪
C ′1)) ∪ (E′ \ (R0 ∪R1 ∪ C0 ∪ C1))

Figure 4.4: The inference system MKBtt.

– The orient rule applied to a node 〈s : t, R0, R1, E, C0, C1〉 attempts to
turn the equation s ≈ t into a rule s→ t or t→ s for as many processes
as possible. This is modelled in the node structure by moving processes
p ∈ E to rewrite labels. More precisely, the respective inference rule in
KBtt is modelled by checking for every process p ∈ E whether its current
constraint system C[N, p] terminates when extended with s→ t or t→ s.
If C[N, p] ∪ {s → t} terminates then p is added to the set Elr, and if
C[N, p] ∪ {t → s} terminates then p is added to the set Erl. The set
Elr \ Erl (Erl \ Elr) thus collects processes which can only perform the
orientation s → t (t → s). These processes are added to R0 and C0

(R1 and C1). The set S = Elr ∩ Erl collects processes that allow both
orientations. Thus every p ∈ S is split into two child processes p0 and p1,
and pi is added to Ri and Ci, for i ∈ {0, 1}. Finally, splitS(N) replaces
every occurrence of a process p in S by its descendants p0 and p1 in all
nodes in N .

49

4 Multi-Completion with Termination Tools

– If the current node set N contains nodes with data `1 : r1 and `2 : r2 such
that the rules `1 → r1 and `2 → r2 give rise to a critical pair s ←o→ t,
deduce adds a respective node for all processes p that have both rules
present in their current rewrite system R[N, p].

– Nodes with equal terms may be removed by delete. Rewrite and constraint
labels are assumed empty as a rule s→ s would contradict termination.

– In standard completion, given a term pair s : t and a rewrite step t
`→r−−→ u,

the rules compose, simplify and collapse create a term pair s : u. The
MKBtt rule rewrite allows to simulate all three rules at once.

– To increase efficiency, the optional gc rule deletes nodes with empty labels.

– The rule subsume is optional as well, it merges pairs of nodes which have
the same data up to variable renaming.

An MKBtt inference sequence N0 ` N1 ` N2 ` · · · ` Nn where N0 = NE
for some set of equations E is called a run. We will now show some simple yet
crucial properties of MKBtt runs.

Lemma 4.24. Consider an MKBtt run N0 ` N1 ` N2 ` · · · ` Nn where
N0 = NE for some set of equations E, and let k 6 n. Then the rewrite system
C[Nk, p] is terminating and R[Nk, p] ⊆ →+

C[Nk,p]
for all p ∈ P(Nk).

Proof. We apply induction on k and refer to the inclusion R[Nk, p] ⊆ →+
C[Nk,p]

by (∗). The claim holds for N0 since for the single process ε occurring in N0 we
have R[N0, ε] = C[N0, ε] = ∅. For the induction step we assume that the claim
holds for Nk and show that it is still true for Nk+1 by a case distinction on the
rule applied in Nk ` Nk+1, where the notation from Figure 4.4 is used.

– Assume orient is applied to a node 〈s : t, R0, R1, E, C0, C1〉. For every
process p ∈ P(Nk+1)\(Rlr∪Rrl) the claim holds as R[Nk, p] = R[Nk+1, p]
and C[Nk, p] = C[Nk+1, p]. Consider a process p ∈ Rlr. Thus p ∈ Elr \Erl
or p = q0 such that q ∈ S. In the former case the TRS C[Nk+1, p] =
C[Nk, p] ∪ {s → t} terminates and R[Nk+1, p] = R[Nk, p] ∪ {s → t}, so
by the induction hypothesis (∗) it follows that R[Nk+1, p] ⊆ →+

C[Nk+1,p]
.

Similarly, in the latter case C[Nk+1, p] = C[Nk, q] ∪ {s → t} terminates
and R[Nk+1, p] = R[Nk, q] ∪ {s → t}, so the induction hypothesis (∗)
applied to q implies R[Nk+1, p] ⊆ →+

C[Nk+1,p]
. The argument for a process

in Rrl is symmetric.

In all remaining cases C[Nk, p] = C[Nk+1, p], so C[Nk+1, p] terminates according
to the induction hypothesis for all p ∈ P(Nk+1).

– Assume rewrite is applied. For p ∈ R∩R0 we have R[Nk+1, p] = R[Nk, p]\
{s → t} ∪ {s → u}, and R[Nk, p] contains rules s → t and ` → r such
that t →`→r u. By (∗) and transitivity also s →+

C[Nk+1,p]
u holds. For

p ∈ R∩R1 we have R[Nk+1, p] = R[Nk, p]\{s→ t} and for p ∈ R∩E one
obtains R[Nk+1, p] = R[Nk, p], so the claim follows from the induction
hypothesis.

50

4.3 Multi-Completion with Termination Tools

– Assume subsume was applied. For all processes p ∈ R′0 we haveR[Nk+1, p] =
R[Nk, p] \ {s′ → t′} ∪ {s→ t}. Let C abbreviate C[Nk+1, p]. Since s′ → t′

and s→ t are variants and s′ →+
C t
′ by assumption, also s→+

C t holds. A
similar argument applies to processes p ∈ R′1. For all other processes we
have R[Nk+1, p] = R[Nk, p] such that the claim is satisfied.

– If delete, deduce, or gc was applied then R[Nk, p] = R[Nk+1, p] for all p ∈
P(Nk+1), so the proof obligations follow from the induction hypothesis.

From this result we can immediately conclude that rewrite projections applied
to node sets in MKBtt runs yield terminating rewrite systems.

Corollary 4.25. In an MKBtt run N0 ` N1 ` N2 ` · · · the rewrite system
R[Nk, p] is terminating for all node sets Nk with k > 0 and every process p ∈
P(Nk).

Lemma 4.26. In an MKBtt run N0 ` N1 ` N2 ` · · · every node set Nk is
well-encoded and satisfies the node condition.

Proof. We apply induction on k. The claim clearly holds for N0. Otherwise, the
well-encoded set Nk satisfies the node condition by the induction hypothesis.
The following case distinction on the applied MKBtt rule shows that this also
holds for Nk+1. We use the notation from Figure 4.4.

– Assume orient is applied to a node n = 〈s : t, R0, R1, E, C0, C1〉. First we
will argue that Nk+1 is well-encoded. The only additional processes in
Nk+1 are those in S0 = {p0 | p ∈ S} and S1 = {p1 | p ∈ S}. If some
process q ∈ P(Nk+1) \ (S0 ∪ S1) = P(Nk) \ S were a prefix of a process
p0 ∈ S0 (p1 ∈ S1) then it is either a prefix of p ∈ P(Nk) or q = p0
(q = p1). Both contradict well-encodedness of Nk. If a process p0 ∈ S0

(p1 ∈ S1) was a prefix of some process q ∈ P(Nk)\S then also p ∈ P(Nk)
must be a prefix of q. Since p ∈ S but q 6∈ S the processes p and q must
be different, which contradicts well-encodedness of Nk. Hence Nk+1 must
be well-encoded.

It remains to show that the additional node satisfies the node condition.
But this is easy to see since n satisfies the node condition, the labels
Elr (Erl) are moved from the equation label to the first (second) rewrite
and constraint label, and also S0 (S1) is only added to the first (second)
rewrite and constraint label.

In all remaining cases P(Nk+1) = P(Nk), so Nk+1 is clearly well-encoded.

– If deduce is applied then the single additional node in Nk+1 has only one
non-empty label, so Nk+1 again adheres to the node condition.

– If delete or gc is applied then Nk+1 ⊆ Nk, so Nk+1 clearly satisfies the
node condition.

51

4 Multi-Completion with Termination Tools

– Assume rewrite is applied. For the node with data s : u, the label R0∩R is
disjoint from (R1∪E)∩R since R0, R1 and E are disjoint by assumption.
As in the node with data s : t processes are only removed from labels all
nodes in Nk+1 satisfy the node condition.

– Finally, consider the case where subsume is applied. First note that the
equation label of the newly created node must be disjoint from all other
labels: the processes in E \ (R′0 ∪ R′1 ∪ C ′0 ∪ C ′1) cannot occur in any
other label as E is disjoint from all of R0, R1, C0 and C1 by the node
condition, and a similar argument holds for the processes in (E′ \ (R0 ∪
R1∪C0∪C1). Furthermore, no process in R0 can occur in R1 or C1 by the
well-encodedness assumption. Also the intersection (R0 ∪C0)∩ (R′1 ∪C ′1)
must be empty: If there was a process p ∈ R0 ∩ (R′1 ∪C ′1) then according
to Lemma 4.24 we have s →+

C t and t′ →+
C s′ for C = C[Nk, p]. Since

s → t and s′ → t′ are variants this contradicts termination of C[Nk, p].
A symmetric argument shows that (R1 ∪ C1) ∩ (R′0 ∪ C ′0) is empty, so
according to the definition of subsume the node set Nk+1 satisfies the
node condition.

According to Lemma 4.26 all node sets occurring in a run are well-encoded
and satisfy the node condition. This property will be used freely in the sequel.
Note that we restrict to finite runs of some length n since the use of termination
tools is only sound for finite runs (cf. Example 4.13).

Before we can state properties of MKBtt runs, notions to track process splits
in the course of an inference sequence are required.

Definition 4.27. Consider an MKBtt inference step N ` N ′. If orient was
applied then the set of processes S which was split into two child processes is
called the step’s split set. For all other inference rules the split set is empty.
For a step with split set S and p′ ∈ P(N ′), we define the predecessor of p′ as

predS(p′) =

{
p if p′ = p0 or p′ = p1 for some p ∈ S
p′ otherwise

In Lemmas 4.28 and 4.29 we prove that an MKBtt step corresponds to a
(possibly non-proper) KBtt step for every process occurring in some node, and
every KBtt step can be modelled by MKBtt. Here `= denotes the reflexive
closure of the KBtt inference relation `.

Lemma 4.28. Let N , N ′ be well-encoded node sets which satisfy the node
condition. For an MKBtt step N ` N ′ with split set S the KBtt step

(E[N, p], R[N, p], C[N, p]) `= (E[N ′, p′], R[N ′, p′], C[N ′, p′]) (4.1)

is valid for all p′ ∈ P(N ′) such that p = predS(p′). Moreover, there exists at
least one process p′ ∈ P(N ′) for which the step is not an equality step if the rule
applied in N ` N ′ is not gc or subsume.

Proof. By case analysis on the applied MKBtt rule in N ` N ′.

52

4.3 Multi-Completion with Termination Tools

– Assume orient with split set S replaced n = 〈s : t, R0, R1, E, C0, C1〉 by
n′ = 〈s : t, R0 ∪ Rlr, R1 ∪ Rrl, E′, C0 ∪ Rlr, C1 ∪ Rrl〉. Let p′ be a process
in P(N ′) and p = predS(p′) be its predecessor with respect to S. We
have E[N \ {n}, p] = E[N ′ \ {n′}, p′], R[N \ {n}, p] = R[N ′ \ {n′}, p′]
and C[N \ {n}, p] = C[N ′ \ {n′}, p′]. These sets will in the sequel be
denoted by E , R and C, respectively. A further case distinction reveals
three possibilities:

i. If p′ ∈ Rlr, by definition of orient R[n′, p′] = C[n′, p′] = {s→ t} and
E[n′, p′] = ∅. Inference (4.1) is thus a valid orient step in KBtt if p
happens to be in E. Since p′ occurs in Rlr, either p′ ∈ Elr \ Erl or
p′ = p0 for some p ∈ S. If p′ ∈ Elr \ Erl then p ∈ E follows from
p = predS(p′) = p′ and Elr ⊆ E. Otherwise p = predS(p′) entails
p′ = p0 such that p ∈ S and because of S ⊆ E also p ∈ E holds. As
p occurs in E one has E[n, p] = {s ' t} and—because of the node
condition—R[n, p] = C[n, p] = ∅. Hence the KBtt inference step

(E] {s ≈ t},R, C) `KBtt (E ,R∪ {s→ t}, C ∪ {s→ t})

is valid since C ∪ {s→ t} = C[N, p] ∪ {s→ t} terminates according
to the side condition of orient in MKBtt.

ii. If p′ ∈ Rrl, similar reasoning as in the previous case shows that the
simulated inference step is

(E] {s ≈ t},R, C) `KBtt (E ,R∪ {t→ s}, C ∪ {t→ s})

iii. Finally, if p′ /∈ Rlr ∪ Rrl then process p′ was not affected in this
inference step, so p = p′ and we have E[n, p] = E[n′, p′], R[n, p] =
R[n′, p′] and C[n, p] = C[n′, p′]. The projection of the considered
MKBtt inference to process p′ is thus an identity step.

In all remaining cases p = p′ holds as no process splitting occurs.

– If deduce adds a node 〈s : t,∅,∅, R∩R′,∅,∅〉 then for all p ∈ R∩R′ both
`1 → r1 and `2 → r2 occur in R[N, p]. Hence deduce can also be applied
in KBtt, and indeed E[N ′, p] = E[N, p] ∪ {s ≈ t}. For all p 6∈ R ∩ R′ the
inference corresponds to an identity step.

– Whenever delete removes some node 〈s : s,∅,∅, E,∅,∅〉 then s ≈ s ∈
E[N, p] for all p ∈ E, and hence delete also applies in KBtt. For all p /∈ E
an identity step is obtained.

– Next, assume rewrite was used. For every process p /∈ (R0 ∪R1 ∪ E) ∩R
an identity step is obtained. Otherwise, three cases can be distinguished
which are distinct due to the node condition.

i. If p ∈ R0 ∩R then R[N, p] contains rules s→ t and `→ r such that
t→`→r u. Hence compose can be applied to replace s→ t by s→ u,
which is modelled in MKBtt by moving p from the rewrite label of a
node with data s : t to a node with data s : u.

53

4 Multi-Completion with Termination Tools

ii. If p ∈ E∩R there is an equation s ' t in E[N, p] and a rule `→ r in
R[N, p] such that t→`→r u. Thus simplify can turn s ' t into s ' u,
and indeed s ' u instead of s ' t occurs in E[N ′, p].

iii. If p ∈ R1 ∩ R then there are rules ` → r and t → s in R[N, p] such
that the latter can be collapsed into an equation s ≈ u. Hence s ≈ u
belongs to E[N ′, p] and t→ s is not in R[N ′, p].

– If gc was applied the step obviously corresponds to an identity step on
the level of KBtt for every process p ∈ P(N ′), and the same holds for
subsume.

Finally, for every inference rule (besides gc and subsume) the non-emptiness
requirement for the set of affected labels ensures that the strict part ` holds for
at least one p′ ∈ P(N ′).

Lemma 4.29. Assume for a KBtt inference step (E ,R, C) ` (E ′,R′, C′) there
exist a node set N and a process p such that E = E[N, p], R = R[N, p] and
C = C[N, p]. Then there is some inference step N ` N ′ with split set S and a
process p′ ∈ P(N ′) such that p = predS(p′), E ′ = E[N ′, p′], R′ = R[N ′, p′] and
C′ = C[N ′, p′].

Proof. In the following case analysis on the applied KBtt rule, (∗) refers to the
proof obligations E ′ = E[N ′, p′], R′ = R[N ′, p′], and C′ = C[N ′, p′].

– Assume orient was applied to replace some equation s ' t ∈ E by the rule
s→ t ∈ R′. Then there must be a node n = 〈s : t, R0, R1, E, C0, C1〉 in N
such that p ∈ E and C ∪ {s→ t} terminates. We distinguish two further
cases. If C ∪ {t→ s} terminates as well, we set S = {p}. For Rlr = {p0}
and Rrl = {p1} an application of orient yields

N ′ =split{p}(N \ {n}) ∪
{〈s : t, R0 ∪ {p0}, R1 ∪ {p1}, E \ {p}, C0 ∪ {p0}, C1 ∪ {p1}〉}

For p′ = p0 we have p = predS(p′), and (∗) is satisfied. If C[N, p]∪{t→ s}
does not terminate, we apply orient with S = ∅ and Rlr = {p} to obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 ∪ {p}, R1, E \ {p}, C0 ∪ {p}, C1〉}

Thus we have p′ = p which trivially satisfies p = predS(p′), so (∗) holds.

In all remaining cases we can set p′ = p since no process splitting occurs.

– In the case where deduce generates s ≈ t from an overlap involving rules
`1 → r1 and `2 → r2, there are nodes 〈`1 : r1, R, . . . 〉 and 〈`2 : r2, R

′, . . . 〉
in N such that p ∈ R ∩R′. Applying deduce in MKBtt thus yields

N ′ = N ∪ {〈s : t,∅,∅, R ∩R′,∅,∅〉}

such that (∗) is satisfied.

54

4.3 Multi-Completion with Termination Tools

– If delete removes some equation s ≈ s from E then N must contain a
node n = 〈s : s,R0, R1, E] {p}, C0, C1〉. Since the equation s ≈ s cannot
be oriented into a terminating rule, the sets R0, R1, C0 and C1 must be
empty. Thus n can be removed by delete in MKBtt.

– If simplify reduces an equation s ' t to s ' u using a rule ` → r, there
are nodes n = 〈s : t, R0, R1, E, C0, C1〉 and 〈` : r,R, . . . 〉 in N such that
p ∈ E ∩R. We can therefore use rewrite to infer

N ′ = (N \ {n}) ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (E ∪R1) ∩R,∅,∅〉}

Since p ∈ E ∩R, (∗) holds.

– If compose rewrites s → t to s → u using a rule ` → r then N contains
nodes n = 〈s : t, R0, R1, E, C0, C1〉 and 〈` : r,R, . . . 〉 such that p ∈ R0∩R.
Thus rewrite applies and (∗) is satisfied since we obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (E ∪R1) ∩R,∅,∅〉}

– Finally, assume collapse is applied to turn a rule t → s into an equation
u ≈ s using ` → r. Then N contains nodes n = 〈s : t, R0, R1, E, C0, C1〉
and 〈` : r,R, . . . 〉 such that p occurs in R1∩R. To satisfy (∗) we can thus
apply rewrite to obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (E ∪R1) ∩R,∅,∅〉}

Definition 4.30. Consider an MKBtt run γ of the form N0 ` N1 ` · · · `
Nk where N0 = NE and let p ∈ P(Nk). We inductively define the sequence
p0, . . . , pk of ancestors of p by setting pk = p and pi = predSi(pi+1) for 0 6 i < k,
where Si is the split set of the step Ni ` Ni+1.

We thus obtain the following corollary from Lemma 4.28:

Corollary 4.31. Consider an MKBtt run γ : N0 ` N1 ` · · · ` Nk with p ∈
P(Nk) having ancestors p0, . . . , pk. Let Ei, Ri and Ci denote E[Ni, pi], R[Ni, pi]
and C[Ni, pi], respectively. Then the sequence

γp : (E0,R0, C0) `= (E1,R1, C1) `= · · · `= (Ek,Rk, Ck)

is a valid KBtt run, called the projection of γ to p.

Using projections, the definitions of success, failure and fairness given for
KBtt can be naturally extended to MKBtt.

Definition 4.32. A finite MKBtt run γ of the form N0 `∗ N

– is fair if γp is fair and nonfailing for some process p ∈ P(N),

55

4 Multi-Completion with Termination Tools

– succeeds if E[N, p] = ∅ and R[N, p] is convergent for some process p ∈
P(N), and

– fails if γp fails for all processes p ∈ P(N).

As the simulation of KBtt with MKBtt is sound (Lemma 4.28) and complete
(Lemma 4.29), it is straightforward to establish correctness using the corre-
sponding results for KBtt. We call an MKBtt run γ : N0 `∗ N simplifying if the
resulting system R[N, p] is reduced whenever γ succeeds for some process p.

Correctness Theorem 4.33. Let NE be the initial node set for a set of equa-
tions E and let γ be a finite MKBtt run of the form NE `∗ N which is nonfailing
and fair for some p ∈ P(N). Then R[N, p] is convergent for E.

Proof. According to Corollary 4.31 there is a corresponding fair and nonfailing
KBtt run γp : (E ,∅,∅) `∗ (∅, R[N, p], C[N, p]). Since γp is finite, R[N, p] is
convergent for E by Theorem 4.16.

Example 4.34. We illustrate an MKBtt run on the system CGE2 (see Exam-
ple 4.17). An MKBtt run starts with the initial node set

〈e · x : x,∅,∅, {ε},∅,∅〉 (1)

〈i(x) · x : e,∅,∅, {ε},∅,∅〉 (2)

〈x · (y · z) : (x · y) · z,∅,∅, {ε},∅,∅〉 (3)

〈f(x · y) : f(x) · f(y),∅,∅, {ε},∅,∅〉 (4)

〈g(x · y) : g(x) · g(y),∅,∅, {ε},∅,∅〉 (5)

〈f(x) · g(y) : g(y) · f(x),∅,∅, {ε},∅,∅〉 (6)

When applying orient to nodes (1) and (2), only the direction from left to right
yields valid and terminating rewrite rules. For node (3), both orientations are
possible such that process ε is split into 0 and 1. These three nodes are thus
modified as follows:

〈e · x : x, {0, 1},∅,∅, {0, 1},∅〉 (1)

〈i(x) · x : e, {0, 1},∅,∅, {0, 1},∅〉 (2)

〈x · (y · z) : (x · y) · z, {0}, {1},∅, {0}, {1}〉 (3)

Nodes (4) and (5) can be oriented in both directions, independent of the ori-
entation of associativity. Now the current node set contains eight processes
(constraint labels are omitted for the sake of readability; at this point they
coincide with the respective rewrite labels):

〈e · x : x, {000, . . . , 111},∅,∅, . . . 〉 (1)

〈i(x) · x : e, {000, . . . , 111},∅,∅, . . . 〉 (2)

〈x · (y · z) : (x · y) · z, {000, 001, 010, 011}, {100, 101, 110, 111},∅, . . . 〉 (3)

〈f(x · y) : f(x) · f(y), {000, 001, 100, 101}, {010, 011, 110, 111},∅, . . . 〉 (4)

〈g(x · y) : g(x) · g(y), {000, 010, 100, 110}, {001, 011, 101, 111},∅, . . . 〉 (5)

〈f(x) · g(y) : g(y) · f(x),∅,∅, {000, . . . , 111}, . . . 〉 (6)

56

4.3 Multi-Completion with Termination Tools

We abbreviate {000, 001, 010, 011} to P0 and {100, 101, 110, 111} to P1. The
overlap e · y ← (i(x) · x) · y → i(x) · (x · y) between nodes (2) and (3) allows to
deduce the additional node

〈i(x) · (x · y) : e · y,∅,∅, P1,∅,∅〉 (7)

A rewrite step with node (1) simplifies this node to

〈i(x) · (x · y) : e · y,∅,∅,∅,∅,∅〉 (7)

and adds

〈i(x) · (x · y) : y,∅,∅, P1,∅,∅〉 (8)

The former is removed by gc and the latter is oriented to

〈i(x) · (x · y) : y, P1,∅,∅, P1,∅〉 (8)

In a similar way, for processes in P0 the overlap (x · i(y)) ·y ← x · (i(y) ·y)→ x ·e
between (3) and (2) yields a node

〈(x · i(y)) · y : x · e, P0,∅,∅, P0,∅〉 (9)

Additionally, there are critical peaks x ·y ← x · (e ·y)→ (x · e) ·y between nodes
(1) and (3), e · x ← (i(i(x)) · i(x)) · x → i(i(x)) · e between nodes (2) and (9),
and i(i(x)) · e← i(i(x)) · (i(x) · x)→ x between nodes (2) and (8). Orienting the
ensuing nodes yields

〈(x · e) · y : x · y, P0,∅,∅, P0,∅〉 (10)

〈i(i(x)) · e : e · x, P0,∅,∅, P0,∅〉 (11)

〈i(i(x)) · e : x, P1,∅,∅, P1,∅〉 (12)

Applying rewrite with (1) to node (11) creates a node with the same data as
(12) also for processes in P0, such that a subsume step results in the updated
node

〈i(i(x)) · e : x, P1 ∪ P0,∅,∅, P1,∅〉 (12)

Now the peak x · y ← (i(i(x)) · e) · y → i(i(x)) · y between (12) and (10) adds

〈i(i(x)) · y : x · y, P0,∅,∅, P0,∅〉 (13)

after a subsequent orient step. At this point overlaps between (13) and (12)
and (13) and (2) trigger the creation of nodes that are oriented as

〈x · e : x, P0,∅,∅, P0,∅〉 (14)

〈x · i(x) : e, P0,∅,∅, P0,∅〉 (15)

We obtain the modified node

〈(x · i(y)) · y : x · e,∅,∅,∅, P0,∅〉 (9)

57

4 Multi-Completion with Termination Tools

when using node (14) in a rewrite step, together with a new node with data
(x · i(y)) · y : x, which is oriented as

〈(x · i(y)) · y : x, P0,∅,∅, P0,∅〉 (16)

Node (14) can also be used in rewrite steps to modify (10) and (12) to

〈(x · e) · y : x · y,∅,∅,∅, P0,∅〉 (10)

and

〈i(i(x)) · e : x, P1,∅,∅, P0,∅〉 (12)

while adding

〈x · y : x · y,∅,∅, P0,∅,∅〉 (17)

and

〈i(i(x)) : x,∅,∅, P0,∅,∅〉 (18)

to the current node set. The latter is oriented into

〈i(i(x)) : x, P0,∅,∅, P0,∅〉 (18)

while node (17) is subject to a delete inference. The overlaps i(e)← i(e) · e→ e
between (14) and (2) and x · e ← x · (y · i(y)) → (x · y) · i(y) between (15) and
(3) add

〈i(e) : e, P0,∅,∅, P0,∅〉 (19)

and

〈(x · y) · i(y) : x, P0,∅,∅, P0,∅〉 (20)

to the node set (in the latter case, after rewrite using (14) simplifies x · e to x).
To make a long story short, we will only sketch the remainder of the run.

After some additional deduce steps, the last node concerning plain group theory

〈i(x · y) : i(y) · i(x),∅,∅, P1 ∪ P0,∅,∅〉

is derived, and can again be oriented in both directions, resulting in a split of all
current processes. To complete the theory of homomorphisms, nodes with data
f(x) · (f(y) · z) : f(x · y) · z, f(e) : e, and f(i(x)) : i(f(x)) and similar ones for g are
derived. The last kind of nodes gives again rise to process splits. It remains to
orient node (6) and consider the critical pair f(x) ·(g(y) ·z)←o→ g(y) ·(f(x) ·z)
before e.g. process 011110 succeeds after joining all remaining critical pairs. We
obtain the same convergent TRS as in Example 4.17.

The sequence of orientations gives rise to a process tree, where every branch-
ing point corresponds to a process split in an orient step. Part of the process
tree developed during the described completion run is sketched in Figure 4.5.

58

4.3 Multi-Completion with Termination Tools

e · x ≈ x

i(x) · x ≈ e

(x · y) · z ≈ x · (y · z)

f(x) · f(y) ≈ f(x · y)

g(x) · g(y) ≈ g(x · y)

000

←
001

→

←
g(x) · g(y) ≈ g(x · y)

010

←
(x · i(y)) · y) ≈ x

i(x · y) ≈ i(y) · i(x)

0110
←

i(f(x)) ≈ f(i(x))

01110
←

f(x) · g(y) ≈ g(x) · f(y)

011110
←

011111
→

→

→

→

→

→

←
f(x) · f(y) ≈ f(x · y)

g(x) · g(y) ≈ g(x · y)

100

←
101

→

←
g(x) · g(y) ≈ g(x · y)

110

←
111

→

→

→

→

→

Figure 4.5: Part of a CGE2 process tree with all branching points leading to
process 011110.

More on Completeness

Theorem 3.13 states the completeness of KB in the following sense: If a set
of equations E admits an equivalent finite convergent rewrite system R, any
fair KB run will produce an equivalent finite convergent system if a reduction
order compatible with R is used, provided the run does not fail. The following
example shows that MKBtt might even fail if one uses a termination tool T that
can prove the termination of R.

Example 4.35. The convergent rewrite system R consisting of the rules

f(h(x, y))→ f(i(x, x)) h(a, a)→ c

g(i(x, y))→ g(h(x, x)) i(a, a)→ c

is derived from the input equalities E

f(h(x, y)) ≈ f(i(x, x)) h(a, a) ≈ c h(a, a) ≈ i(a, a)

g(i(x, y)) ≈ g(h(x, x)) i(a, a) ≈ c

in any fair run of standard completion that uses the reduction order →+
R. The

system R is easily shown to be terminating with a matrix interpretation of
dimension 2; e.g. the termination tool TTT2 using the strategy matrix -ib 2

-d 2 -direct immediately outputs a termination proof. However, if a KBtt
run uses TTT2 with this strategy and starts by orienting h(a, a) ≈ i(a, a) then
no matter which orientation is chosen, one of the equations in the leftmost

59

4 Multi-Completion with Termination Tools

orient
N] {〈s : t, R0, R1, E, C0, C1〉}

split ′(Elr, Erl, N) ∪ {〈s : t, R0 ∪Rlr, R1 ∪Rrl, E′, C0 ∪Rlr, C1 ∪Rrl〉}

if Elr, Erl ⊆ E, E′ = E \ (Elr ∪ Erl) ∪ {p− | p ∈ Elr ∪ Erl}, Elr
is the set of all processes p ∈ E such that T � Cp(N) ∪ {s → t},
Erl is the set of all processes p such that T � Cp(N) ∪ {t → s},
Rlr = {p0 | p ∈ Elr} and Rrl = {p1 | p ∈ Erl}, and Elr ∪Erl 6= ∅

Figure 4.6: The orient rule in MKBttc.

column remains unorientable. Similarly, if MKBtt starts by applying orient to
h(a, a) ≈ i(a, a) then process ε gets split into 0 and 1. But in subsequent steps
neither process can orient both of the equations in the leftmost column, so the
run fails.

This example shows that the order in which nodes are processed has consid-
erable influence: orienting nodes too early can prevent KBtt and MKBtt from
producing a convergent system even if a successful run exists. Nevertheless,
completeness in this sense can be partially obtained in a slightly modified ver-
sion of MKBtt which we will refer to as MKBttc. In contrast to the previous
version, a process can now also keep an equation unoriented. For this purpose,
processes are now viewed as strings in (0 + 1 + −)∗. We write T � R if the
termination tool T can verify termination of the rewrite system R. The orient
rule in MKBttc is given in Figure 4.6. Here, split ′(Elr, Erl, N) replaces every
occurrence of a process p ∈ Elr ∩ Erl in a node of N by {p−, p0, p1}, every
occurrence of p ∈ Elr \Erl by {p−, p0} and every occurrence of p ∈ Erl \Elr by
{p−, p1}. The notion of a split set in MKBtt is replaced by split tuple, which
refers to the pair of process sets (Elr, Erl). For all inference steps that use a
different rule than orient, the split tuple is (∅,∅).

Example 4.36. Assume MKBttc is run on the input equalities from Exam-
ple 4.35 and starts by orienting h(a, a) ≈ i(a, a). Then the resulting node is
〈h(a, a) : i(a, a), {0}, {1}, {−}, {0}, {1}〉. In contrast to MKBtt, a descendant of
process − can deliver a convergent system.

To obtain a completeness result for MKBttc, we require a stronger notion of
fairness which requires to equally advance all processes at some point.

Definition 4.37. Consider an equational proof P , a run N0 ` N1 ` N2 ` · · ·
with p ∈ P(Nk), and let � denote →+

C[Nk,p]
. Then p eventually simplifies P

starting from Nk if

– there is a proof Q in (E[Nk, p], R[Nk, p]) such that P ⇒�KB Q, or

– all direct successors q ∈ P(Nk+1) of p eventually simplify P starting from
Nk+1.

Thus a run γ with process p ∈ P(Nk) eventually simplifies a proof P if all
successors of p in γ allow for a smaller proof at some point.

60

4.3 Multi-Completion with Termination Tools

Definition 4.38 (Strong Fairness). A run γ : N0 ` N1 ` N2 ` · · · is strongly
fair if for every k > 0, p ∈ Nk, and equational proof P in (E[Nk, p], R[Nk, p])
which is not in normal form, the following conditions hold:

(i) If Nk admits a step Nk ` N such that p ∈ P(N) and there is an equa-
tional proof Q in (E[N, p], R[N, p]) satisfying P ⇒�KB Q, then p eventually
simplifies P starting from Nk.

(ii) If there is an orient step Nk ` N applied to node n such that N contains a
successor p′ of p and there is an equational proof Q in (E[N, p′], R[N, p′])
satisfying P ⇒�KB Q, then every successor q of p either performed an orient
step on n and got extended by − in this step, or eventually simplifies P
from Nk.

Here � denotes the reduction order →+
C[Nk,p]

.

Intuitively, a strongly fair run requires all processes to simplify an equational
proof if this simplification can be done without process splits (case (i)). More-
over, if an orient step on, say, a node with data s : t allows for a simplification
then all processes except the one that does not orient s : t are required to per-
form this step (case (ii)). A sufficient condition for a run to be strongly fair is
that all processes are advanced using a breadth-first strategy.

A termination tool T covers some reduction order � if for any rewrite system
R that is compatible with �, T � R holds.

Lemma 4.39. Consider an MKBttc run γ : N0 ` N1 ` N2 ` · · · which employs
a termination tool T covering some reduction order �.

i. For every node set Nk there exists a process pk such that C[Nk, pk] ⊆ �
and the sequence (E[Nk, pk], R[Nk, pk])k>0 is a valid KB run γp using �.

ii. If γ is strongly fair then γp is fair.

Proof.

i. We construct the process sequence (pk)k>0 inductively such that

(E[Nk, pk], R[Nk, pk], C[Nk, pk])

`= (E[Nk+1, pk+1], R[Nk+1, pk+1], C[Nk+1, pk+1])
(∗)

is a valid KBtt inference step and C[Nk, pk] ⊆ �.

We start by setting p0 = ε. Now consider an inference step Nk ` Nk+1

with split tuple (S0, S1). If pk /∈ S0 ∪ S1 then we take pk+1 = pk. By
a straightforward adaptation of Lemma 4.28 to MKBttc a corresponding
KBtt (or empty) step (∗) is possible, and C[Nk, pk] ⊆ � follows from the
induction hypothesis. Otherwise, we must have pk ∈ E for an inference
step orienting a term pair s : t (adopting the notation used in Figure 4.6).
If s � t then T � C[Nk, pk] ∪ {s → t} as T covers �. In this case we
set pk+1 = pk0. Due to the side condition of orient, pk ∈ S0 and hence
pk+1 ∈ P(Nk+1). Again (∗) is a KBtt step and by the choice of pk+1 also

61

4 Multi-Completion with Termination Tools

C[Nk+1, pk+1] ⊆ � holds. The argument for the case t � s is symmetric.
If s and t are incomparable in �, we may choose pk+1 = pk−. Then
(∗) is an equality step and C[Nk+1, pk+1] ⊆ � follows from the induction
hypothesis.

As the constructed sequence (E[Nk, pk], R[Nk, pk], C[Nk, pk])k>0 consti-
tutes a KBtt run which satisfies C[Nk, pk] ⊆ � for all k > 0, there is also
a valid KB run (E[Nk, pk], R[Nk, pk])k>0 which uses � as reduction order.

ii. Let Eω and Rω denote the persistent sets of γp. Suppose P is a proof
in (Eω,Rω) which is not a rewrite proof and there exists an inference
(Eω,Rω) ` (E ,R) such that (E ,R) admits a proof Q satisfying P ⇒�KB Q.
Then there must be a node set Nj in γ such that (E[Nj , pj], R[Nj , pj])
contains all equations and rules that are used in P together with those
used when simplifying P to Q. By adapting Lemma 4.29 to MKBttc, it
follows that there is an inference step Nj ` N such that E ′ = E[N, p′],
R′ = R[N, p′], and C[N, p′] ⊆ � holds for some successor p′ of pj , and
(E ′,R′) admits proof Q.

We distinguish two cases. If (E[Nj , pj], R[Nj , pj]) ` (E ′,R′) and thus
Nj ` N does not apply orient then no process splitting occurs and pj ∈
P(N). By strong fairness, pj eventually simplifies P . In particular, some
successor pm in the process sequence (pk)k>0 with m > j has to provide a
proof Q′ in (E[Nm, pm], R[Nm, pm]) such that P ⇒�KB Q

′. Therefore also
γp allows for this simplified proof.

Now suppose (E[Nj , pj], R[Nj , pj]) ` (E ′,R′) applied orient to some equa-
tion s ≈ t and s � t holds. By construction of the sequence (pk)k>0 no
successor of pj can have obtained − as part of its label when orienting a
node with data s : t. Hence, according to strong fairness all successors of
pj have to eventually simplify P . So some pm in (pk)k>0 with m > j has
to provide a proof Q′ in (E[Nm, pm], R[Nm, pm]) with P ⇒�KB Q

′. Again
this proof is reflected in γp, which proves fairness of this KB run.

The following completeness result shows that an MKBttc run employing a
sufficiently powerful termination prover can produce any convergent system
which is derivable in a KB run.

Theorem 4.40. Consider a finite canonical rewrite system R which can be
constructed from E in a fair KB run using �. If T covers � then any strongly
fair and simplifying MKBttc run N0 ` N1 ` N2 ` · · · which uses T and does
not have a failing process develops some process p ∈ P(Nn) which satisfies
E[Nn, p] = ∅ and R[Nn, p] = R (up to renaming variables).

Proof. According to Lemma 4.39 there is a sequence of processes (pk)k>0 such
that (E[Nk, pk], R[Nk, pk])k>0 is a fair KB run using �. By repeating the fol-
lowing argument of [11, Theorem 3.9], we will see that this run succeeds with
system R. Each rule ` → r in R is a theorem in E and therefore will have a
persisting rewrite proof after a finite number of steps in every fair and unfailing
run. Let R′ ⊆

⋃
iR[Ni, pi] be the set of rules required for proofs of all rules in

62

4.3 Multi-Completion with Termination Tools

deduce
N

N ∪ {〈s : t,∅,∅, E,∅,∅〉}

if there exist nodes 〈`1 : r1, R, . . . 〉, 〈`2 : r2, R
′, . . . 〉 ∈ N and an

overlap o involving rules `1 → r1 and `2 → r2 that gives rise to a
critical pair s←o→ t such that E = CPCm(o,R ∩R′, N) 6= ∅

Figure 4.7: The deduce inference rule using a critical pair criterion.

R. Both R and R′ are contained in �. Hence all these proofs must be of the
form ` →∗R′ r: Suppose r was reducible in R′ to a term r′ such that r � r′.
Then there must also be a proof r ↔∗R r′ as R is a convergent presentation
of the theory. But r � r′ implies that r is reducible in R, contradicting the
assumption that R is canonical.

Thus →R ⊆ →+
R′ holds. As R and R′ have the same equational theory, R′

must be convergent and hence canonical since it was constructed by a simpli-
fying run. Thus R and R′ have to be equal, because the canonical rewrite
system compatible with a given reduction order is unique (up to variable re-
naming) [80].

Note that even if T covers �, an MKBttc run might still fail if equations are
selected in an unfortunate order (cf. Example 3.18).

4.3.1 Critical Pair Criteria

By filtering out equational consequences that can be ignored without compro-
mising completeness, critical pair criteria allow to reduce the number of nodes
in an MKBtt run. It is not difficult to incorporate the well-known criteria for
standard completion (see Section 3.2.2) to the setting of MKBtt. All those cri-
teria require to check whether an overlapped term can be reduced in a certain
way other than indicated by the overlap itself. Since MKBtt allows to check
reducibility for multiple processes at once, the redundancy checks required for
the respective multi-completion criteria can even be shared among multiple
processes.

Definition 4.41. Given a KB critical pair criterion CPC, the correspond-
ing MKBtt critical pair criterion CPCm maps an overlap o with associated
critical pair s ←×→ t, a set of processes E and a node set N to a pro-
cess set CPCm(o,E,N) = E′ such that E′ ⊆ E and s ≈ t ∈ E[N, p] \
CPC(E[N, p], R[N, p]) for all p ∈ E′.

Intuitively, the set E′ contains all processes in E for which the critical pair
derived from o is not superfluous. Thus, in the deduce rule for MKBtt the
equation label of the new node is filtered by the criterion as shown in Figure 4.7.

Consider a finite MKBtt run γ of the formN0 `∗ Nk and a process p ∈ Nk. Let
pi denote the ancestor of p in Ni and let � denote the reduction order→+

C[Nk,p]
.

Then we call γ fair with respect to CPCm and p if the following condition holds:
Whenever a node set Ni gives rise to an overlap o with critical pair s←o→ t

63

4 Multi-Completion with Termination Tools

as described in Figure 4.7 and pi ∈ E \CPCm(o,E,Ni) then there exists a proof
Q in some (E[Nj , pj], R[Nj , pj]) for j > 0 such that s ≈ t ⇒�KB Q holds. The
run γ is fair with respect to CPCm if it is fair with respect to CPCm and some
process p ∈ P(Nk). An MKBtt critical pair criterion CPCm is correct if every
finite nonfailing run γ that is fair with respect to CPCm is also fair in the sense
of Definition 4.32.

Lemma 4.42. Every MKBtt critical pair criterion CPCm obtained from a cor-
rect criterion CPC is correct.

Proof. Let γ be a finite nonfailing run of the form N0 `∗ Nk which is fair with
respect to CPCm and some process p ∈ P(Nk), and let pi denote the ancestor of
p in Ni. Assume a critical overlap o where pi ∈ E\CPCm(o,E,Ni) for some an-
cestor pi of p. By definition there exists a proof Q in some (E[Nj , pj], R[Nj , pj])
such that s ≈ t⇒�KB Q. Hence the projected run γp is fair with respect to CPC
and by correctness of CPC it is also fair. Thus γ is fair as well.

The following example illustrates the use of the primality criterion PCPm
and the connectedness criterion WCPm in MKBtt.

Example 4.43. An MKBtt run on CGE2 encounters the nodes

〈e · x : x, P0 ∪ P1, . . . 〉 (1)

〈i(x) · x : e, P0 ∪ P1, . . . 〉 (2)

〈x · e : x, P0, . . . 〉 (14)

〈i(e) : e, P0, . . . 〉 (19)

〈y · i(x · y) : i(x), P0 ∪ P1, . . . 〉 (21)

The overlap 〈y · i(x · y)→ i(x), ε, e · x→ x〉 creates the critical pair i(x)←o→
i(x ·e) for the process set P0∪P1. When PCPm is applied, it is checked whether
there exists a node which allows to reduce the term u = e·i(x·e) at some position
below the root. Since node (14) can reduce u at position 21, the critical pair is
recognized as redundant for all processes in P0 such that the deduced node is
〈i(x) : i(x · e),∅,∅, P1,∅,∅〉.

Furthermore, the overlap 〈i(e) → e, 1, i(x) · x → e〉 between nodes (19) and
(2) gives rise to the critical pair e · e←o→ e for the process set P0. To reduce
the term i(e) · e also node (14) can be applied at the root position. While
PCPm is not applicable since the overlap position is below ε, WCPm requires
to check the critical pairs involved in the decomposition. Indeed, the critical
peak e← i(e) · e→ i(e) between nodes (2) and (14) is already covered by node
(19) and the peak involving nodes (14) and (19) can be ignored since it is just
a variable overlap. Hence this critical pair can be ignored.

4.3.2 Isomorphisms

In an implementation of MKBtt, performance is significantly affected by the
number of simulated processes. On some input problems, runs exhibit similar
process pairs which have the same probability of success.

64

4.3 Multi-Completion with Termination Tools

Example 4.44. A run on CGE2 may generate a node set N with process p
where E[N, p] consists of the equations

(x · y) · z ≈ x · (y · z) f(e) ≈ e

g(x) · f(y) ≈ f(y) · g(x) g(e) ≈ e

and R[N, p] = C[N, p] consists of the rewrite rules

e · x→ x f(x · y)→ f(x) · f(y)

i(x) · x→ e g(x · y)→ g(x) · g(y)

If an inference step N ` N ′ applies orient to the equation g(x) ·f(y) ≈ f(y) ·g(x),
the process p is split as both orientations are possible. But the states of the
emerging child processes p0 and p1 are the same up to interchanging f and g.
Hence further deductions of these processes will be symmetric.

Such similarities between processes are captured by the more general concept
of isomorphisms.

Definition 4.45. A bijection θ : T (F ,V) → T (F ,V) extends to an isomor-
phism between rewrite systems R and R′ if R′ = {θ(`) → θ(r) | ` → r ∈ R}
such that s →R t if and only if θ(s) →R′ θ(t) for all terms s and t. Two sets
of equations E and E ′ are isomorphic with respect to θ if E ′ = {θ(u) ≈ θ(v) |
u ≈ v ∈ E} and for all terms s and t, s ↔E t if and only if θ(s) ↔E ′ θ(t).
These concepts are expressed by writing R ∼=θ R′ and E ∼=θ E ′, respectively.
Two MKBtt processes p and q are isomorphic in a node set N if there exists
some isomorphism θ such that E[N, p] ∼=θ E[N, q], R[N, p] ∼=θ R[N, q] and
C[N, p] ∼=θ C[N, q].

Lemma 4.46. Let Np and Nq be node sets containing processes p and q such
that

(E[Np, p], R[Np, p], C[Np, p]) ∼=θ (E[Nq, q], R[Nq, q], C[Nq, q])

If there is a step Np ` N ′p such that p is the predecessor of p′ ∈ P(N ′p) then
there is also an inference step Nq `= N ′q and a process q′ ∈ P(N ′q) such that q
is the predecessor of q′ and

(E[N ′p, p
′], R[N ′p, p

′], C[N ′p, p
′]) ∼=θ (E[N ′q, q

′], R[N ′q, q
′], C[N ′q, q

′])

Proof. If (E[Np, p], R[Np, p], C[Np, p]) = (E[N ′p, p], R[N ′p, p], C[N ′p, p]) and p ∈
P(N ′p) then p was not affected by the step Np ` N ′p so we can set N ′q = Nq.
Otherwise a mirror step Nq ` N ′q using the same inference rule can model the
step for q. More precisely, the mirror step is defined by case distinction on the
rule applied in Np ` N ′p.

– Assume an orient step turned a node n = 〈s : t, R0, R1, E, C0, C1〉 into
〈s : t, R0 ∪Rlr, R1 ∪Rrl, E′, C0 ∪Rlr, C1 ∪Rrl〉 using split set S. Then a
node n′ with data θ(s) : θ(t) has to occur in Nq since E[Nq, q] ∼= E[Np, p]
by assumption. Three further possibilities can be distinguished: Assume
p = p′ and p ∈ Elr \ S because C[Np, p] ∪ {s → t} terminates, but

65

4 Multi-Completion with Termination Tools

C[Np, p]∪{t→ s} does not. Thus also C[Nq, q]∪{θ(s)→ θ(t)} terminates,
but C[Nq, q] ∪ {θ(t) → θ(s)} does not. So the mirror step Nq ` N ′q can
apply orient to node n′ with Elr = Rrl = {q} and Erl = Rrl = ∅. In the
second case where p = p′ and p ∈ Erl \S, we reason symmetrically to the
preceding case. For the final case, let p ∈ S. We orient n′ to obtain the
mirror stepNq ` N ′q. Because C[Np, p] ∼= C[Nq, q] holds, both orientations
terminate, so q gets split into q0 and q1 which are then isomorphic to p0
and p1, respectively.

All remaining inference rules do not split processes so p = p′ and thus q = q′.

– Assume delete was applied to a node 〈s : s,∅,∅, E,∅,∅〉 where p ∈ E.
Then there must be a node n′ of the form 〈θ(s) : θ(s),∅,∅, E′,∅,∅〉 in
Nq such that q ∈ E′, and Nq ` N ′q will be a delete step removing n′.

– If deduce created a node with data 〈s : t,∅,∅, R ∩ R′,∅,∅〉 originating
from an overlap involving nodes with terms `1 : r1 and `2 : r2, due to
R[Np, p] ∼= R[Nq, q], there must be nodes with data 〈θ(`1) : θ(r1), R, . . .〉
and 〈θ(`2) : θ(r2), R′, . . .〉 in Nq which allow in a mirror step Nq ` N ′q to
deduce a node 〈θ(s) : θ(t),∅,∅, R ∩R′,∅,∅〉.

– If rewrite was applied to a node 〈s : t, R0, R1, E, C0, C1〉 using a rule
node 〈` : r,R, . . .〉 to create 〈s : u,R′0,∅, E′,∅,∅〉, then the mirror step
Nq ` N ′q can apply the same rule to nodes with data θ(s) : θ(t) and
θ(`) : θ(r), which exist by assumption. Then q is removed from the
rewrite or equation label of the node with data θ(s) : θ(t), and occurs
now in a node with data θ(s) : θ(u).

Theorem 4.47. Let Ni be a set of nodes containing isomorphic processes
pi, qi ∈ P(Ni). Assume there exists an MKBtt completion run γ of the form
Ni `∗ Nk and a process pk ∈ P(Nk) such that pi is the ancestor of pk in Ni, and
the projected run γpk is fair and successful. Then there is also a fair deduction
γ′ of the form Ni `∗ N ′m with a process qm ∈ P(N ′m) such that qi is an ancestor
of qm, and also γ′qm is fair and successful.

Proof. Induction on the length of the run γ : Ni `∗ Nk shows that there also
exists a run γ′ : Ni = N ′i `∗ N ′m with a process qm ∈ N ′m such that the tuples
(E[Nk, pk], R[Nk, pk], C[Nk, pk]) and (E[N ′m, qm], R[N ′m, qm], C[N ′m, qm]) are iso-
morphic. For the case where k = i the processes pi and qi are by assump-
tion isomorphic via some mapping θ, so we set m = i. For the induction
step we consider a run Ni `∗ Nk ` Nk+1 where pk ∈ P(Nk) is the prede-
cessor of pk+1 ∈ P(Nk+1). By the induction hypothesis there is a sequence
Ni = N ′i `∗ N ′m with qm ∈ N ′m such that (E[Nk, pk], R[Nk, pk], C[Nk, pk])
and (E[N ′m, qm], R[N ′m, qm], C[N ′m, qm]) are isomorphic with respect to θ. By
Lemma 4.46, the last step Nk ` Nk+1 can be mirrored by N ′m `= N ′ such
that some process q′ in N ′ is isomorphic to pk+1 in Nk+1. If N ′m = N ′

and thus q′ = qm then the claim clearly holds. Otherwise we set N ′m+1 =
N ′, and by Lemma 4.46 there is some process qm+1 ∈ P(N ′m+1) such that
(E[Nk+1, pk+1], R[Nk+1, pk+1], C[Nk+1, pk+1]) is again with respect to θ isomor-
phic to (E[N ′m+1, qm+1], R[N ′m+1, qm+1], C[N ′m+1, qm+1]).

66

4.3 Multi-Completion with Termination Tools

Hence given γ : Ni `∗ Nk with pk ∈ P(Nk) there is a run γ′ : Ni `∗ N ′m
with qm ∈ P(N ′m) such that (E[Nk, pk], R[Nk, pk], C[Nk, pk]) is isomorphic to
(E[N ′m, qm], R[N ′m, qm], C[N ′m, qm]). Success of pk in Nk implies E[Nk, pk] = ∅
and thus also E[N ′m, qm] = ∅. By the definition of isomorphisms γ′qm also
inherits fairness from γk.

According to Theorem 4.47, if two isomorphic processes are detected in the
current node set N then one of them can be deleted from all nodes in N without
compromising completeness. The following two concrete shapes of symmetries
are examples for isomorphisms. Renamings swap function symbols as in Exam-
ple 4.44, where p0 and p1 are isomorphic under the mapping θ that exchanges
f and g. Argument permutations associate with every function symbol f of
arity n a permutation πf of the set {1, . . . , n}. Then the mapping on terms de-
fined by θ(x) = x and θ(f(t1, . . . , tn)) = f(θ(tπf (1)), . . . , θ(tπf (n))) also induces
an isomorphism. For example, when completing SK90-3.02 [95] a process with
state

(x+ y) + z ≈ x+ (y + z)
f(f(x)) → x

f(x+ y) → f(x) + f(y)

has to orient the associativity axiom. Both orientations preserve termination,
but the two child processes emerging from a process split are isomorphic under
the argument permutation π+ = (1 2).

67

Chapter 5

Ordered Completion Systems

As already emphasized, the reduction order used plays a crucial role with re-
spect to the success of a completion run: a wrong choice can easily lead to
failure. Multi-completion and completion with termination tools constitute
two approaches to tackle this problem. However, for many equational theories
no convergent system exists, and for some theories a convergent TRS exists
but cannot be constructed by a completion procedure. The following example
illustrates the latter case.

Example 5.1 ([6,11]). When standard completion is run on the set of equations

1 · (−x+ x) ≈ 0 1 · (x+−x) ≈ x+−x −x+ x ≈ y +−y

the first two equations can be oriented, but this does not trigger any critical
pairs and independent of the employed order the run will fail as the last equality
is unorientable and persistent. Nevertheless, there exists a convergent TRS for
this theory:

−x+ x→ 0 x+−x→ 0 1 · 0→ 0

This shortcoming is addressed by unfailing completion, first introduced by
Bachmair, Dershowitz and Plaisted [6, 13]. Given a set of equations, it gener-
ally constructs only a ground convergent rewrite system, but it always succeeds
(although this may require an infinite derivation). A ground convergent sys-
tem does not allow to decide the equational theory, but is sufficient for many
practical applications such as validity checks of ground equalities. Underly-
ing completion-based theorem proving systems such as Waldmeister [72], it has
become a well-established calculus in automated reasoning.

Section 5.1 describes ordered completion (as unfailing completion is more
commonly called nowadays) in its original setting. Section 5.2 outlines ordered
multi-completion while Section 5.3 describes ordered completion with termina-
tion tools. These two approaches are combined to ordered multi-completion
with termination tools in Section 5.4.

5.1 Ordered Completion

We first require some additional definitions connected to ground convergence
and ordered completion. A reduction order � is complete for a theory E0

if for every pair of ground terms u, v such that u ↔∗E0 v either u � v or

69

5 Ordered Completion Systems

v � u holds, and it is completable if it can be extended to a complete order
for the theory. Note that a reduction order that is total on ground terms is
complete for any theory, as is for example the case for KBO and LPO with total
precedences. Also, any reduction order induced by a polynomial interpretation
can be extended to a total order, e.g. by lexicographically combining it with
an LPO. For an ES E and a reduction order �, the TRS E� consists of all
orientable instances of E , i.e., all rules sσ → tσ such that s ' t ∈ E and
sσ � tσ. In the sequel we assume � to be a completable reduction order for
the theory associated with the initial equalities E0. Ordered completion aims
at constructing a ground convergent system for the theory. Here a pair (E ,R)
of a set of equations E and a set of rewrite rules R is ground convergent with
respect to � if R∪ E� is ground-convergent.

In contrast to standard completion, ordered completion considers extended
critical pairs among equations in E and rewrite rules in R.

Definition 5.2. Let E be a set of equations and R be a set of rewrite rules. An
extended overlap with respect to � is a triple 〈`1 ≈ r1, p, `2 ≈ r2〉σ such that
`1 ' r1, `2 ' r2 ∈ E∪R are equations without common variables, p ∈ PosF (`2),
the terms `1 and `2|p are unifiable with most general unifier σ, and riσ 6� `iσ
for both i ∈ {1, 2}. Moreover, `2σ[r1σ]p ←o→ r2σ constitutes an extended
critical pair. Again we write s←×→ t to denote s←o→ t or t←o→ s. The
set of all extended critical pairs among E ∪ R with respect to � is denoted by
CP�(E ∪ R).

Note that in contrast to standard critical pairs, a root overlap of two equations
that are variants of each other need not be trivial. For example, overlapping
f(x) ≈ g(y) on itself yields the non-trivial extended critical pair g(x) ←o→
g(y).

As a second difference to standard completion, ordered completion also allows
the use of equation instances for rewriting. For a set of equations E , by E� we
denote its (possibly infinite) set of orientable instances, i.e., all rules uσ → vσ
such that u ' v in E and uσ � vσ.

By oKB we will denote all inference rules KB of standard completion except
for deduce, together with the additional rules given in Figure 5.1 (although the
deduce rule from KB is subsumed by deduce2). As for KB, an inference sequence
(E0,R0) ` (E1,R1) ` (E2,R2) ` · · · is called a run with persistent equalities
Eω =

⋃
i

⋂
j>i Ej and rules Rω =

⋃
i

⋂
j>iRj . For the sake of readability we

assume R0 = ∅ although all of the following results generalize to the case where
R0 is non-empty, provided that R0 is contained in the reduction order �. The
proof reduction relation for standard completion is adapted to cover rewrite
steps using rules in E�.

Definition 5.3 ([13]). Let E be a set of equations, R a rewrite system and �
a reduction order containing R. The cost of an equational proof step is then

70

5.1 Ordered Completion

deduce2
E ,R

E ∪ {s ≈ t},R
if s←o→ t ∈ CP�(E ∪ R)

simplify2
E] {s ' t},R
E ∪ {s ' u},R

if t→E� u using `σ → rσ for ` ' r ∈ E such
that t ·B `

compose2
E ,R] {s→ t}
E ,R∪ {s→ u}

if t→E� u

collapse2
E ,R] {t→ s}
E ∪ {u ≈ s},R

if t→E� u using `σ → rσ for ` ' r ∈ E such
that t ·B `

Figure 5.1: Some inference rules of ordered completion (oKB).

defined as follows:

c(s←−→
u≈v

t) = ({s, t},⊥,⊥,⊥) if u ' v ∈ E , u 6� v and v 6� u

c(s
p←−→

`→r
t) = c(t

p←−→
r←`

s) = ({s}, s|p, `, {t}) if `→ r ∈ R

c(s
p←−→

`→r
t) = c(t

p←−→
r←`

s) = ({s}, s|p, `, {t,>}) if `→ r ∈ E�

To compare cost tuples we use the lexicographic combination of �mul, B, ·B
and �mul, where ⊥ is minimal and > is maximal in the latter three orderings.
Again the cost of an equational proof is the multiset consisting of the costs
of its steps, and the proof order ��oKB on equational proofs is the multiset
extension of the order on proof step costs. Finally, let P ⇒�oKB Q hold if and
only if P ��oKB Q and P and Q prove the same equation.

Lemma 5.4 ([13]). ⇒�oKB is a proof reduction relation.

We show that oKB runs constitute equational inference sequences according
to Definition 3.1 (with the theory T being empty). For the sake of readability
�� abbreviates �� oKB if the intended definition is clear from the context.

Lemma 5.5. Any oKB run is an equational inference sequence with respect to
⇒�oKB.

Proof. We have to show that every inference step can be modeled by expand
and contract steps according to Definition 3.1. Every deduce and deduce2 step
is clearly an instance of expand. A delete inference obviously constitutes a
contract step as s↔ε

s≈s s⇒�oKB s. Every other inference step can be viewed as
an expansion adding the respective rule or equation, followed by a contraction.
An orient inference adds s → t and subsequently removes s ' t, which is valid
as s↔s≈t t⇒�oKB s↔s→t t because {({s}, s, s, {t,>})} �� {({s}, s, s, {t})}.

An application of simplify can be viewed as an expansion adding s ' u
followed by a contraction step removing s ' t. The latter transforms the proof
P : s↔s≈t t into Q : s↔s≈u u `→r← t, where ` → r ∈ R. A case distinction

71

5 Ordered Completion Systems

shows that this transformation always results in a smaller proof. If s � t
then c(P) = {({s}, s, s, {t,>})}. As s � t and t � u imply s � u we have
c(Q) = {({s}, s, s, {u,>}), ({t}, . . .)}, and hence P ⇒�oKB Q. Otherwise, if
t � s then c(P) = {({t}, t, s, {s,>})} and if neither s � t nor t � s then
c(P) = {({s, t}, . . .)}. In both cases c(Q) involves ({t}, t, `, {u}) and one of
({s, u}, . . .), ({s}, . . .), or ({u}, . . .). Because of t � u and t ·D ` this results in a
decrease in both cases. In case of a simplify2 step the reasoning is very similar,
except that the cost of the last proof step amounts to ({t}, t, `, {u,>}) and we
have t ·B ` by the side condition of simplify2.

A compose step adds s → u and performs a contraction removing s → t,
which is justified because s↔s→t t has cost {({s}, s, s, {t})} while the cost of
s↔s→u u R← t only amounts to {({s}, s, s, {u}), ({t}, . . .)} and both s � t and
t � u hold. In case of compose2 all affected components of proof costs are the
same, so the argument is similar.

Finally, a collapse step constitutes an expansion adding u ≈ s followed by
a contraction removing t → s. The latter yields a decrease because t↔t→s s
with cost {({t}, t, t, . . .)} is replaced by t→p

`→r u↔u≈s s for some ` → r and
p ∈ Pos(t) in R such that t ·B `, so that the latter proof’s cost consists of
({t}, t, `, . . .) and one of ({s, u}, . . .), ({s}, . . .) or ({u}, . . .). The decrease results
from t ·B ` and t � s, u. In case of collapse2 all affected components of proof
costs are the same, so the argument is similar.

As in the case for standard completion, the correctness proof of ordered
completion crucially relies on a critical pair lemma. We recall the original
result [13] and add a statement about proof simplification with respect to⇒�oKB.

Extended Critical Pair Lemma 5.6. Let � be a complete reduction order
for E ∪R such that R ⊆ �, and consider a peak s E�∪R← u→E�∪R t of ground
terms s, t, and u. Then s ↓E�∪R t unless s = C[s′σ] and t = C[t′σ] for some
extended critical pair s′ ←×→ t′ ∈ CP�(E ∪R), context C and substitution σ.

Proof. We consider a peak s p,τ
r1≈`1← u →q,τ

`2≈r2 t such that `i → ri ∈ R or
`iτ → riτ ∈ E� for both i ∈ {1, 2}. Assume there is an extended overlap 〈`1 ≈
r1, p, `2 ≈ r2〉ρ and some substitution σ such that s = C[s′σ] and t = C[t′σ]
for s′ = `2ρ[r1ρ] and t′ = r2ρ. Because of `i → ri ∈ R or `iτ ' riτ ∈ E� we
must have riρ 6� `iρ as � is closed under substitutions, and therefore s′ ' t′ ∈
CP�(E ∪R). If the peak does not contain a proper overlap then the two rewrite
steps are either performed in parallel, or they form a variable overlap. Both
cases are handled in exactly the same way as in the Critical Pair Lemma 3.8.

Corollary 5.7. If � is complete for E and P : s E�∪R← u→E�∪R t is a ground
non-overlap then there is a proof Q such that P ⇒�oKB Q.

Proof. By Lemma 5.6 there is a rewrite proof Q : s →∗E�∪R ·
∗

E�∪R← t. While
c(P) = {({u}, . . .), ({u}, . . .)} all tuples ({v}, . . .) in c(Q) satisfy s � v or t � v.
Since u � s, t we have P ⇒�oKB Q.

In order to characterize runs that perform all required expansions, we use the
following notion of fairness.

72

5.1 Ordered Completion

Definition 5.8 ([6]). Let� be a reduction order that is extensible to a complete
reduction order > for E0. A run (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · using �
is fair if for any ground proof P in Eω ∪ Rω which is not a rewrite proof in
(Eω)> ∪R there is a proof Q in

⋃
i Ei ∪Ri such that P ⇒�oKB Q.

In practice, fairness can be ensured by a simpler condition, which is also the
notion originally used in [13].

Lemma 5.9 ([6]). Let � be completable for E0. If an oKB run (E0,∅) `
(E1,R1) ` (E2,R2) ` · · · satisfies CP�(Eω ∪Rω) ⊆

⋃
i Ei then it is fair.

Proof. Let > ⊇ � be complete for E0. Assume P is a ground non-rewrite proof
in (Eω)> ∪ Rω, that is, a proof containing a peak P ′ : s ← u → t. According
to the Extended Critical Pair Lemma 5.6, if this peak does not constitute a
proper overlap then there exists a smaller proof. Otherwise, s = C[`σ] and
t = C[rσ] for some extended critical pair ` ←×→ r in CP>(Eω ∪Rω). Note
that we have CP>(Eω ∪Rω) ⊆ CP�(Eω ∪Rω), so by assumption ` ' r occurs in
some set Ei. We have c(P ′) = {({u}, . . .), ({u}, . . .)}, while the cost c(s↔`≈r t)
amounts to {({s}, . . .)} or {({t}, . . .)}, so u � s, t implies P ′ ⇒�oKB s↔`≈r t.
By the Persistence Lemma 3.4 there is a proof Q′ in the limit (Eω)>∪Rω which
satisfies s↔`≈r t (⇒�oKB)= Q′. Consequently, P = P [P ′] ⇒�oKB P [Q′] holds as
⇒�oKB is a proof reduction relation.

It can be shown that fair runs always produce a desired outcome [6,13]:

Correctness Theorem 5.10. Let � be completable for E0, and (E0,∅) `
(E1,R1) ` (E2,R2) ` · · · be a fair oKB run using �. Then (Eω,Rω) is ground
convergent for E0 with respect to any complete extension of �.

Proof. Let > ⊇ � be a complete reduction order for the theory E0. We show
that for every pair of ground terms s ↔∗E0 t there is a persisting rewrite proof
in the limit. According to Lemma 5.5 any oKB run is an equational inference
sequence. Hence by the Persistence Lemma 3.4 there exists a proof of s ≈ t in
(Eω)> ∪Rω. Let P be such a proof which is minimal with respect to ⇒�oKB. If
P were not a rewrite proof then fairness would imply the existence of a smaller
proof, contradicting minimality of P . Since oKB is an equational inference
system by Lemma 5.5 the system (Eω,Rω) has the same equational theory as
E0, so by Lemma 3.2 it is ground convergent for E0.

If a run considers all extended critical pairs and no persistent equations re-
main then the final rewrite system is even convergent. This is easily proven in
the same way as for Correctness Theorem 3.12.

Theorem 5.11. Let (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · be an oKB run such
that CP(Rω) ⊆

⋃
i Ei and Eω = ∅. Then Rω is convergent for E0.

Proof. We show that for all terms s, t such that s ↔∗E0 t there is a persisting
rewrite proof in the limit. By the Persistence Lemma 3.4 the TRS Rω admits
a proof of any such equation s ≈ t. Let P be a minimal such proof, and assume
it is not a rewrite proof. Hence it must contain a peak P ′ : s ← u → t. If

73

5 Ordered Completion Systems

s ↓Rω t would hold then a smaller proof would be possible by a similar ar-
gument as used in the proof of Corollary 3.9. This contradicts minimality of
P . Therefore, by the Critical Pair Lemma 3.8 the proof P ′ must contain an
instance of a critical pair, so s = C[`σ] and t = C[rσ] for some context C, sub-
stitution σ, and `←×→ r in CP(Rω). We have c(P) = {({u}, . . .), ({u}, . . .)}
but Q : s↔`≈l t amounts to c(Q) = {({s, t}, . . .)}, so P ′ ⇒�oKB Q. By the Per-
sistence Lemma 3.4 there is a proof Q′ in Rω such that Q (⇒�oKB)= Q′. This
entails P [P ′]⇒�oKB P [Q′], which again contradicts P being minimal. Since Rω
has the same equational theory as E0 by Lemma 3.2 it is convergent for E0.

An oKB completion procedure is simplifying if for all inputs E0 and � the
rewrite system Rω is reduced and all equations u ' v in Eω are both unori-
entable with respect to � and irreducible in Rω.

Theorem 5.12 ([6,13]). Let � be completable for E, and assume R is a canon-
ical rewrite system for E such that R ⊆ �. Then any fair and simplifying oKB
run (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · using � yields Eω = ∅ and Rω = R
(modulo variable renaming).

Example 5.13 ([6,11]). Assume we run ordered completion using an LPO with
precedence · > + > − > 1 > 0 on the set of equations from Example 5.1:

1 · (−x+ x) ≈ 0 (1)

1 · (x+−x) ≈ x+−x (2)

−x+ x ≈ y +−y (3)

The first two equations can be oriented.

1 · (−x+ x)→ 0 (1)

1 · (x+−x)→ x+−x (2)

The extended overlap 〈(3), 2, (1)〉 adds an equation which is oriented as

1 · (y +−y)→ 0 (4)

Now the extended overlap 〈(2), ε, (4)〉 adds an equation which is oriented as

x+−x→ 0 (5)

Rule (5) now simplifies the unorientable equation (3), and uses compose and
collapse to reduce terms in (2) and (4). This adds equations that can be oriented
as follows:

−x+ x→ 0 (6)

1 · 0→ 0 (7)

Rule (6) collapses also rule (1). Since there are no equations left and no crit-
ical pairs among (5), (6), and (7), the run succeeds with the convergent TRS
mentioned in Example 5.1:

−x+ x→ 0 x+−x→ 0 1 · 0→ 0

74

5.1 Ordered Completion

Example 5.14 ([44]). Consider the following set of equations describing an
entropic groupoid, and choose LPO with empty precedence as reduction order.

(x · y) · (z · w) ≈ (x · z) · (y · w) (1)

(x · y) · x ≈ x (2)

Although an orient inference step can turn equation (2) into the rewrite rule

(x · y) · x→ x (2)

standard completion fails as the permutative equation (1) remains unorientable.
When applying ordered completion instead, a deduce2 step from the extended
overlap 〈1, ε, 2〉 yields the equation ((x · y) · x) · (z · y) ≈ x · y, which can be
simplified with rule (2) such that we obtain an equation that is oriented as

x · (z · y)→ x · y (3)

This rule can in turn be used to simplify (1) which results in the new equation

(x · y) · z ≈ (x · w) · z (4)

This equation gives rise to the overlap 〈2, 1, 4〉. The resulting extended critical
pair ((x · y) · z) · w ←o→ x · w can be oriented as an additional rewrite rule:

((x · y) · z) · w → x · w (5)

All further critical pairs among the rules (2), (3), (5) and equation (4) are
either joinable or are simplified to instances of (4). Thus we derive the ground
convergent system

(x · y) · z ≈ (x · w) · z (x · y) · x→ x

x · (y · z)→ x · z ((x · y) · z) · w → x · w

Note that in contrast to convergent TRSs, ground convergent systems com-
patible with a given reduction order need not be unique.

Example 5.15. Given a signature consisting of a unary symbol f and a constant
a, both TRSs R = {f(x) → x} and R′ = {f(f(x)) → f(x), f(a) → a} are
ground convergent, reduced, compatible with LPO, and they induce the same
conversion on ground terms.

5.1.1 Refutational Theorem Proving

Ordered completion can also be employed for equational theorem proving. For
ground goals this was already observed in [13]. The case of non-ground goals
basically relies on completeness of narrowing with (ground-)convergent rewrite
systems [38]. In the context of completion-based theorem proving, respective
results are e.g. discussed in [29,84].

75

5 Ordered Completion Systems

Let a goal be an equation s ≈ t in which all variables are existentially quan-
tified (note that universally quantified variables can be replaced by Skolem
constants [29]). Consider a set of initial equations E and a goal s ≈ t, and let
the binary symbol equal and the constants true and false be fresh. We write
Es≈t for the set E ∪ {equal(s, t) ≈ false, equal(x, x) ≈ true}.

Note that a reduction order � which is complete for E ∪ {s ≈ t} can be
extended to a complete reduction order �c for Es≈t: Let F denote the set of
function symbols occurring in E ∪{s ≈ t}. Then we define �c as an extension of
� such that (i) equal(s, t) �c u �c true �c false and (ii) equal(s, t) �c equal(u, v)
if and only if {s, t} �mul {u, v}, for all terms s, t, u, v ∈ T (F ,V) (cf. [13]).1

In order to derive a correctness result we first state two auxiliary lemmas.

Lemma 5.16. Consider a set of equations E, a goal s ≈ t, and an oKB
run γ : (Es≈t,∅) ` (E1,R1) ` (E2,R2) ` · · · using �c such that an equation
equal(u, v) ' false occurs in Eα ∪Rα for some α > 0. Then there is a substitu-
tion σ such that sσ ↔∗E u and tσ ↔∗E v.

Proof. A straightforward induction argument shows that all equations which oc-
cur in γ and involve the symbol equal need to have one of the forms equal(x, x) '
false or equal(u, v) ' false for u, v ∈ T (F ,V), since equal is a fresh symbol.
Moreover, all rewrite rules involving the symbol equal need to have the form
equal(u, v)→ false for u, v ∈ T (F ,V) because false is minimal in the order.

We now apply transfinite induction on α to prove the claim. In the base case
only equal(s, t) ≈ false occurs in E0, and the claim trivially holds for an empty
substitution σ.

Next, assume equal(u, v) ' false ∈ En+1 ∪Rn+1. If equal(u, v) ' false also
occurs in En ∪Rn then the claim holds by the induction hypothesis. Otherwise,
one of the following cases must apply.

– Suppose equal(u, v) ' false is added by a simplify or simplify2 step from
an equation equal(u′, v′) ' false ∈ En, or by a collapse or collapse2 step
from a rule equal(u′, v′)→ false ∈ Rn. As equal is fresh the rewrite step
must either take place in u′ or in v′. Without loss of generality, assume
that u′ →`→r u using a rule ` → r ∈ Rn ∪ E�n , and v = v′. By the
induction hypothesis there is a substitution σ such that sσ ↔∗E u′ and
tσ ↔∗E v. According to the Soundness Lemma 3.2 we have ` ↔∗E r, and
hence sσ ↔∗E u′ ↔∗E u.

– Otherwise equal(u, v) ' false must have been added by a deduce2 step. As
noted above, the symbol equal can only occur in equations equal(x, x) '
false or equal(u, v) ' false for u, v ∈ T (F ,V). Hence the respective
overlap must have the form 〈` ≈ r, p, equal(u′, v′) ≈ false〉τ such that
` ' r, equal(u′, v′) ' false ∈ En∪Rn and p > ε. Without loss of generality
we assume that p = 1q, so the overlap corresponds to a peak

equal(u′τ [rτ]q, v
′τ)↔r≈` equal(u′τ, v′τ)↔equal(u′,v′)≈false false

1 Note that ill-sorted terms such as equal(equal(a, a), a) do not belong to the equational theory,
hence they need not be taken into account by �c.

76

5.1 Ordered Completion

such that u = u′τ [rτ]q and v = v′τ . By the induction hypothesis there
is a substitution σ such that sσ ↔∗E u′ and tσ ↔∗E v′. According to the
Soundness Lemma 3.2 we have `↔∗E r, and hence both sστ ↔∗E u′τ ↔∗E u
and tστ ↔∗E v hold.

Finally, if equal(u, v) ' false ∈ Eω ∪Rω then equal(u, v) ' false ∈ En ∪Rn for
some n < ω, so the claim holds by the induction hypothesis.

Theorem 5.17. Let E be a set of equations and s ≈ t be a goal such that � is
completable for E ∪{s ≈ t}, and consider a fair oKB run (Es≈t,∅) ` (E1,R1) `
(E2,R2) ` · · · using �c. Then true ' false ∈

⋃
i Ei ∪ Ri if and only if there

exists a substitution σ such that sσ ↔∗E tσ.

Proof. Assume there is a substitution σ such that sσ ↔∗E tσ. Let σ′ be ground
such that σ′ = στ for some substitution τ . According to the Correctness The-
orem 5.10, the run under consideration produces a system (Eω,Rω) which is
ground convergent with respect to �c. The equation true ≈ false has the ground
proof true ←→ equal(sσ, sσ) ↔∗E equal(sσ, tσ) ←→ false in Es≈t. By the Persis-
tence Lemma 3.4, true ≈ false also has a persistent minimal rewrite proof in
some (En,Rn). By the definition of �c we must have true→ false ∈ Rn.

For the reverse direction, let n be minimal such that true ' false ∈ En ∪Rn.
Suppose this is the case because simplify applied equal(x, x)→ true or simplify2

applied equal(x, x) ≈ true to some equal(u, u) ' false ∈ En−1, or because col-
lapse applied equal(x, x) → true or collapse2 applied equal(x, x) ≈ true to some
equal(u, u)→ false ∈ Rn−1. In either case, by Lemma 5.16 we have sσ ↔∗E u and
tσ ↔∗E u for some substitution σ. Otherwise, if a deduce2 step added the equa-
tion true ' false because two equations or rules equal(x, x) ' true, equal(u, v) '
false ∈ En∪Rn admit an overlap at the root position then we must have uτ = vτ
for some substitution τ . By Lemma 5.16 there is some σ such that sσ ↔∗E u
and tσ ↔∗E v, hence sστ ↔∗E tστ . Note that no other inference rule can have
added true ' false. Hence there exists a substitution σ such that sσ ↔∗E tσ.

Example 5.18. In example SYN080-1 from TPTP 3.6.0 [100] the ground goal
f(f(a)) ≈ f(g(b)) is to be proven from the singleton axiom set E = {f(x) ≈ g(y)}.
Let � be an LPO with precedence f � g � a � b. We can run oKB using �c

on the equations

f(x) ≈ g(y) (1)

equal(x, x) ≈ true (2)

equal(f(f(a)), f(g(b))) ≈ false (3)

An orient step can turn equation (2) into the rule equal(x, x)→ true. A simplify2

step applying the instance f(a)→ g(b) of equation (1) to (3) yields

equal(f(g(b)), f(g(b))) ≈ false (4)

Now simplify can use (2) to rewrite equation (4) to true ≈ false, so by Theo-
rem 5.17 we have f(f(a))↔∗E f(g(b)).

77

5 Ordered Completion Systems

deduce
E ,R

E ∪ {s ≈ t},R
if s←o→ t ∈ CP�(E ∪ R)

orient
E] {s ' t},R
E ,R∪ {s→ t}

if s � t

delete
E] {s ≈ s},R

E ,R

simplify
E] {s ' t},R
E ∪ {s ' u},R

if t→R∪E� u

compose
E ,R] {s→ t}
E ,R∪ {s→ u}

if t→R∪E� u

collapse
E ,R] {t→ s}
E ∪ {u ≈ s},R

if t→R∪E� u

Figure 5.2: The inference system oKB′ of finite ordered completion.

5.1.2 Finite Runs

As for standard completion, finite ordered completion runs can be performed
using slightly simpler inference rules. We define the inference system oKB′

by the rules displayed in Figure 5.2. Note that the two simplify, collapse and
compose rules are merged now, and the former two enjoy relaxed side conditions.
Just like for finite standard completion, in the definition of the proof order we
need to uniquely identify rewrite rules, i.e., we need to distinguish between
(variants of) the same rewrite rule developed in the course of a run. For this
purpose we assume that all equations and rewrite rules occurring during a run
are variable-disjoint.

In the remainder of Section 5.1 finite oKB′ runs of the form

(E0,∅) ` (E1,R1) ` (E2,R2) ` · · · ` (En,Rn) (5.1)

are considered. We define a modified proof order ⇒�,noKB as follows.

Definition 5.19. Consider a run of the form (5.1) which has length n ∈ N and
uses the reduction order �. The cost cn of an equational proof step in

⋃
i Ei∪Ri

is defined as follows:

c(s←−→
u≈v

t) = ({s, t},⊥, n− k,⊥)

where k is maximal such that u ' v ∈ Ek
c(s

p←−→
`→r

t) = c(t
p←−→

r←`
s) = ({s}, s|p, n− k,⊥)

where k is maximal such that `→ r ∈ Rk
c(s

p←−→
`→r

t) = c(t
p←−→

r←`
s) = ({s}, s|p, n− k,>)

where k is maximal such that `→ r ∈ (Ek)�

78

5.1 Ordered Completion

To compare cost triples we use the lexicographic combination of �mul, B, the
standard order > on N, and the order where ⊥ < > (and ⊥ is considered
minimal with respect toB). Again the cost of an equational proof is the multiset
consisting of the costs of its steps, and the proof order ��noKB on equational
proofs is the multiset extension of the order on proof step costs. Finally, we
write P ⇒�,noKB Q if and only if P ��noKBQ, and P and Q prove the same equation.

As a lexicographic combination of well-founded orders �� is terminating, so
the following result is easily established.

Lemma 5.20. The relation ⇒�,noKB is a proof reduction relation.

We next show that oKB′ runs constitute equational inference sequences with
respect to ⇒�,noKB. We will drop the subscript and write �� instead of �� n

oKB

if the intended definition is clear from the context.

Lemma 5.21. A finite oKB′ run of length n is an equational inference sequence
with respect to ⇒�,noKB.

Proof. We argue that every inference step (Ei,Ri) `oKB′ (Ei+1,Ri+1) can be
simulated by expand and contract steps according to Definition 3.1. To enhance
readability, we will simply write ⇒ instead of ⇒�,noKB.

Every deduce step clearly constitutes an expansion. A delete inference obvi-
ously constitutes a contract step as s ↔s≈s s ⇒ s. Every other inference step
can be viewed as an expansion adding the respective rule or equation, followed
by a contraction.

An orient inference expands by adding s→ t and subsequently removes s ' t.
Note that i is maximal such that s ' t ∈ Ei while for the maximal j such that
s → t ∈ Rj we have j > i. Hence the contraction is valid as s↔ε

s≈t t ⇒
s↔ε

s→t t because {({s}, s, n− i,>)} �� {({s}, s, n− j,⊥)}.
An application of simplify can be viewed as an expansion inference adding

s ' u followed by a contraction step removing s ' t since t→`→r u for some rule
`→ r. While i is maximal such that s ' t ∈ Ei, the maximal j such that s ' u ∈
Ej is greater than i. Also the maximal k such that `→ r occurs in Rk or (Ek)�
must be greater than i. The contraction step transforms the proof P : s↔s≈t t
into Q : s↔s≈u u r←`← t. A case distinction shows that the contraction always
results in a smaller proof. If c(P) = {({s}, s, n − i, . . .)} because s � t then
we have s � u and thus c(Q) = {({s}, s, n − j, . . .), ({t}, . . .)}, which yields a
decrease as n−i > n−j. Otherwise, c(P) is {({s, t}, . . .)} or {({t}, t, n−i, . . .)},
and c(Q) involves {({s, u}, . . .) (or {({s}, . . .)} or {({u}, . . .)}) and ({t}, t, n −
k, . . .). Because of t � u, n − i > n − j, and n − i > n − k this results in a
decrease in both cases.

A compose step adds s → u and performs a contraction removing s → t.
Here i is maximal such that s → t ∈ Ri but the maximal j such that s →
u ∈ Rj is greater than i. The contraction is justified because s↔s→t t has cost
{({s}, s, n−i, . . .)} while the cost of s↔s→u u← t only amounts to {({s}, s, n−
j, . . .), ({t}, . . .)}, and both s � t and t � u hold.

Finally, a collapse step constitutes an expansion adding u ≈ s followed by
a contraction removing t → s because t →p

`→r u for some rule ` → r and

79

5 Ordered Completion Systems

p ∈ Pos(t). Here i is maximal such that t → s ∈ Ri but the maximal k such
that `→ r occurs inRk or (Ek)� must be greater than i. On the proof level, this
contraction replaces t↔t→s s with cost {({t}, t, n − i, . . .)} by t→ u↔u≈s s,
where the cost of the latter consists of ({t}, t|p, n−k, . . .) and one of ({s, u}, . . .),
({s}, . . .), or ({u}, . . .). This results in a smaller proof as t � s, u, t D t|p, and
n− i > n− k.

Fairness is defined exactly as in Definition 5.8 except that the modified proof
order ⇒�,noKB is used. The following results on fairness, correctness, and com-
pleteness can be proven in exactly the same way as for oKB since all comparisons
of proof steps involve only the first component where the proof orders ⇒�oKB
and ⇒�,noKB coincide.

Lemma 5.22. Let � be completable for E0. If an oKB′ run (E0,∅) ` (E1,R1) `
(E2,R2) ` · · · ` (En,Rn) satisfies CP�(En ∪Rn) ⊆

⋃
i Ei then it is fair.

Correctness Theorem 5.23. Let � be completable for E0, and (E0,∅) `
(E1,R1) ` · · · ` (En,Rn) be a fair oKB′ run using �. Then (En,Rn) is ground
convergent for E0 with respect to any complete extension of �.

Lemma 5.24. Let (E0,∅) ` (E1,R1) ` · · · ` (∅,Rn) be an oKB′ run such that
CP(Rn) ⊆

⋃
i Ei. Then Rn is convergent for E0.

Completeness Theorem 5.25. Let � be completable for E, and assume R
is a finite canonical rewrite system for E such that R ⊆ �. Then any fair and
simplifying oKB′ run (E0,∅) ` (E1,R1) ` · · · ` (En,Rn) using � yields En = ∅
and Rn = R (modulo variable renaming).

Theorem 5.26. Let E be a set of equations and s ≈ t be a goal such that � is
completable for E∪{s ≈ t}, and consider a fair oKB′ run ((Es≈t,∅) ` (E1,R1) `
· · · ` (En,Rn) using �c. Then true ' false ∈

⋃
i Ei ∪ Ri if and only if there

exists a substitution σ such that sσ ↔∗E tσ.

5.1.3 Critical Pair Criteria

As for standard completion, critical pair criteria can be used as a means to
filter out critical pairs that can be ignored without compromising completeness.
Again the compositeness criterion serves as a general condition.

Let E be a set of equations, R be a set of rewrite rules, and � be a reduction
order. A critical pair criterion CPC� maps (E ,R) to a set of equations such
that CPC�(E ,R) is a subset of CP�(E ∪R). Intuitively, CPC�(E ,R) captures
superfluous critical pairs. We use the same notion of compositeness as for
standard completion, except that a different proof order is used.

Definition 5.27. Let E be a set of equations, R a set of rewrite rules, and
�� a proof order using reduction order �. An equational proof P : s← u→ t
is composite with respect to (E ,R) and �� if there exist terms u0, . . . , un+1

such that s = u0, t = un+1, and u � ui for all 1 6 i 6 n, together with proofs
P0, . . . , Pn in (E ,R) such that Pi proves ui ≈ ui+1 and P �� Pi holds for all
1 6 i 6 n.

80

5.1 Ordered Completion

The compositeness criterion CCP�(E ,R) returns all extended critical pairs
among equations in E and rules in R for which the associated overlaps are
composite with respect to (E ,R) and ��. Ignoring composite critical pairs does
not affect fairness, as the following result shows, thereby relaxing Lemma 5.9.

Lemma 5.28. Let � be complete for E0. Consider an oKB run γ : (E0,∅) `
(E1,R1) ` (E2,R2) ` · · · using � and let C be a subset of

⋃
i CCP�(Ei ∪ Ri),

where CCP is computed with respect to ��oKB . If CP�(Eω ∪ Rω) \ C ⊆
⋃
i Ei

then γ is fair.

Proof. We argue by induction on ��oKB that any ground non-rewrite proof
in (Eω)> ∪ Rω can be transformed into a rewrite proof. Such a non-rewrite
proof must contain a peak P : s ← u → t. If this peak does not constitute
a proper overlap then according to Corollary 5.7 there exists a proof P ′ such
that P ⇒�oKB P

′, and by the induction hypothesis P ′ can be transformed into
a rewrite proof in (Eω)> ∪ Rω. Otherwise, s = C[`σ] and t = C[rσ] for some
extended critical pair ` ←×→ r in CP�(Eω ∪Rω), and P ⇒�oKB s↔ε

`≈r t.
If ` ' r occurs in some set Ei then by the Persistence Lemma 3.4 there is a
proof P ′ in (Eω)> ∪ Rω such that s↔ε

`≈r t (⇒�oKB)= P ′. By the induction
hypothesis P ′ can be transformed into a rewrite proof and hence this also holds
for P . Otherwise, ` ' r ∈ CCP�(Ei,Ri) for some i. Let v be the term at
the peak of the corresponding overlap P ′ : ` ← v → r. By definition, there
are terms v0, . . . , vn+1 such that s = v0, t = vn+1 and v � vi, and (Ei,Ri)
admits proofs Pi of vi ≈ vi+1 for which P ′ ��oKB Pi. Thus the proofs C[Piσ]
prove C[viσ] ≈ C[vi+1σ] for all 1 6 i 6 n, and by the Persistence Lemma 3.4
there are respective proofs P ′i in (Eω)> ∪ Rω such that C[Piσ] (⇒�oKB)= P ′i .
According to the induction hypothesis all these proofs can be transformed into
rewrite proofs Qi of C[viσ] ≈ C[vi+1σ]. Thus all terms occurring in the proofs
Qi are smaller than u = C[vσ] such that P ⇒�oKB Q1 · · ·Qn holds. By the
induction hypothesis Q1 · · ·Qn can be transformed into a rewrite proof, hence
this also holds for P .

A completely analogous proof can be used to show a corresponding result for
oKB′, thereby relaxing Lemma 5.22.

Lemma 5.29. Let � be complete for E0. Consider a finite oKB′ run γ : (E0,∅) `
(E1,R1) ` · · · ` (En,Rn) using � and let C be a subset of

⋃
i CCP�(Ei ∪ Ri),

where CCP is computed with respect to ��noKB . If CP�(Eω ∪ Rω) \ C ⊆
⋃
i Ei

then γ is fair.

The compositeness criterion only applies to overlaps s ← u → t such that
u � s and u � t. In contrast to standard critical pairs this need not hold
for extended critical pairs. We therefore restrict to oriented extended overlaps
〈`1 ≈ r1, p, `2 ≈ r2〉σ which satisfy `2[σ] � `2σ[r1σ]p and `2[σ] � r2σ. Note that
this is equivalent to `i → ri ∈ R or `iσ → riσ ∈ E� for both i ∈ {1, 2}. As
concrete instances of compositeness we outline the primality criterion [51] and
the connectedness criterion [61] in the setting of (finite) ordered completion.

81

5 Ordered Completion Systems

Primality

Let E be a set of equations and R be a set of rewrite rules such that � can
be extended to a complete reduction order for E ∪ R. An oriented overlap is
prime if `2σ is not reducible by E� ∪ R at any position strictly below p. The
primality criterion PCP�(E ,R) returns all oriented critical pairs among rules
in R for which the associated overlaps are not prime.

Lemma 5.30. Every oriented extended critical pair which is not prime is com-
posite with respect to ��oKB and ��noKB .

Proof. Consider an oriented overlap 〈`1 ≈ r1, p, `2 ≈ r2〉σ with corresponding
peak P : s p

r1≈`1← u →ε
`2≈r2 t. Suppose the extended critical pair s ←o→

t is not prime since u →q
E�∪R v for p < q. We have u � s, t, v by as-

sumption. Let proofs P1 and P2 be defined by P1 : s p
r1≈`1← u →q v and

P2 : v q← u →ε
`2≈r2 t. Note that P1P2 proves s ≈ t. For both ��oKB and

��noKB, the cost of P is of the form {({u}, u|p, . . .), ({u}, u, . . .)} whereas c(P1) =
{({u}, u|p, . . .), ({u}, u|q, . . .)}, and c(P2) = {({u}, u|q, . . .), ({u}, u, . . .)}. Since
u B u|p B u|q both P �� P1 and P �� P2 hold, independent of whether �� is
��oKB or ��noKB . Thus P is composite.

Again a special case of PCP� is captured by the unblockedness criterion
BCP� [9] (see Section 3.2).

Connectedness

Also the connectedness criterion extends to the setting of ordered completion.
Given a set of equations E and a set of rewrite rules R, an extended critical
pair s ←×→ t originating from an oriented overlap s ← u → t is connected
below u if there exists an equational proof s = u0 ↔ u1 ↔ · · · ↔ un+1 = t in
(E ,R) such that u � ui for all 1 6 i 6 n.

Lemma 5.31. If an extended critical pair stemming from an oriented overlap
s← u→ t is connected below u then it is composite with respect to both ��oKB

and ��noKB .

Proof. Let Pi denote the single-step proof ui ↔ ui+1 in (E ,R). For both proof
orders under consideration c(P) = {({u}, . . .), ({u}, . . .)} while c(Pi) consists of
a single tuple of the form ({ui}, . . .), ({ui+1}, . . .), or ({ui, ui+1}, . . .). Therefore
u � ui, ui+1 implies P �� Pi for all 0 6 i 6 n. Since obviously P0 · · ·Pn proves
s ≈ t, the extended critical pair is composite.

In practice this rather abstract criterion can be approximated for instance by
the weak connectivity test described in Section 3.2, and the resulting critical
pair criterion is denoted WCP�. As in the case of standard completion, the
criteria WCP� and PCP� can be combined since they both constitute special
cases of compositeness. This mixed criterion will again be referred to as MCP�.

82

5.2 Ordered Multi-Completion

5.2 Ordered Multi-Completion

Kondo and Kurihara [62] proposed the use of multiple reduction orders also for
the setting of ordered completion. To this end all reduction orders in the set
O are assumed to be completable for the theory under consideration. In the
inference system MKB the rewrite and deduce rules are replaced by the rules in
Figure 5.3. We refer to the combined set of inference rules by oMKB.

odeduce
N

N ∪ {〈s : t,∅,∅, L〉}

if 〈`1 : r1, R, . . . , E〉, 〈`2 : r2, R
′, . . . , E′〉 ∈ N and L ⊆ (R∪E)∩(R′∪E′)

such that s←o→ t ∈ CP�(`1 → r1, `2 → r2) for all � ∈ L and L 6= ∅

orewrite1
N] {〈s : t, R0, R1, E〉}

N ∪ {〈s : t, R0 \ L,R1, E \ L〉, 〈s : u,R0 ∩ L,∅, E ∩ L〉}

if 〈` : r,R, . . . , E]E′〉 ∈ N , t→`→r u such that t
.
= `, L = R∪E where

t � u for all � ∈ E, and (R0 ∪ E) ∩ L 6= ∅

orewrite2
N] {〈s : t, R0, R1, E〉}

N ∪ {〈s : t, R0 \ L,R1 \ L,E \ L〉, 〈s : u,R0 ∩ L,∅, (E ∪R1) ∩ L〉}

if 〈` : r,R, . . . , E]E′〉 ∈ N , t→`→r u such that t ·B `, L = R ∪E where
t � u for all � ∈ E, and (R0 ∪R1 ∪ E) ∩ L 6= ∅

Figure 5.3: Rules in the inference system for ordered multi-completion (oMKB).

Runs and projections functions are defined exactly as for MKB. Adapting
Lemmas 4.3 and 4.4 to the setting of ordered completion yields the following
simulation results.

Simulation Soundness Lemma 5.32. If N0 `αoMKB Nα then for all �i ∈ O
there is some β 6 α such that (E[N0, i], R[N0, i]) `βoKB (E[Nα, i], R[Nα, i]).

An oMKB run γ can thus be projected to oKB runs γi for all �i ∈ O.

Simulation Completeness Lemma 5.33. Let N0 be a node set such that
E0 = E[N0, i] and R0 = R[N0, i] for some �i ∈ O and there is a run (E0,R0) `αoKB
(Eα,Rα). Then there is a node set Nα such that N0 `αoMKB Nα, Eα = E[Nα, i],
and Rα = R[Nα, i] hold.

A run γ is fair if some γi is fair. Using this definition and the simulation
properties, the following correctness result is straightforward.

Correctness Theorem 5.34. Let E be a set of equations and NE be an initial
node set whose reduction orders O are completable for E. For any fair run
NE `αMKB N there is then some �i ∈ O such that (E[N, i], R[N, i]) is ground
convergent with respect to any complete extension of �i.

Proof. By Lemma 5.32 and fairness there is some �i ∈ O such that the oKB
run γi is fair. Hence the claim follows from Theorem 5.10.

83

5 Ordered Completion Systems

5.3 Ordered Completion with Termination Tools

Although ordered completion never fails, the reduction order still has significant
impact on the success of a run. For instance, an unfortunate choice of the input
order may lead to an infinite ground convergent system, while another reduction
order could admit a finite result. Both ordered completion and completion-
based theorem proving can thus benefit from extending the class of applicable
reduction orders as facilitated by the use of termination tools. We will first
present ordered completion with termination tools by adopting an approach
very similar to KBtt. In the next step this method will be combined with
multi-completion to efficiently pursue multiple processes in parallel.

Ordered completion with termination tools (oKBtt) is described by the rules
depicted in Figure 5.4 together with orient, delete, simplify, compose and collapse
from KBtt.

deduce2
E ,R, C

E ∪ {s ≈ t},R, C
if s←E∪R u→E∪R t

simplify2
E] {s ' t},R, C

E ∪ {s ' u},R, C ∪ {`σ → rσ}
if t

`σ→rσ−−−−→ u using ` ' r ∈ E such
that C ∪ {`σ → rσ} terminates

compose2
E ,R] {s→ t}, C

E ,R∪ {s→ u}, C ∪ {`σ → rσ}
if t

`σ→rσ−−−−→ u using ` ' r ∈ E such
that C ∪ {`σ → rσ} terminates

collapse2
E ,R] {t→ s}, C

E ∪ {u ≈ s},R, C ∪ {`σ → rσ}
if t

`σ→rσ−−−−→ u using ` ' r ∈ E such
that C ∪ {`σ → rσ} terminates

Figure 5.4: Some inference rules of oKBtt.

An inference sequence γ : (E0,R0, C0) ` (E1,R1, C1) ` · · · ` (En,Rn, Cn) with
respect to oKBtt will always supposed to be finite and is called a run. We will
in the sequel assume that R0 = C0 = ∅. Below we show that oKBtt can be
simulated by oKB′ and vice versa.

Simulation Soundness Lemma 5.35. Any run (E0,∅,∅) `noKBtt (En,Rn, Cn)
admits an oKB′ run (E0,∅) `noKB′ (En,Rn) using reduction order →+

Cn.

Proof. Let �n denote →+
Cn . We use induction on n. The claim is trivially true

for n = 0. For a run of the form (E0,∅,∅) `∗ (En,Rn, Cn) ` (En+1,Rn+1, Cn+1),
the induction hypothesis yields a corresponding oKB′ run (E0,∅) `∗ (En,Rn)
using the reduction order �n. Since constraint rules are never removed we
have Ck ⊆ Cn+1 for all k 6 n, so the same run can be obtained with �n+1. A
case distinction on the applied oKBtt rule shows that an oKB′ step (En,Rn) `
(En+1,Rn+1) using �n+1 is possible.

If orient added the rule s→ t then s �n+1 t holds by definition, so oKB′ can
apply orient as well. In case simplify2, compose2 or collapse2 was applied using an

84

5.3 Ordered Completion with Termination Tools

instance `σ → rσ of an equation in En, we have `σ �n+1 rσ by definition of the
inference rules, hence the respective oKB′ step can be applied as well. Clearly,
in the remaining cases the inference step can be simulated by the corresponding
oKB′ rule since no conditions on the order are involved.

Simulation Completeness Lemma 5.36. If (E0,∅) `noKB′ (En,Rn) is a
valid oKB′ run using � then there is also a valid oKBtt run (E0,∅,∅) `noKBtt
(En,Rn, Cn) such that Cn ⊆ �.

Proof. By induction on n. For n = 0 the claim is trivially satisfied. For a run
(E0,∅) `∗ (En,Rn) ` (En+1,Rn+1) the induction hypothesis yields the existence
of an oKBtt run (E0,R0, C0) `∗ (En,Rn, Cn) such that Cn ⊆ �. An easy case
distinction on the oKB′ step (En,Rn) ` (En+1,Rn+1) shows that using � for
termination checks allows for a corresponding oKBtt step.

If the applied inference rule is orient then En = En+1] {s ' t}, Rn+1 =
Rn] {s→ t} and s � t. Thus also Cn ∪ {s→ t} ⊆ �, ensuring termination of
the extended constraint system. Hence the oKBtt inference orient can be applied
to obtain a step (En,Rn, Cn) ` (En \ {s ≈ t},Rn ∪{s→ t}, Cn ∪{s→ t}). If the
inference step (En,Rn) ` (En+1,Rn+1) applies compose2, simplify2 or collapse2

then an equation ` ' r is used with a substitution σ such that `σ � rσ. Thus
also Cn ∪ {`σ → rσ} ⊆ �, ensuring termination of the extended constraint
system such that the respective oKBtt rule is applicable with Cn+1 = Cn∪{`σ →
rσ}. In the remaining cases one can set Cn+1 = Cn and replace the applied rule
by its oKBtt counterpart since no conditions on the order are involved.

Totalizability

Lemma 5.35 shows that an oKBtt run resulting in the final constraint system C
can be simulated by oKB′ using the reduction order →+

C . If this order should
play the role of � in the Correctness Theorem 5.23 then it has to be contained
in a reduction order > which is complete for the theory. Unfortunately, such
an order does not always exist. In the proof of the Extended Critical Pair
Lemma 5.6, totalizability of the reduction order is needed to guarantee join-
ability of variable overlaps. Assume an oKBtt run has a final state (E ,R, C) such
that →+

C cannot be extended to a complete order for the theory. If E = ∅ then
R is nevertheless convergent (cf. Theorem 5.11). Otherwise (E ,R) need not
constitute a ground convergent system, as illustrated by the following example.

Example 5.37. A fair oKBtt run starting from

f(a + c) ≈ f(c + a) a ≈ b g(c + b) ≈ g(b + c) x+ y ≈ y + x

might produce the following result (E ,R):

x+ y ≈ y + x a→ b

f(b + c)→ f(c + b)

g(c + b)→ g(b + c)

85

5 Ordered Completion Systems

with C = R ∪ {f(a + c) → f(c + a)}. It is easy to show that (E ,R) cannot
constitute a ground convergent system with respect to any reduction order
> that is complete for the theory: Consider the instance c + a ≈ a + c of
commutativity. Note that no reduction order > extending →+

C can orient this
equation from left to right. Hence a + c > c + a must hold, which admits the
variable overlap b + c← a + c→ c + a→ c + b. Due to the rules in C the terms
b + c and c + b have to be incomparable in >, so the overlap is not joinable.

To solve this problem we restrict the termination checks in oKBtt inferences.

Definition 5.38. An oKBttT procedure refers to any program which implements
the inference rules of oKBtt and employs a termination tool T for termination
checks in orient, simplify2, compose2 and collapse2 inferences. An oKBtttotal
procedure is an oKBttT procedure where T ensures total termination of the
checked system.

Thus, for any constraint system C derived in an oKBtttotal run the relation
→+
C can be extended to a ground-total reduction order.

Correctness

The Correctness Theorem 5.10 states that an ordered completion run produces
a ground convergent system—provided it is fair. In implementations fairness
is typically ensured by considering extended critical pairs with respect to the
employed reduction order. However, in oKBtt runs the role of the reduction
order is played by the relation →+

C depending on the final constraint system C,
which is not known in advance. Thus the set of extended critical pairs cannot
be computed during a run, though it can be overapproximated: Note that
CP�(E) ⊆ CP>(E) holds for all reduction orders > ⊆ � and ES E . For instance,
we have CP�(E) ⊆ CP∅(E)—but considering all critical pairs in CP∅(E) is
rather inefficient in an implementation. Since any ground-total reduction order
� is a simplification order (cf. Section 2.2) we also have B ⊆ �, so CP�(E ∪
R) can be overapproximated by CPB(E ∪ R). This motivates the following
definition.

Definition 5.39. An oKBtttotal run (E0,∅) `∗ (En,Rn) is sufficiently fair if
CPB(En ∪Rn) ⊆

⋃
i Ei.

Lemma 5.40. Any sufficiently fair oKBtttotal run is fair.

With the above considerations, we can carry over the correctness result of
ordered completion to the oKBtttotal setting.

Correctness Theorem 5.41. Let (E0,∅,∅) `∗ (En,Rn, Cn) be a sufficiently
fair oKBtttotal run. Then there exists a ground-total extension > of →+

Cn such
that (En,Rn) is ground convergent for E0 with respect to >.

Proof. By Lemma 5.35, there exists a corresponding oKB′ run γ using the
reduction order →+

Cn . Since Cn is totally terminating there exists a reduction

order > which contains →+
Cn and is total on T (F). Any reduction order >

86

5.3 Ordered Completion with Termination Tools

which is total on ground terms contains the strict subterm relation B. Hence
we have CP>(En ∪ Rn) ⊆ CPB(En ∪ Rn) and as a consequence the sufficiently
fair run γ is fair. By correctness of finite ordered completion (Theorem 5.23),
(En,Rn) is ground convergent for E0 with respect to >.

Note that if an oKBtt run has no equations left in the end then the resulting
TRS is convergent, independent of the termination techniques used:

Lemma 5.42. Let (E0,∅,∅) `∗ (∅,Rn, Cn) be an oKBtt run such that CP(Rn) ⊆⋃
i Ei and � ⊆ →+

Cn. Then Rn is convergent for E0.

Proof. According to Lemma 5.35, there exists a corresponding oKB′ run γ using
the reduction order→+

Cn . By Lemma 5.24 the TRS Rn is convergent for E0.

Theorem 5.43. Let � be ground-total, and assume R is a finite, canonical
rewrite system for E such that R ⊆ �. Then there exists a sufficiently fair and
simplifying oKBtttotal run (E0,∅,∅) `n (∅,Rn, Cn) such that Rn = R (modulo
variable renaming).

Proof. According to Theorem 5.25, there exists an oKB′ run γ producing Rω =
R and Eω = ∅. By Lemma 5.36 there is a corresponding oKBtt run (E ,∅,∅) `∗
(∅,R, C). This run can be extended to (E ,∅,∅) `∗ (∅,R, C) `∗ (E ′,R, C) by
deducing the remaining equations in E ′ = CPB(Eω ∪ Rω) \ CP�(Eω ∪ Rω) in
order to make it sufficiently fair. Since R is convergent for E , all equations in E ′
can be simplified to trivial ones which allows to derive the result (∅,R, C).

Example 5.44. Consider the input equations

g(f(x, b)) ≈ a (1)

f(g(x), y) ≈ f(x, g(y)) (2)

and the monotone algebra (A,�A) with carrier N and polynomial interpreta-
tions fA(x, y) = x + 2y + 1, gA(x) = x + 1, and aA = bA = 0. An oKBtt run
using �A may derive the following ground convergent system:

f(f(x, b), a) ≈ f(a, f(y, b)) g(f(x, b))→ a

f(f(x, b), a) ≈ f(f(y, b), a) f(x, g(y))→ f(g(x), y)

f(a, f(x, b)) ≈ f(a, f(y, b)) f(g(x), f(y, b))→ f(x, a)

In fact, if equation (2) would be oriented from left to right then the oKBtt run
would diverge. Since f(x, g(y)) → f(g(x), y) cannot be oriented by any KBO
or LPO which compares lists of subterms only from left to right, ordered com-
pletion tools that do not support other termination methods (e.g. Waldmeister)
cannot derive a ground convergent system.

We finally consider theorem proving with oKBtt. The next theorem states
that oKBtt constitutes a sound method for theorem proving, independent of the
termination techniques in use.

87

5 Ordered Completion Systems

rewrite2
N] {〈s : t, R0, R1, E, C0, C1〉}

N ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (E ∪R1) ∩R,∅,∅〉}
∪ {〈`σ : rσ,∅,∅,∅, R,∅〉 }

if – 〈` : r, . . . , E′, . . . 〉 ∈ N and t
`σ→rσ−−−−→ u

– R ⊆ E′ ∩ (R0 ∪ R1 ∪ E) such that Cp(N) ∪ {`σ → rσ}
terminates for all p ∈ R, and

– R 6= ∅

deduce2
N

N ∪ { 〈s : t,∅,∅, (R ∪ E) ∩ (R′ ∪ E′),∅,∅〉 }

if – 〈`1 : r1, R, . . . , E, . . . 〉, 〈`2 : r2, R
′, . . . , E′, . . . 〉 ∈ N

– s
r1←`1←−−−− u `2→r2−−−−→ t and (R ∪ E) ∩ (R′ ∪ E′) 6= ∅

Figure 5.5: The rewrite2 and deduce2 inference rules in oMKBtt.

Theorem 5.45. Consider a set of equations E, a goal s ≈ t, and an oKBtt run
(Es≈t,∅) ` (E1,R1) ` (E2,R2) ` · · · . If true ' false ∈

⋃
i Ei ∪ Ri then there

exists a substitution σ such that sσ ↔∗E tσ.

We conclude this section with a completeness result for theorem proving with
termination techniques that ensure total termination. Just like Theorem 5.45,
it is not hard to prove this result in a similar fashion as Theorem 5.17.

Theorem 5.46. Consider a set of equations E, a goal s ≈ t, and a sufficiently
fair oKBtttotal run (Es≈t,∅) ` (E1,R1) ` (E2,R2) ` · · · . If true ' false 6∈⋃
i Ei ∪Ri then there is no substitution σ such that sσ ↔∗E tσ.

5.4 Ordered Multi-Completion with Termination Tools

Ordered multi-completion with termination tools (oMKBtt) simulates multiple
oKBtt processes in parallel, in a very similar way as MKBtt emulates KBtt runs.
The inference system oMKBtt is described by the inference system in Figure 5.5,
together with orient, delete, rewrite and (optionally) subsume and gc as defined
for MKBtt in Figure 4.4. Note that the system oMKBtt considered here differs
from the inference system presented in [110] in that no process splitting happens
in rewrite2. Although the respective rule in [110] is correct we present a simpler
variant here for two reasons: Firstly, all correctness and completeness results
can be obtained with this simpler rule, too. Secondly, extensive experiments
(described in Chapter 8) reveal that rewriting with equation instances hardly
ever occurs in practice.

88

5.4 Ordered Multi-Completion with Termination Tools

An oMKBtt inference sequence N0 ` N1 ` N2 ` · · · ` Nn where N0 = NE for
some set of equations E is called a run. As in the case of MKBtt, in the first
place we need to establish some simple properties of runs.

Lemma 5.47. In an oMKBtt run N0 ` N1 ` N2 ` · · · the rewrite system
C[Nk, p] is terminating and R[Nk, p] ⊆ →+

C[Nk,p]
for all node sets Nk and p ∈

P(Nk).

Proof. We apply induction on k. The claim holds for N0 since for the single
process ε occurring in N0 we have R[N0, ε] = C[N0, ε] = ∅. In the induction
step, assuming that the claim holds for Nk, a case distinction on the rule applied
in Nk ` Nk+1 shows that it is also true for Nk+1. The cases of orient, rewrite,
delete, subsume, and gc can be proven as for MKBtt (see Lemma 4.24). For the
two additional rules we argue as follows, using the notation from Figure 5.5.

– Assume rewrite2 was applied. For all processes p ∈ P(N) \ R we have
R[Nk, p] = R[Nk+1, p] such that the proof obligations follow from the
induction hypothesis. Let �i denote the relation →+

C[Ni,p]
for all i 6

k+ 1. By construction of the inference rule the rewrite system C[Nk+1, p]
terminates and contains C[Nk, p], so �k ⊆ �k+1. If p ∈ R0 ∩ R then
R[Nk+1, p] = R[Nk, p] \ {s → t} ∪ {s → u}. The relation s �k t holds
by induction hypothesis and implies s �k+1 t, and `σ �k+1 rσ holds
by construction. From s → t →`σ→rσ u we thus obtain s �k+1 u. For
p ∈ R ∩ R1 and p ∈ R ∩ E we have R[Nk+1, p] ⊆ R[Nk, p], so the claim
follows from the induction hypothesis.

– If deduce2 was applied then R[Nk, p] = R[Nk+1, p] for all p ∈ P(Nk+1), so
the proof obligations follow from the induction hypothesis.

Lemma 5.47 obviously implies that rewrite projections applied to node sets
in oMKBtt runs yield terminating rewrite systems:

Corollary 5.48. In an oMKBtt run N0 ` N1 ` N2 ` · · · the rewrite system
R[Nk, p] is terminating for all node sets Nk with k > 0 and every process p ∈
P(Nk).

Lemma 5.49. In an oMKBtt run N0 ` N1 ` N2 ` · · · every node set Nk is
well-encoded and satisfies the node condition.

Proof. By induction on k. The claim clearly holds for N0. Otherwise, we
assume the well-encoded set Nk satisfies the node condition. A case distinction
on the applied oMKBtt rule shows that this also holds for Nk+1. If orient,
rewrite, delete, subsume, or gc was applied we argue as for MKBtt (see the proof
of Lemma 4.26). If rewrite2 or deduce2 was applied then P(Nk+1) = P(Nk),
so Nk+1 is clearly well-encoded. The reasoning that Nk+1 satisfies the node
condition is similar as for rewrite2 and deduce2, except for the node with data
`σ : rσ added in rewrite2. But this node obviously satisfies the node condition
too as it has only one non-empty label.

89

5 Ordered Completion Systems

The split set as well as the predecessor of a process associated with an oMKBtt
inference step is defined as for MKBtt (see Definition 4.27). Lemmas 5.50
and 5.51 state simulation properties relating oMKBtt runs to oKBtt runs.

Lemma 5.50. Let N and N ′ be well-encoded node sets which satisfy the node
condition. For an oMKBtt step N ` N ′ with split set S the oKBtt step

(E[N, p], R[N, p], C[N, p]) `= (E[N ′, p′], R[N ′, p′], C[N ′, p′]) (5.2)

is valid for all p′ ∈ P(N ′) such that p = predS(p′). Moreover, there exists at
least one process p′ ∈ P(N ′) for which the step is not an equality step if the rule
applied in N ` N ′ is not gc or subsume.

Proof. By a case distinction on the inference step N ` N ′. If an MKBtt rule was
applied we can argue as in the proof of Lemma 4.28, since the inference rules
in the simulated KBtt step are also present in oKBtt. If one of the additional
oMKBtt rules was applied then p = p′ holds as no process splitting occurs.
In the following reasoning for the remaining cases we use the notation from
Figure 5.5.

– If deduce2 adds a node 〈s : t,∅,∅, P,∅,∅〉 then for all p ∈ P we have
`1 ' r1, `2 ' r2 ∈ R[N, p] ∪ E[N, p]. Hence deduce2 can also add the
equation s ≈ t in oKBtt. As E[N ′, p] = E[N, p]∪ {s ≈ t} the step (5.2) is
valid. For all p 6∈ R ∩R′ the inference corresponds to an identity step.

– Assume rewrite2 was used. For every process p /∈ (R0 ∪R1 ∪ E) ∩R an
identity step is obtained. Otherwise, three cases can be distinguished
which are distinct due to the node condition.

i. If p ∈ R0 ∩ R then s → t ∈ R[N, p], ` ' r ∈ E[N, p], and C[N, p] ∪
{`σ → rσ} terminates. Hence compose2 in KBtt can replace s → t
by s→ u and add a constraint rule `σ → rσ. As R[N ′, p] = R[N, p]\
{s→ t} ∪ {s→ u} and `σ → rσ ∈ C[N ′, p] the step (5.2) is valid.

ii. If p ∈ E ∩ R then s ' t, ` ' r ∈ E[N, p] and C[N, p] ∪ {`σ → rσ}
terminates. Thus simplify2 can turn s ' t into s ' u and add a
constraint rule `σ → rσ. As E[N ′, p] = E[N, p] \ {s ' t} ∪ {s ' u}
and `σ → rσ ∈ C[N ′, p] the step (5.2) is valid.

iii. If p ∈ R1 ∩ R then t → s ∈ R[N, p], ` ' r ∈ E[N, p], and C[N, p] ∪
{`σ → rσ} terminates. A collapse2 step can remove t → s and
add the equation u ≈ s. We have R[N ′, p] = R[N, p] \ {s → t},
E[N ′, p] = E[N, p]∪{u ≈ s}, and `σ → rσ ∈ C[N ′, p] so (5.2) holds.

For any inference rule besides gc and subsume, the non-emptiness requirement
for the set of affected labels ensures that (5.2) is a strict step for some p′ ∈
P(N ′).

Lemma 5.51. Assume for an oKBtt inference step (E ,R, C) ` (E ′,R′, C′) there
exist a node set N and a process p such that E = E[N, p], R = R[N, p] and
C = C[N, p]. Then there is some oMKBtt inference step N ` N ′ with split set S
and a process p′ ∈ P(N ′) such that p = predS(p′), E ′ = E[N ′, p′], R′ = R[N ′, p′]
and C′ = C[N ′, p′].

90

5.4 Ordered Multi-Completion with Termination Tools

Proof. By case analysis on the step (E ,R, C) ` (E ′,R′, C′), where we refer to
the proof obligations E ′ = E[N ′, p′], R′ = R[N ′, p′], and C′ = C[N ′, p′] by (∗).
If orient, delete, compose, simplify, or collapse was applied then we argue as in
the case for MKBtt (see the proof of Lemma 5.51). In all remaining cases we
can set p′ = p since no process splitting occurs.

– Assume deduce2 generates an equation s ≈ t from an overlap involving
equations or rules `1 ' r1, `2 → r2 ∈ E ∪ R then there must be nodes
〈`1 : r1, R, . . . , E, . . . 〉 and 〈`2 : r2, R

′, . . . , E′, . . . 〉 in N such that p ∈
(R ∪ E) ∩ (R′ ∪ E′). A deduce2 step in oMKBtt can thus result in

N ′ = N ∪ {〈s : t,∅,∅, R ∩R′,∅,∅〉}

– If simplify2 rewrites s ' t to s ' u using a rule `σ → rσ, the system
C ∪ {`σ → rσ} must terminate. The set N thus contains nodes n = 〈s :
t, R0, R1, E, C0, C1〉 and 〈` : r, . . . , E′, . . . 〉 such that p ∈ E ∩ E′. Thus
rewrite2 applies and (∗) is satisfied as we obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0, R1, E \ {p}, C0, C1〉}
∪ {〈s : u,∅,∅, {p},∅,∅〉, 〈`σ : rσ,∅,∅,∅, {p},∅〉}

– If compose2 rewrites s→ t to s→ u using a rule `σ → rσ then C ∪{`σ →
rσ} terminates and N contains nodes n = 〈s : t, R0, R1, E, C0, C1〉 and
〈` : r, . . . , E′, . . . 〉 such that p ∈ R0 ∩ E′. Thus rewrite2 applies and (∗) is
satisfied since we obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 \ {p}, R1, E, C0, C1〉}
∪ {〈s : u, {p},∅,∅,∅,∅〉, 〈`σ : rσ,∅,∅,∅, {p},∅〉}

– Finally, if collapse2 replaces t → s by an equation u ≈ s as t →`σ→rσ u
then C ∪ {`σ → rσ} must terminate and the set N has to contain nodes
n = 〈s : t, R0, R1, E, C0, C1〉 and 〈` : r, . . . , E′, . . . 〉 such that p ∈ R1 ∩E′.
Again rewrite2 applies and (∗) holds as we obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 \ {p}, R1, E, C0, C1〉}
∪ {〈s : u,∅,∅, {p},∅,∅〉, 〈`σ : rσ,∅,∅,∅, {p},∅〉}

Given an oMKBtt run γ : N0 `n N , we define the sequence of ancestors
p0, . . . , pn of a process p ∈ P(N) and the projected run γp as in Definition 4.30.
We then obtain the following corollary from Lemma 5.50:

Corollary 5.52. Suppose an oMKBtt run γ : N0 ` N1 ` · · · ` Nk gives rise
to a process p ∈ P(Nk) having ancestors p0, . . . , pk. Let Ei, Ri and Ci denote
E[Ni, pi], R[Ni, pi] and C[Ni, pi], respectively. Then the sequence

γp : (E0,R0, C0) `= (E1,R1, C1) `= · · · `= (En,Rn, Cn)

is a valid oKBtt run called the projection of γ to p.

91

5 Ordered Completion Systems

Definition 5.53. A finite oMKBtt run γ : N0 `∗ N is sufficiently fair for a
process p ∈ P(N) if γp is sufficiently fair, and it is sufficiently fair if it is
sufficiently fair for some process p.

An oMKBttT run refers to an oMKBtt run employing a termination tool T
for all termination checks in orient and rewrite2 steps. Let an oMKBtttotal run
be any run where T ensures total termination of the checked system. From
Lemmas 5.50 and 5.51 and the Correctness Theorem 5.41 for oKBtttotal it is
then not difficult to establish a correctness result for oMKBtttotal.

Correctness Theorem 5.54. Let NE be the initial node set for a set of equa-
tions E and γ : NE `∗ N be a finite oMKBtttotal run which is sufficiently fair for
some p ∈ P(N). Then there exists a ground-total extension > of →+

C[N,p] such

that (E[N, p], R[N, p]) is ground convergent for E with respect to >.

Proof. Corollary 5.52 states that γp : (E ,∅,∅) `∗ (E[N, p], R[N, p], C[N, p]) is
a valid oKBtttotal run which is by assumption sufficiently fair. According to
Correctness Theorem 5.41 there exists a ground-total extension > of →+

C[N,p]

such that (E[N, p], R[N, p]) is ground convergent for E with respect to >.

92

Chapter 6

Normalized Completion Systems

Natural input problems for completion procedures often contain axiomatiza-
tions of common algebraic structures, such as associative and commutative
symbols, groups, or rings. Specialized completion procedures have been pro-
posed to deal efficiently with some customary algebraic theories, most notably
with AC [65–67, 83]. Completion procedures for left-linear theories were pro-
posed in [6,10,45]. For more general theories T where T -unification is finitary
and the subterm ordering modulo T is well-founded, extensions have been pre-
sented in [10, 48]. However, this requirement excludes common theories such
as AC with a unit element (ACU) or AC with idempotency (ACI). For the
case of ACU, a specialized completion procedure based on constrained rewrit-
ing [18, 54] has been presented in [49], but this approach does not directly
generalize to other theories such as Abelian groups.

Normalized completion [73–76] constitutes the last result in this line of re-
search. It has three advantages over earlier proposals. (1) It allows completion
modulo any theory T that can be represented as an AC-convergent rewrite
system S. (2) Critical pairs need not be computed with respect to the theory
T , which may not have a decidable unification problem. Instead, any theory
between AC and T can be used. (3) The reduction order used to establish ter-
mination need not be compatible with T , it only needs to be AC compatible.
This is beneficial for theories like ACI where no T -compatible reduction order
can possibly exist, as the following example shows.

Example 6.1. Consider the theory ACI of an AC operator · which is idem-
potent, i.e., it satisfies x · x ↔∗ACI x. Assume there exists an ACI-compatible
reduction order �. Suppose s � t holds for some terms s and t, such that
s · s � t holds by ACI compatibility. Then the following infinitely decreasing
sequence contradicts wellfoundedness:

s↔∗ACI s · s � t · s↔∗ACI t · s · s � t · t · s↔∗ACI t · t · s · s � . . .

For the above mentioned reasons, normalized completion is applicable to
many common theories such as AC augmented with axioms for unit elements,
idempotency or nilpotency, but also to groups and rings. It moreover generalizes
Buchberger’s algorithm to compute Gröbner bases [76]. Compared to standard
completion (Section 3.2) or AC completion, it also improves efficiency if the
input theory includes a subtheory for which an (AC-)convergent presentation
is already known. In computing less critical pairs by focusing on a particu-
lar theory, the approach shares advantages with specialized theorem proving
techniques having built-in equational theories (e.g., [43, 82,105]).

93

6 Normalized Completion Systems

6.1 Normalized Completion

We first recall normalized rewriting, mainly based on the presentation in [75]
but also taking into account results in [73,74,76].

Throughout this chapter, we will consider an equational theory T over a
signature F which is represented by a fixed AC-convergent TRS S, so

∗←→
T

=
!−−−→

S/AC
· ∗←−→

AC
· !←−−−
S/AC

For example, for the theory ACU of an AC operator + with unit 0, we have
T = {x+(y+z) ≈ (x+y)+z, x+y ≈ y+x, x+0 ≈ x} and S = {x+0→ x}. Note
that the representation S need not be unique, for example if T is the theory of
Abelian groups.1 The associativity and commutativity equations in T for all
associative-commutative symbols in F are denoted by AC.

Given a set of equations E and a set of rewrite rules R, an equational proof
step s ↔p,σ

e t in (T , E ,R) is either an equality step using an equation e ∈ E , a
rewrite step using a rule e ∈ R, an (S-) rewrite step using a rule e ∈ S, or an
equality step using an equation e in AC.

We define normalized rewriting as in [75] but use a different notation to
distinguish it from the by now established notation for rewriting modulo.

Definition 6.2 ([75]). Two terms s and t admit an S-normalized R-rewrite
step if

s
!−−−→

S/AC
s′

∗←−→
AC
· p−−→
`→r

· ∗←−→
AC

t (6.1)

for some rule `→ r in R and position p in s′. We write

s
p−−−−→

`→r\S
t

for (6.1), and write s→R\S t if s
p−−−−→

`→r\S
t for a rule `→ r in R and position p.

Let � be an AC-compatible reduction order such that S ⊆ � and let � be the
smallest AC-compatible preorder containing �. For any set of rewrite rules R
satisfying R ⊆ � the normalized rewrite relation→R\S is well-founded [74,75],
so we can consider equational proofs of the form

s
!−−−→
R\S

· ∗←→
T
· !←−−−
R\S

t

These normal form proofs will play a special role and are called normalized
rewrite proofs.

By AC-convergence of S for T , any such proof can be transformed into a
proof s �R\S t, where the relation �R\S abbreviates

!−−−→
R\S

· !−−−→
S/AC

· ∗←−→
AC
· !←−−−
S/AC

· !←−−−
R\S

1 To avoid confusion we differentiate between the theory T and its AC-convergent representa-
tion S, although both are denoted by S in [75].

94

6.1 Normalized Completion

A TRS R is called S-convergent for a set of equations E if→R\S is terminating
and the relations ↔∗E ∪T and �R\S coincide.

From now on we write t↓ for t↓S/AC and s↓p for s[u↓]p where u = s|p. We let
c(s, p, t) denote the multiset {s} if s↓p = s and {s, t} otherwise.

Definition 6.3. Let E be a set of equations, R a rewrite system and � an
AC-compatible reduction order containing R. The cost of an equational proof
step is defined as follows:2

c(s←−→
u≈v

t) = (⊥, {s},⊥,⊥,⊥) if u ' v ∈ AC

c(s
p←−→

u≈v
t) = ({s↓p, t↓p}, {s, t},⊥,⊥,⊥) if u ' v ∈ E

c(s
p,σ←−→
`→r

t) = c(t
p,σ←−→
r←`

s) = (c(s, p, t), {s}, (s|p)↓, `, rσ) if `→ r ∈ R

c(s←−→
`→r

t) = c(t←−→
r←`

s) = (⊥, {s},⊥,⊥,⊥) if `→ r ∈ S

Cost tuples are compared by the lexicographic combination of (�mul, (↔∗AC)mul)
for the first two components, (·BAC,↔∗AC), (BAC ,↔∗AC), and (�,↔∗AC), all of
which constitute order pairs. The constant ⊥ is considered minimal in all of
these proper orders. The cost of an equational proof is the multiset consisting
of the costs of its steps. The proof order ��NKB is the multiset extension
of the order on proof step costs, and by ⇒�NKB we denote the relation such
that P ⇒�NKB Q holds if and only if P ��NKB Q and P and Q prove the same
equation.

Note that the first component of the cost of an equality step and the third
component of the cost of a rewrite step are only unique up to (↔∗AC)mul and
↔∗AC, respectively. But since these cost components are compared by AC-
compatible orderings it does not matter which representative of the respective
equivalence class occurs in the cost tuple.

It is easy to show that this definition yields a proof reduction relation.

Lemma 6.4 ([75]). ⇒�NKB is a proof reduction relation.

We use an AC version of the Extended Critical Pair Lemma [47,48].

Lemma 6.5. Let `1 → r1 and `2 → r2 be rewrite rules which admit a peak
P : s r1←`1← · ↔∗AC · →`2→r2 t. If P does not contain an instance of an AC
overlap then

s
∗−−−−−−→

`2→r2/AC
· ∗←−−−−−−
r1←`1/AC

t

Otherwise, there is some critical pair u←×→ v in CPAC(`1 → r1, `2 → r2) or
CPAC(`1 → r1, (`2 → r2)e) such that

s
∗←−→

AC
· ←−→
u≈v

· ∗←−→
AC

t

2 Note that our definition differs from [75] by the additional third component, which was added
to facilitate critical pair criteria.

95

6 Normalized Completion Systems

Note that this implies that any non-joinable peak is an instance of an AC-
critical pair between two rules where at most one rule is extended, so critical
pairs between two extended rules of a rewrite system R can be ignored. The fol-
lowing lemma builds upon the previous statement and shows that both joining
sequences and critical pairs admit smaller proofs.

Lemma 6.6. Let R be a set of rewrite rules such that R ⊆ �.

(a) If P : s S← u ↔∗AC u′ →S t then there is a proof Q : s →∗S/AC ·
∗

S/AC← t

such that P ⇒�NKB Q.

(b) If P : s R← u ↔∗AC u′ →R t then we have Q : s →∗R/AC ·
∗

R/AC← t such

that P ⇒�NKB Q, or there is some critical pair s′ ←×→ t′ in CPAC(R,Re)
such that P ⇒�NKB s↔

∗
AC · ↔s′≈t′ · ↔∗AC t.

(c) If P : s R← u ↔∗AC u′ →S t then there is a proof Q : s →∗S/AC ·
∗

R/AC← t

such that P ⇒�NKB Q, or there is a critical pair s′ ←×→ t′ in CPAC(R,Se)∪
CPAC(S,R) such that P ⇒�NKB s↔

∗
AC · ↔s′≈t′ · ↔∗AC t.

Proof.

(a) By AC confluence of S there is a proof

Q : s = s0 −−−→
S/AC

· · · −−−→
S/AC

sm
∗←−→

AC
tn ←−−−
S/AC

· · · ←−−−
S/AC

t0 = t

We have c(P) = {(⊥, {u}, . . .), (⊥, {u′}, . . .)} ∪ cAC(P), but as S ⊆ � the
cost c(Q) contains only tuples of the form (⊥, {v}, . . .) such that s � v or
t � v. From u � s, t it follows that P ⇒�NKB Q.

(b) Let p, q be positions such that P is s p
R← u ↔∗AC u′ →q

R t. Then we have
c(P) = {(c(u, p, s), . . .), (c(u′, q, t), . . .)} ∪ cAC(P). If a proof

Q : s = s0
p1−−−−→
R/AC

· · · pm−−−−→
R/AC

sm
∗←−→

AC
tn

qn←−−−−
R/AC

· · · q1←−−−−
R/AC

t0 = t

exists then c(Q) consists of tuples (c(s′i, pi+1, s
′
i+1), . . .) for terms s′i such

that si ↔∗AC s′i for all 0 6 i < m, together with tuples (c(t′j , qj+1, t
′
j+1), . . .)

for terms t′j such that tj ↔∗AC t′j for all 0 6 j < n, plus some part cAC(Q)
which only contains cost tuples of the form (⊥, . . .). But as R ⊆ � and �
is AC compatible, u � s′i and u � t′j holds for all terms s′i and t′j occurring
in c(Q). Therefore (c(u, p, s), . . .) ∈ c(P) is greater than all cost tuples in
c(Q), which entails P ⇒�NKB Q.

If no such proof Q exists then by Lemma 6.5 there is some AC-critical
pair s′ ←×→ t′ in CPAC(R,Re) such that s ↔∗AC C[s′σ] and t ↔∗AC

C[t′σ]. Thus the proof Q′ : s↔∗AC C[s′σ]↔s′≈t′ C[t′σ]↔∗AC t is valid and
has cost c(Q′) = {({C[s′σ]↓, C[t′σ]↓}, . . .)} ∪ cAC(Q′). From u � s, t and
AC compatibility we infer u � C[s′σ] � C[s′σ]↓ and u � C[t′σ] � C[t′σ]↓,
hence (c(u, p, s), . . .) ∈ c(P) is greater than all cost tuples in Q′ such that
P ⇒�NKB Q

′.

96

6.1 Normalized Completion

(c) Let p, q be positions such that P is s p
R← u ↔∗AC u′ →q

S t. Then we have
c(P) = {(c(u, p, s), . . .), (⊥, {u′}, . . .)} ∪ cAC(P). If a proof

Q : s = s0
p1−−−→
S/AC

· · · pm−−−→
S/AC

sm
∗←−→

AC
tn

qn←−−−−
R/AC

· · · q1←−−−−
R/AC

t0 = t

exists then c(Q) consists of tuples (⊥, {s′i}, . . .) such that si ↔∗AC s′i for
0 6 i < m, together with tuples (c(t′j , qj+1, t

′
j+1), . . .) such that tj ↔∗AC t′j

for all 0 6 j < n, plus some part cAC(Q). As R ⊆ � we have u � tj
and by AC compatibility u � t′j . Thus c(u, p, s) �mul c(t′j , qj+1, t

′
j+1) for

all 0 6 j < n. Since moreover (c(u, p, s), . . .) dominates the cost of all AC
and S-steps, it follows that P ⇒�NKB Q.

If no such proof Q exists then by Lemma 6.5 there is some AC-critical
pair s′ ←×→ t′ ∈ CPAC(R,Se) ∪ CPAC(S,Re) such that s ↔∗AC C[s′σ]
and t↔∗AC C[t′σ]. Thus the proof Q′ : s↔∗AC C[s′σ]↔s′≈t′ C[t′σ]↔∗AC t is
valid and has cost c(Q′) = {({C[s′σ], C[t′σ]}, . . .)}∪cAC(Q′). As u � s, t we
also have u � C[s′σ], C[t′σ] by AC compatibility, so the tuple (c(u, p, s), . . .)
dominates c(Q′) and we have P ⇒�NKB Q

′.

Note that in Lemma 6.6(c) it suffices to consider the AC-critical pairs in
CPAC(R,Se) ∪ CPAC(S,R) (and thus ignore CPAC(S,Re)): by Lemma 6.5
extended rules are only necessary to cover the cases where two rules `1 → r1

and `2 → r2 are rooted by the same AC-symbol. Then all required critical pairs
can be obtained by from overlaps 〈`1 → r1, p, (`2 → r2)e〉, or, equivalently, from
overlaps 〈`2 → r2, p, (`1 → r1)e〉.

The notion of S-normalizing pairs is crucial to normalized completion.3

Definition 6.7. Let E be a set of equations, R be a set of rewrite rules and
u, v be terms such that u ' v ∈ E . Let furthermore Θ and Ψ be functions such
that Θ(u, v) is a set of equations and Ψ(u, v) is a set of rewrite rules. Then
(Θ,Ψ) constitutes an S-normalizing pair for u and v if

(i) Θ(u, v) and Ψ(u, v) are contained in ↔∗E∪R∪T and Ψ(u, v) ⊆ �,

(ii) for every equational proof P of the shape s
ε,σ←−→
u≈v

t there exists a proof Q

in (T ,Θ(u, v),Ψ(u, v)) such that P ⇒�NKB Q, and

(iii) for all rules ` → r in Ψ(u, v), all sets of rewrite rules R and all proofs
P of the form s S← w ↔∗AC · →`→r · →∗R\S t there is a proof Q in

(T ,Θ(u, v),Ψ(u, v) ∪R) such that P ⇒ Q and all terms in Q are smaller
than w.

Here condition (i) ensures that soundness and termination are preserved.
Condition (ii) requires that all proofs using the equation u ≈ v can be replaced
by smaller proofs, which is often achieved by adding the rule u → v. Condi-
tion (iii) takes AC overlaps between rules in Ψ(u, v) and S into account, but

3 The definition of normalizing pairs varies in the literature; the first reference in [73, Defi-
nition 4.4] is different from [75, Definition 3.5] and [76, Definition 3.1]. But none of these
definitions allowed us to understand and reproduce the correctness proof (cf. Remark 6.18),
thus we use a different notion.

97

6 Normalized Completion Systems

since rules in Ψ(u, v) may at a later stage get composed with other rules, the
considered peaks take a more general shape.

Example 6.8. Take the theory ACU where S = {x + 0 → x} and consider
the S-normalized terms u = −(x+ y) and v = (−x) + (−y). Let � be an AC-
RPO. If the precedence is − � + � 0, we have u � v. Then Θ(u, v) = {−x ≈
(−0) + (−x)} and Ψ(u, v) = {u→ v} form a valid normalizing pair: Condition
(i) is clearly satisfied. Also condition (ii) holds as any proof using s ≈ t can
be transformed into a proof using u → v which is smaller by Definition 6.3 as
u = u↓. Finally, using Lemma 6.6 it is not hard to see that by adding the AC-
critical pair in Θ(u, v) also condition (iii) holds. If the precedence is + � − � 0
such that v � u, one may simply take Θ(v, u) = ∅ and Ψ(v, u) = {v → u}.4

Marché proposes a general S-normalizing pair [75, Definition 3.9] which is
applicable for any choice of the theory S, where Ψ simply returns the oriented
term pair u → v and Θ returns AC-critical pairs between u → v and a rule
in S. We show that this definition is also a normalizing pair according to
Definition 6.7.

Definition 6.9. Let u and v be terms in S-normal form such that u � v. The
general normalizing pair (Θgen,Ψgen) is defined by Ψgen(u, v) = {u → v} and
Θgen(u, v) = CPAC(u→ v,Se) ∪ CPAC(S, u→ v).

Lemma 6.10. If u and v are terms in S-normal form such that u � v then
(Θgen,Ψgen) forms a normalizing pair for u and v.

Proof. We argue that Θgen(u, v) and Ψgen(u, v) satisfy the three requirements
demanded in Definition 6.7. Condition (i) is satisfied as due to u ' v ∈ E both
Θgen(u, v) and Ψgen(u, v) are contained in ↔∗E∪T , and Ψgen(u, v) ⊆ � as u � v.

Concerning condition (ii), any proof P : s ↔ε,σ
u≈v t can be transformed into

Q : s ↔ε,σ
u→v t. We obtain the decrease u ↔ε

u≈v v ⇒�NKB u ↔ε
u→v v because

{({u, v}, . . .)} ��NKB {({u}, . . .)}. As ⇒�NKB is a proof reduction relation also
P ⇒�NKB Q holds.

Finally, consider a proof P of the form s S← w ↔∗AC w′ →p
u→v t →R\S t̂.

By Lemma 6.6, there exists a smaller proof of s ≈ t (and thus also of s ≈ t̂) if
the peak in P does not constitute a proper overlap. Otherwise P must contain
an instance of an AC-critical peak, so s ↔∗AC C[s′σ] and t ↔∗AC C[t′σ] for
some context C, substitution σ, and AC-critical pair s′ ←×→ t′. According to
Lemma 6.5 we may assume that one rule comes from Se and one rule comes from
R. Hence s′ ' t′ ∈ Θgen(u, v), which gives rise to the proof Q of the form s↔∗AC

· ↔s′≈t′ · ↔∗AC t →R\S t̂. We have c(P) = {(⊥, {w}, . . .), (c(w′, p, t), . . .)} ∪
cAC(P) ∪ c(P ′) for P ′ : t →R\S t̂, whereas c(Q) = {({C[s′σ]↓, C[t′σ]↓}, . . .)} ∪
cAC(Q) ∪ c(P ′). We have w′ � t, and by AC compatibility also w′ � s, w′ �
C[s′σ] � C[s′σ]↓, and w′ � C[t′σ] � C[t′σ]↓. Thus (c(w′, p, t), . . .) ∈ c(P)
is greater than all cost tuples in c(Q), so P ⇒�NKB Q. This shows that also
condition (iii) is satisfied.

4 These normalizing pairs are actually instances of ACU-normalizing pairs as suggested in Def-
inition 6.22.

98

6.1 Normalized Completion

orient
E] {s ' t},R

E ∪Θ(s, t),R∪Ψ(s, t)
if s = s↓ and t = t↓

deduce
E ,R

E ∪ {s ≈ t},R
if s←o→ t ∈ CPL(R,Re)

delete
E] {s ≈ t},R

E ,R
if s↔∗AC t

normalize
E] {s ≈ t},R
E ∪ {s↓ ≈ t↓},R

if s 6= s↓ or t 6= t↓

simplify
E] {s ' t},R
E ∪ {s ' u},R

if t→R\S u

compose
E ,R] {s→ t}
E ,R∪ {s→ u}

if t→R\S u

collapse
E ,R] {t→ s}
E ∪ {u ≈ s},R

if t
p,σ−−−−→

`→r\S
u for `→ r ∈ R with t ·BAC

` or s � rσ

Figure 6.1: The inference system NKB of normalized completion.

In Figure 6.1 we recall the inference system of normalized completion [75].
In the deduce rule, L denotes some theory such that AC ⊆ L ⊆ T holds.5 In
the orient rule, (Θ,Ψ) is assumed to form an S-normalizing pair for the terms
s and t.

An NKB inference sequence (E0,R0) `NKB (E1,R1) `NKB (E2,R2) `NKB · · · is
called a run. We will in the sequel assume that R0 = ∅ although all results in
the remainder of this section generalize to the setting where R0 is non-empty,
provided that for every rule ` → r in R0 we have ` � r and ` = `↓. Again
we let persistent equations Eω and rules Rω be defined by Eω =

⋃
i

⋂
j>i Ej and

Rω =
⋃
i

⋂
j>iRj . A run fails if Eω is non-empty, it succeeds if Eω is empty and

Rω is S-convergent for E0.

Lemma 6.11. Every NKB run constitutes an equational inference sequence
with respect to ⇒�NKB and T .

Proof. We show that in a run (E0,∅) `NKB (E1,R1) `NKB (E2,R2) `NKB · · ·
every inference step can be modeled by expand and contract inferences according
to Definition 3.1.

– An orient step first expands by adding Θ(s, t) and Ψ(s, t). These expan-
sions are valid due to Definition 6.7(i). Afterwards a contract step removes

5 Thus if T itself is not decidable and finitary with respect to unification, one can simply use AC
for L. On the other hand it can also be beneficial to set L to some larger theory, for instance
the set of unifiers obtained from ACU or ACUI unification are typically much smaller than
those obtained from AC unification.

99

6 Normalized Completion Systems

s ' t from E , which is justified because by Definition 6.7(ii) Θ(s, t) and
Ψ(s, t) admit a smaller proof of s↔ε

s≈t t.

– A deduce step is clearly an expand inference for any choice of L because
L ⊆ T .

– A delete step is a contraction as the proof s↔s≈t t with cost ({s↓, t↓}, . . .)
can be reduced to s↔∗AC t where all steps have a cost of the shape (⊥, . . .).

– A normalize step can be viewed as an expansion adding s↓ ≈ t↓ followed
by a contraction removing s ≈ t, performing the proof transformation
from P : s ↔s≈t t to the proof Q : s →∗S/AC s↓ ↔s↓≈t↓ t↓ ∗

S/AC← t. We

have c(P) = {({s↓, t↓}, {s, t}, . . .)}, and c(Q) = {({s↓, t↓}, {s↓, t↓}, . . .)}∪
cS∪AC(Q), where cS∪AC(Q) collects the cost of all AC and S-steps in Q,
and hence only contains tuples of the form (⊥, . . .). Because s � s↓ and
t � t↓ and at least one inequality is strict we have c(P)��NKB c(Q).

– A simplify step is viewed as an expansion adding s ' u followed by
a contraction removing s ' t. This corresponds to the proof trans-
formation where P : s↔s≈t t is replaced by Q : s↔s≈u u R\S← t. We
have c(P) = {({s↓, t↓}, . . .)} and c(Q) = {({s↓, u↓}, . . .), ({t↓}, . . .)} ∪
cS∪AC(Q),6 where the cost cS∪AC(Q) of all AC and S-steps in Q consists
only of tuples (⊥, . . .). Because of t↓ →R u →∗S/AC u↓ we have t↓ � u↓,
and so c(P)��NKB c(Q).

– A compose step is viewed as an expansion adding s → u and a contrac-
tion removing s → t. The latter corresponds to the proof transforma-
tion replacing P : s↔ε

s→t t by Q : s↔ε
s→u u

p
R\S← t. We have c(P) =

{(c(s, ε, t), {s}, s↓, s, t)} and c(Q) = {(c(s, ε, u), {s}, s↓, s, u), ({t↓}, . . .)}∪
cS∪AC(Q), so c(P)��NKBc(Q) because s � t � t↓ � u implies c(s, ε, t) �mul

c(s, ε, u) and c(s, ε, t) �mul {t↓}.

– Finally, a collapse step constitutes an expansion adding u ≈ s followed
by a contraction removing t → s. This corresponds to the proof trans-
formation replacing P : t↔ε

t→s s by Q : t→p,σ
`→r\S u ↔u≈s s. We have

c(P) = {(c(t, ε, s), {t}, t↓, t, s)} whereas the cost of Q amounts to c(Q) =
{({t↓}, {t↓}, t′|p, `, rσ), ({s↓, u↓}, . . .)} ∪ cS∪AC(Q) for some term t′ such
that t′ ↔∗AC t↓. Note that t′|p = (t′|p)↓ because t′ is an S/AC-normal
form. From t � t↓ we obtain c(t, ε, s) �mul {t↓}, and t � s � s↓,
t � u � u↓ imply c(t, ε, s) �mul {s↓, u↓}. As t↓ DAC t′|p, and t ·BAC ` or
s � rσ by assumption, we have c(P)��NKB c(Q).

We use the following notion of fairness to characterize runs that allow to
simplify proofs which are not in normal form:

Definition 6.12. A nonfailing NKB run (E0,R0) ` (E1,R1) ` (E2,R2) ` · · · is
fair if for any proof P in T ∪ Rω which is not a rewrite proof there is a proof
Q in (T , Ei,Ri) for some i such that P ⇒�NKB Q.

6 Note that the cost ({t↓}, . . .) is only unique up to equivalence (↔∗AC)mul, but this does not
cause a problem since (�)mul is compatible with (↔∗AC)mul.

100

6.1 Normalized Completion

We show that the original definition [75] constitutes a sufficient criterion for
fairness in our sense. Beforehand, we state two auxiliary results about persistent
rules and L-critical pairs.

Lemma 6.13. Assume an NKB run has a persistent rule `→ r ∈ Rω giving rise
to a peak P : s S← w ↔∗AC w′ →p

`→r\S t. Then there is a proof P ′ in (T , Eω,Rω)

such that P ⇒�NKB P
′, and for all (T, . . .) ∈ c(P ′) the set T contains only terms

which are smaller than w.

Proof. Let (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · be the run under consideration.
A simple inductive argument shows that there must be some i > 0 such that
a rule ` → r′ ∈ Ψ(s′, t′) is added in an orient step (Ei,Ri) `NKB (Ei+1,Ri+1)
applied to some equation s′ ' t′ ∈ Ei, and r′ →∗R∞\S r for R∞ =

⋃
j Rj . Note

that ` � r′ holds by Definition 6.7(i). Let u → v be the rule used in the step
w →S s. As `→ r and `→ r′ have the same left-hand side there is also an AC-
critical peak v←u← w ↔∗AC w′ →`→r′ . According to Definition 6.7(iii), the peak
Q : s v←u← w ↔∗AC w′ →`→r′ · →∗R∞\S t can be transformed into a smaller

proof Q′ in (T ,Θ(s′, t′),Ψ(s′, t′) ∪ R∞) which contains only terms that are
smaller than w. As (c(w′, p, t), . . .) ∈ c(P) and w′ ↔∗AC w we have P ⇒�NKB Q

′.
By the Persistence Lemma 3.4 there is some proof P ′ in (T , Eω,Rω) such that
Q′ (⇒�NKB)= P ′, and by the definition of ⇒�NKB for all tuples (T, . . .) ∈ c(P ′)
the set T can still only contain terms smaller than w. Hence P ⇒�NKB P

′.

Lemma 6.14. Let `1 → r1 and `2 → r2 be rewrite rules and AC ⊆ L ⊆ T . If
s ' t ∈ CPAC(`1 → r1, `2 → r2) then there is some critical pair s′ ←×→ t′ ∈
CPL(`1 → r1, `2 → r2) and substitution ρ such that s↔∗T s′ρ and t↔∗T t′ρ.

Proof. If s ' t ∈ CPAC(`1 → r1, `2 → r2) then there must be an AC overlap
〈`1 → r1, p, `2 → r2〉Σ and a substitution σ ∈ Σ such that s p,σ

r1←`1← u ↔∗AC

u′ →σ
`2→r2 t. As AC ⊆ L also u ↔∗L u′ holds, so there must be an L-overlap

〈`1 → r1, p, `2 → r2〉T . As T is a complete set of unifiers there is some τ ∈ T
and substitution ρ such that xσ ↔∗L xτρ for all x ∈ V. For the terms s′

and t′ corresponding to the peak s′ p,τ
r1←`1← w ↔∗L w′ →τ

`2→r2 t
′ we thus have

u ↔∗L wρ. Therefore s = u[r1σ]p ↔∗L wρ[r1τρ]p = (w[r1τ]p)ρ = s′ρ and
t = r2σ ↔∗L r2τρ = t′ρ. It follows that s ↔∗T s′ρ and t ↔∗T t′ρ because
L ⊆ T .

Lemma 6.15. A nonfailing NKB run satisfying CPL(Rω,Reω) ⊆
⋃
i Ei is fair.

Proof. Let γ be a run (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · such that Eω = ∅
and CPL(Rω,Reω) ⊆

⋃
i Ei. We show that every minimal proof in T ∪ Rω is a

normalized rewrite proof. Assume to the contrary that P is a minimal proof in
T ∪Rω which is not a rewrite proof. Thus P contains (i) a peak s Rω← · ↔∗AC

· →Rω t, or (ii) a peak s Rω/AC← · →S/AC t or s S/AC← · →Rω/AC t, or (iii) a
subproof u→Rω/AC t such that u 6= u↓, or (iv) a peak s S/AC← · →S/AC t. For
each of these cases we show that a smaller proof exists, contradicting minimality
of P .

If a peak of the form (i) originates from a non-overlap then by Lemma 6.6(b)
it could be replaced by a smaller proof. Otherwise, by Lemma 6.5 the peak

101

6 Normalized Completion Systems

s Rω← · ↔∗AC · →Rω t must satisfy s ↔∗AC C[s′σ] and t ↔∗AC C[t′σ] for some
critical pair s′ ←×→ t′ in CPAC(Rω,Reω). Assume s′ ←×→ t′ originates
from a peak P ′ : s′ p

Rω← w ↔∗AC w′ →q
Reω t′. We show that T ∪ Rω admits

a smaller proof than P ′, which entails the existence of a smaller proof than
P . By Lemma 6.14 there must also be an L-critical pair s′′ ≈ t′′ such that
s′ ↔∗T s′′ρ and t′ ↔∗T t′′ρ for some substitution ρ. As S is AC convergent for T ,
s′ and s′′ρ as well as t′ and t′′ρ have the same S-normal forms, which we denote
by ŝ and t̂, respectively. We have c(P ′) = {(c(w, p, s′), . . .), (c(w′, q, t′), . . .)} ∪
cAC(P ′) while the proof Q : s′ ↔∗S∪AC s′′ρ↔s′′≈t′′ t

′′ρ↔∗S∪AC t′ has cost c(Q) =
{({ŝ, t̂}, . . .)} ∪ cS∪AC(Q), so P ′ ⇒�NKB Q holds because w � s′ � ŝ and w′ �
t′ � t̂. As CPL(Rω,Reω) ⊆

⋃
i Ei the proof Q actually exists in some (T , Ei,Ri).

By the Persistence Lemma 3.4 there is also a proof Q′ in T ∪ Rω such that
P ′ ⇒�NKB Q (⇒�NKB)= Q′.

Next, assume P contains a peak of the form (ii). If such a pattern originates
from a non-overlap then by Lemma 6.6(c) it could be replaced by a smaller
proof. Otherwise, by Lemma 6.5, the proof P must contain a proof corre-
sponding to an AC-critical pair s′ ←×→ t′ in CPAC(Rω,Se) ∪ CPAC(S,Rω).
Then s′ ←×→ t′ must originate from an AC-critical peak Q of the form
s′ r←`← · ↔∗AC · →u→v t

′ between rules ` → r ∈ Rω and u → v ∈ S, and
a proof Q′ in T ∪ Rω satisfying Q ⇒�NKB Q′ exists according to Lemma 6.13.
This implies P = P [Q]⇒�NKB P [Q′].

If P contains a subproof Q of the form (iii) we have c(Q) = {({u, t}, . . .)} ∪
cAC(Q). Since u 6= u↓ there is some step u →S/AC s, and thus a peak
P ′ : s S/AC← u→Rω/AC t. If P ′ does not constitute a proper overlap then there
exists a rewrite proof Q′ of s ≈ t which contains only terms smaller than u. For
Q′′ : u →S/AC s the proof Q′′Q′ is thus smaller than Q as ({u, t}, . . .) ∈ c(Q)
dominates all cost tuples in c(Q′′Q′). If P ′ constitutes a critical peak then by
Lemma 6.13 there exists a proof Q′ of s ≈ t such that P ′ ⇒�NKB Q′ and for
(T, . . .) ∈ c(Q′) all terms in T are smaller than u. Again Q⇒�NKB Q

′′Q′ holds.

Finally, if P contains a subproof of the form (iv) then AC convergence of S
yields a smaller proof according to Lemma 6.6(a).

Correctness Theorem 6.16. A fair and nonfailing NKB run succeeds.

Proof. Let the run (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · under consideration
have length α 6 ω. As it is nonfailing we have Eω = ∅. We show that
↔∗E0∪T ⊆ →

∗
R\S · ↔

∗
T · ∗
R\S←. According to the Persistence Lemma 3.4, any

pair of terms in ↔∗E0∪T has a proof in T ∪ Rω. Let P be such a proof which
is minimal, and assume it is not a normalized rewrite proof. By fairness there
exists a proof Q in (T , Ei,Ri) for some i > 0 such that P ⇒�NKB Q. According
to persistence we also have a proof Q′ in T ∪ Rω such that Q (⇒�NKB)= Q′,
and hence P ⇒�NKB Q′. This contradicts minimality of P . By the Soundness
Lemma 3.2 the equational theories of T ∪ Rω and T ∪ E0 coincide, so Rω is
S-convergent for E0.

Example 6.17. Consider an Abelian group with AC operator · and an endo-

102

6.1 Normalized Completion

morphism f as described by the following set of equations:

e · x ≈ x i(x) · x ≈ e f(x · y) ≈ f(x) · f(y)

together with LPO with precedence f � i � · � e. We can obviously apply
normalized completion with respect to AC such that S = ∅. This results in
the AC-convergent TRS RAC:

e · x→ x i(x) · x→ e i(e)→ e

i(i(x))→ x i(x · y)→ i(x) · i(y) f(x · y)→ f(x) · f(y)

f(e)→ e f(i(x))→ i(f(x))

Normalized completion can also be applied with respect to ACU such that
SACU = {e · x→ x}, as e · x � x. We obtain the SACU-convergent TRS RACU:

i(x) · x→ e i(e)→ e i(i(x))→ x

i(x · y)→ i(x) · i(y) f(x · y)→ f(x) · f(y) f(e)→ e

f(i(x))→ i(f(x))

Alternatively, we can consider SG = {e · x→ x, i(x) · x→ e, i(e)→ e, i(i(x))→
x, i(x · y)→ i(x) · i(y)} which is known to be an AC-convergent representation
of Abelian groups [6]. Note that SG ⊆ �. An NKB run with respect to SG

results in the TRS RG:

f(x · y)→ f(x) · f(y) f(e)→ e f(i(x))→ i(f(x))

Remark 6.18. In [75, Definition 3.5] and [76, Definition 3.1], normalizing pairs
are defined as follows. Given terms u and v such that u = u↓, v = v↓, and
u � v, the functions (Θ,Ψ) form an S-normalizing pair if and only if

(i) for any single-step proof s↔u≈v t there is a proof P in (T ,Θ(u, v),Ψ(u, v))
such that s↔u≈v t⇒�NKB P , and

(ii) for all ` → r ∈ Ψ(u, v), all sets of rules R and all r′ such that r →∗R\S r
′

and any single-step irreducible7 proof s →`→r′ t there is a proof P in
(T ,Θ(u, v),Ψ(u, v) ∪R) such that s→`→r′ t⇒�NKB P .

Four issues arise with this definition.

(a) It does not require Θ(u, v) and Ψ(u, v) to be part of the equational theory.

(b) It does not guarantee termination of Ψ(u, v) together with previously ori-
ented rules.

(c) Joinability of AC-critical pairs between S and Ψ(u, v) is not ensured: Con-
sider the simple example where the theory E0 = {x + a ≈ a} is to be
completed with respect to S = {y+b→ b}. We can choose Θ(x+a, a) = ∅
and Ψ(x+ a, a) = {x+ a→ a}, satisfying (i) and (ii). We obtain the run

({x+ a ≈ a},∅) ` (∅, {x+ a→ a})

which is obviously fair. But {x + a → a} is not S-convergent as the AC-
critical pair a←o→ b between S and x+ a→ a is not considered.

7 A proof is irreducible if it is minimal with respect to ⇒�NKB.

103

6 Normalized Completion Systems

(d) The general normalizing pair [75, Definition 3.9] does not match this defi-
nition: Assume we orient x+ a ≈ a as x+ a→ a. The general normalizing
pair sets Θ(x + a, a) = CPAC(S, x + a → a) ∪ CPAC(x + a → a,Se) and
Ψ(x + a, a) = {x + a → a}. Then property (ii) is not satisfied: for R = ∅
and r = r′ = a there exists no smaller proof than x + a →ε

x+a→a a (and
there is also no reason why such a proof should be necessary).

The different definition in [73, Definition 4.4] is as follows. Let u and v be terms
such that u = u↓, v = v↓, and u � v. Then (Θ(u, v),Ψ(u, v)) constitutes an
S-normalizing pair if and only if the following conditions are satisfied:

(i) Consider a single-step proof P of the form s↔p,σ
u≈v t or s↔p,σ

u→v t such that
σ is in S-normal form, and no S-step applies at a position q in s or t such
that p ‖ q, or q is above p but the two steps only form a variable overlap.
Then there is a proof Q in (T ,Θ(u, v),Ψ(u, v)) such that P ⇒�NKB Q.

(ii) For all `→ r ∈ Ψ(u, v) we have Θ(`, r) ⊆ Θ(u, v) and Ψ(`, r) ⊆ Ψ(u, v).

With this definition similar problems arise: Again,

(a) Θ(u, v) and Ψ(u, v) need not be part of the equational theory,

(b) termination of Θ(u, v) is not guaranteed, and

(c) AC-critical pairs between S and Ψ(u, v) need not be considered.

(d) The general normalizing pair does not match this definition either: If x+a ≈
a is oriented as x+ a→ a then the resulting Θ(x+ a, a) and Ψ(x+ a, a) do
not admit a proof smaller than x+ a→ε

x+a→a a, so (i) is not fulfilled.

Due to these problems the notion of normalizing pairs was modified according
to Definition 6.7.

Completeness of normalized completion can be proved in a similar fashion
as completeness of standard completion. First we state an easy consequence of
the definition of S-convergence.

Lemma 6.19. Let R be S-convergent for E. If s↔∗E ∪T t then there is a proof

s
!−−−→
R\S

· !−−−→
S/AC

u
∗←−→

AC
v

!←−−−
S/AC

· !←−−−
R\S

t (6.2)

and the terms u and v are unique up to AC equivalence.

Proof. Let s′ and t′ be normal forms of s and t with respect to →R\S . By
S-convergence of R, there exists a proof s′ →∗R\S · ↔

∗
T · ∗

R\S← t′. As s′ and

t′ are →R\S-irreducible, we must have s′ ↔∗T t′. Because S is AC convergent,

s′ →!
S/AC u ↔∗AC v ←!

S/AC t′ must hold. Note that u and v are irreducible
in →S/AC, and by the definition of normalized rewriting, also in →R\S . Now
suppose that u′ also satisfies (6.2). Then we have u ↔∗E ∪T u′, so there is a
proof of u ≈ u′ of the form (6.2). Since also u′ must be irreducible with respect
to →R\S and →S/AC, we have u↔∗AC u′. A symmetric argument shows that v
is unique modulo AC.

104

6.1 Normalized Completion

Completeness Theorem 6.20. Assume R is a finite S-convergent system
for E and let � be an AC-compatible reduction order that contains R and S.
Then any fair and nonfailing run from E using � will produce an S-convergent
system in finitely many steps.

Proof. Let R′ denote the system obtained from R after replacing each right-
hand side r by r′ such that r →!

R\S · →
!
S/AC r′. An argument similar to the one

used in the proof of Lemma 6.19 shows that r′ is unique modulo AC. The system
R′ is terminating because it is contained in �. Moreover, the relation �R\S
is contained in �R′\S because →R\S and →R′\S have the same normal forms
modulo AC. Let s ↔∗E ∪T t. As R is S-convergent, there exists an equational
proof of s ≈ t of the form (6.2) by Lemma 6.19. Thus there is also a proof

s
!−−−→

R′\S
· !−−−→
S/AC

· ∗←−→
AC
· !←−−−
S/AC

· !←−−−
R′\S

t (6.3)

Hence R′ is S-convergent for E . Now consider a nonfailing NKB run γ which
starts from (E ,∅) and uses �. Let Rω be the set of persistent rules. Let `→ r
be a rule in R′. Since ` ≈ r belongs to the equational theory of T ∪ E , it
has a persistent equational proof P after a finite number of steps in γ. Note
that r must be →Rω\S-irreducible: If r →Rω\S r′ for some term r′ then r � r′

and r ↔∗E ∪T r′, so R′ admits an S-normalized rewrite proof for r ≈ r′. As r is
irreducible in→R\S and→S/AC, this proof must have the form r ↔∗AC · ←!

S/AC

· ←!
R′\S r

′. As R′ ∪ S ⊆ � and � is AC compatible, this contradicts r � r′. It

follows that the proof P must have the form ` →+
Rω\S · →

∗
S/AC · ↔

∗
AC r. Let

Q denote the set of rules in Rω required for all these rewrite proofs for rules
of R′. The system Q is obviously terminating. As R is finite, so are R′ and
Q, and hence γ derives all rules in Q after a finite number of steps. We claim
that Q is S-convergent for E . First note that by the definition of normalized
rewriting the relations →∗S/AC · ↔

∗
AC · →Q\S and →Q\S coincide. Thus the

inclusion →R′\S ⊆ →∗Q\S · →
∗
S/AC · ↔

∗
AC entails

∗−−−→
R′\S

⊆ ∗−−−→
Q\S

· ∗−−−→
S/AC

· ∗←−→
AC

(6.4)

Hence for every proof u ↔∗E∪T v there exists an equational proof of the form
(6.3), and due to (6.4) and→∗S/AC · ↔

∗
AC · →∗S/AC · ↔

∗
AC ⊆ →∗S/AC · ↔

∗
AC, also

a valley proof

u
!−−−→
Q\S

· !−−−→
S/AC

· ∗←−→
AC
· !←−−−
S/AC

· !←−−−
Q\S

v (6.5)

using rules in Q is possible.

A TRS R is called S-reduced if for all rules `→ r in R the term r is in normal
form with respect to →S/AC and →R\S , and ` is in normal form with respect
to →S/AC and →`′→r′\S for every rule `′ → r′ in R different from ` → r. A
TRS R is called S-canonical for E if it is both S-reduced and S-convergent for
E . Note that TRSs derived in a fair and nonfailing NKB run are S-canonical

105

6 Normalized Completion Systems

if simplify, compose and collapse are applied exhaustively, since an orient step
may only be applied to terms in S-normal form. We conclude this section with
a uniqueness result about S-canonical systems, and give a full proof, extending
the proof sketch in [73].

Theorem 6.21. Consider two TRSs R and R′ which are S-canonical for E
and contained in the same AC-compatible reduction order �. Then R and R′
are equal up to variable renaming and AC equivalence.

Proof. Firstly, we show that the set of normal forms of →R\S and →R′\S coin-
cide. Assume to the contrary that ` → r is a rule in R such that its left-hand
side ` is not reducible in→R′\S . As both systems are S-convergent for the same
theory there exists a proof of the form

`
∗−−−→
R′\S

· ∗←→
T
· ∗←−−−
R′\S

r (6.6)

Since ` is irreducible in →R′\S and →S/AC, this proof needs to have the form

r
∗−−−→
R′\S

· ∗−−−→
S/AC

· ∗←−→
AC

`

As R′ ∪ S ⊆ � and � is AC compatible, this contradicts ` � r. Hence ` must
be reducible in →R′\S , and as the reasoning is symmetric, the normal forms of
→R\S and →R′\S coincide.

Hence for every rule ` → r in R, the left-hand side ` is reducible by a rule
`′ → r′ in R′. We must have ` ↔∗AC `′θ for some renaming θ; if `′ reduces `
below the root or if θ is not a renaming, then `′ must also be reducible in→R\S ,
contradicting the assumption that R is S-reduced. For the same reason, `′ → r′

is the only rule in R′ that allows to reduce ` in an→R′\S-step. Moreover, since
R′ is S-canonical, the term r′ has to be in normal form with respect to →S/AC

and →R′\S , so (6.6) must have the form

`
ε−−−−−→

`′→r′\S
r′θ

∗←−→
AC
· ∗←−−−
S/AC

· ∗
R′\S← r

As r is in normal form with respect to →R\S and →S/AC, and normal forms in
→R\S and →R′\S coincide, we must have r ↔∗AC r′θ. Thus for every rewrite
rule `→ r in R there is a rule `′ → r′ in R′ such that `↔∗AC `′θ and r ↔∗AC r′θ
for some renaming θ. By symmetry of the argument, R and R′ are the same
up to variable renaming and AC equivalence.

6.1.1 Special Normalizing Pairs

Although general normalizing pairs as given in Definition 6.7 can always be
applied, some theories allow for a more efficient choice. We briefly recall some
specialized normalizing pairs presented in [75,76].

106

6.1 Normalized Completion

T S ΘT (u, v)

ACU(+, 0) {x+ 0→ x} {(u ≈ v){x 7→ 0} | u D x+ w}
ACI(+) {x+ x→ x} CPAC(u→ v, {x+ x→ x}e)
ACUI(+, 0) {x+ x→ x, x+ 0→ x} ΘACU(u, v) ∪ΘACI(u, v)

AC0(·, 0) {x · 0→ 0} {(u ≈ v){x 7→ 0} | u D x · w}
ACN(+, 0) {x+ x→ 0} CPAC(u→ v, {x+ x→ 0}e)

Figure 6.2: Normalizing equations ΘT (u, v) for some theories T .

Some Simple Theories

We first specialize general normalizing pairs (cf. Definition 6.7) to some common
theories.

Definition 6.22. Let u and v be terms such that u � v. For T being one of
the theories ACU, ACI, ACUI, AC0, and ACN, let ΘT be as given in Figure 6.2
and ΨT (u, v) = {u→ v}.

Marché shows that these function pairs are actually specializations of the
general normalizing pair for the respective theories, hence they also form nor-
malizing pairs according to Definition 6.7.

Lemma 6.23 ([75, 76]). For terms u and v such that u � v the functions
(ΘT ,ΨT) given in Definition 6.22 constitute normalizing pairs for u and v.

Abelian Groups

If the theory T extends Abelian group theory, Marché proposes to use sym-
metrization to obtain more efficient normalizing pairs. This approach is briefly
outlined in the remainder of this subsection, following the presentation in [75].
Let us thus assume that T contain the following equations:

x+ (y + z) ≈ (x+ y) + z x+ y ≈ y + x 0 + x ≈ x (−x) + x ≈ 0

This subtheory is represented by the AC convergent TRS SG:

0 + x→ x (−x) + x→ 0 −0→ 0 −(−x)→ x −(x+ y)→ (−x) + (−y)

We abbreviate an expression t + · · · + t with n occurrences of t by nt. The
following definition is inspired by [68]:

Definition 6.24. Let u, v be terms and w be the SG-normal form of u+ (−v).
If the term w can be written as w = n1w1 + n2w2 + · · · + nkwk such that
w1 � wj for all 2 6 j 6 k then the symmetrization of u and v is defined as
symm(u, v) = (n1, w1,−n2w2− · · · −nkwk). If no such presentation of w exists
then the symmetrization of u and v is undefined.

107

6 Normalized Completion Systems

Example 6.25. Let u = 2a +(−b)+2c and v = a +2b + c. Then w = u+(−v)
normalizes to a− 3b + c. Suppose we choose AC-RPO as reduction order. The
symmetrization of u and v then depends on the precedence.

– Let �1 satisfy a �1 b �1 c �1 − �1 + �1 0. Note that �1 is compatible
with SG. Then symm(u, v) = (1, a, (−3b) + c).

– Let �2 satisfy b �2 a �2 c �2 − �2 + �2 0, which is also compatible
with SG. Then symm(u, v) = (3, b, (−a) + (−c)).

Definition 6.26. Suppose u, v are terms such that u � v and symm(u, v) =
(n, s, t). Then (ΘG,ΨG) is defined as follows. If n = 1 then ΨG(u, v) = {s→ t},
otherwise ΨG(u, v) consists of the rules

ns→ t −s→ ((n− 1)s+ (−t)) ↓SG

whereas ΘG(u, v) is obtained by

ΘG(u, v) = ΘACU(ns, t) ∪ Σ1(ns, t) ∪ Σ2(ns, t)

Σ1(u, v) = CPAC(u→ v, {x+ (−x)→ 0}e)
Σ2(u, v) = {uσ ≈ vσ | σ = {x 7→ 0} if u D −x such that x ∈ V}

∪ {uσ ≈ vσ | σ = {x 7→ −y} if u D −x such that x ∈ V}
∪ {uσ ≈ vσ | σ = {x 7→ y + z} if u D −x such that x ∈ V}

Example 6.27. Consider the terms from Example 6.25. For�1 we have u �1 v,
ΨG(u, v) = {a → 3b + (−c)} and ΘG(u, v) = ∅. For �2 we have u �2 v,
ΨG(u, v) = {3b→ (−a) + (−c), −b→ 2b + a + c} and ΘG(u, v) = ∅.

Definition 6.28. An AC-compatible reduction order satisfies the symmetriza-
tion property if for all terms u, v, and w such that u � v, u � w, and root(u),
root(v), and root(w) are not in {+,−, 0}, we have u � (−v) + w.

Lemma 6.29 ([75,76]). If the employed AC-compatible reduction order � sat-
isfies the symmetrization property then (ΘG,ΨG) is a normalizing pair.

Commutative Rings

Symmetrization can also save many critical pairs in the case of commutative
ring theory. Let TCR extend TG with the equations

x · (y · z) ≈ (x · y) · z x · y ≈ y · x 1 · x ≈ x x · (y + z) ≈ x · y + x · z

Then SCR can be chosen as the TRS adding the following rules to SG:

1 · x→ x x · (y + z)→ x · y + x · z 0 · x→ x (−x) · y → −(x · y)

Definition 6.30. Suppose u, v are terms such that u � v and symm(u, v) =
(n, s, t). Then (ΘCR,ΨCR) is defined as follows. If n = 1 then ΨCR(u, v) =
{s→ t}, otherwise ΨCR(u, v) consists of the rules

ns→ t −s→ ((n− 1)s+ (−t)) ↓SCR

n(x · s)→ (x · t) ↓SCR
−(x · s)→ ((n− 1)x · s+−(x · t)) ↓SCR

108

6.1 Normalized Completion

orient
E] {s ' t},R
E ,R∪ {s→ t}

if s � t

deduce
E ,R

E ∪ {s ≈ t},R
if s←o→ t ∈ CPAC(R,Re)

delete
E] {s ≈ t},R

E ,R
if s↔∗AC t

simplify
E] {s ' t},R
E ∪ {s ' u},R

if t→R/AC u

compose
E ,R] {s→ t}
E ,R∪ {s→ u}

if t→R/AC u

collapse
E ,R] {t→ s}
E ∪ {u ≈ s},R

if t
p,σ−−−−−→

`→r/AC
u for `→ r ∈ R with t ·BAC

` or s � rσ

Figure 6.3: The inference system AC of AC completion.

The set ΘCR(u, v) comprises the equations

ΘCR(u, v) = ΘACU(+,0)(ns, t) ∪ΘACU(·,1)(ns, t) ∪ΘAC0(·,0)(ns, t) ∪
Σ1(ns, t) ∪ Σ2(ns, t) ∪ Σ3(ns, t)

where Σ1(ns, t) and Σ2(ns, t) is defined as for Abelian groups while

Σ3(u, v) = {uσ ≈ vσ | σ = {x 7→ x+ y} if u D x · z such that x, z ∈ V} ∪
{uσ ≈ vσ | σ = {x 7→ −x} if u D x · z such that x, z ∈ V}

Lemma 6.31 ([75,76]). If the employed AC-compatible reduction order � sat-
isfies the symmetrization property then (ΘCR,ΨCR) is a normalizing pair.

6.1.2 AC Completion

For the case where T consists only of AC equations we have S = ∅, and nor-
malized completion can be simplified to the inference system AC in Figure 6.3.
Note that in this case the general normalizing pair yields Ψ(u, v) = {u → v}
and Θ(u, v) = ∅ for all terms u � v.

An AC run is fair if it is fair with respect to ⇒�NKB according to Defini-
tion 6.12. The following statements are obtained when specializing the corre-
sponding normalized completion results.

Lemma 6.32. A nonfailing AC run satisfying CPAC(Rω,Reω) ⊆
⋃
i Ei is fair.

Correctness Theorem 6.33. A fair and nonfailing AC run succeeds.

109

6 Normalized Completion Systems

collapse
E ,R] {t→ s}
E ∪ {u ≈ s},R

if t→R\S u

Figure 6.4: The collapse rule in NKB′.

Note that as S = ∅, normalized AC convergence coincides with AC conver-
gence. Hence the adaptation of Completeness Theorem 6.20 can be stated as
follows:

Completeness Theorem 6.34. Assume R is a finite AC-convergent system
for E and let � be an AC-compatible reduction order that contains R. Then any
fair and nonfailing run from E using � will produce an AC-convergent system
in finitely many steps.

We remark that the inference system AC is somewhat simpler than the one
obtained when specializing extended completion as presented in [6].

6.1.3 Finite Runs

As for standard completion, finite normalized completion can be run with a
simpler collapse rule. Let the inference system NKB′ consist of the modified
collapse rule in Figure 6.4 together with all other inference rules from Figure 6.1.
Throughout this section we assume that all equations and rewrite rules in

⋃
i Ei∪

Ri are variable-disjoint. Thus, every equation and rewrite rule created during
a run has fresh variables. Moreover, we will consider only finite NKB′ runs of
a certain length n ∈ N:

(E0,∅) ` (E1,R1) ` (E2,R2) ` · · · ` (En,Rn) (6.7)

A run fails if En is non-empty, it succeeds if En is empty and Rn is S-convergent
for E0. We define a modified proof order ⇒�,nNKB which depends on the actual
length n of the run.

Definition 6.35. Consider a run of the form (6.7) which has length n ∈ N and
uses the reduction order �. Let (E ,R) = (Ei,Ri) for some 0 6 i 6 n. The cost
cn of an equational proof step in (T , E ,R) is defined as follows:

c(s←−→
u≈v

t) = (⊥, {s},⊥, 0) if u ' v ∈ AC

c(s
p←−→

u≈v
t) = ({s↓p, t↓p}, {s, t},⊥, 0) if u ' v ∈ E

c(s
p←−→

`→r
t) = c(t

p←−→
r←`

s) = (c(s, p, t), {s}, (s|p)↓, n− k) if k is maximal such

that `→ r ∈ Rk
c(s←−→

`→r
t) = c(t←−→

r←`
s) = (⊥, {s},⊥, 0) if `→ r ∈ S

We compare costs with the lexicographic combination of (�mul, (↔∗AC)mul) for
the first two components, (BAC ,↔∗AC), and (>,=) for the standard order >
on N. The symbol ⊥ is considered minimal in the former three orderings. The

110

6.1 Normalized Completion

cost of an equational proof is the multiset consisting of the costs of its steps.
The proof order ��nNKB is the multiset extension of the order on proof step
costs, and P ⇒�,nNKB Q holds if and only if P ��nNKB Q and P and Q prove the
same equation.

As a lexicographic combination of well-founded orders ��nNKB is terminating.
It is not difficult to show that the relation also constitutes a proof reduction
relation.

Lemma 6.36. The relation ⇒�,nNKB is a proof reduction relation.

We define general normalizing pairs as in Definition 6.7, except that the
proof reduction relation ⇒�,nNKB is used. It is then easy to check that the results
of Lemmas 6.6 and 6.10 carry over to NKB′ as all comparisons of equational
proofs involve only the first and the second cost component, and ⇒�NKB and
⇒�,nNKB coincide on these.

Lemma 6.37. Every NKB′ run constitutes an equational inference sequence
with respect to ⇒�,nNKB and T .

Proof. It has to be shown that every inference step (Ei,Ri) `NKB′ (Ei+1,Ri+1)
can be modeled by expand and contract steps according to Definition 3.1. Except
for compose and collapse steps this can be argued as in the proof of Lemma 6.11.

A compose step expands by adding s→ u and contracts by removing s→ t.
The latter corresponds to the proof transformation replacing P : s↔ε

s→t t by
Q : s↔ε

s→u u
p

R\S← t. We have c(P) = {(c(s, ε, t), {s}, s↓, n− i)} since—by the
assumption on variable-disjoint rules—the rule s → t cannot occur in any Rj
with j > i. On the other hand, c(Q) = {(c(s, ε, u), {s}, s↓, n− j), ({t↓}, . . .)} ∪
cS∪AC(Q) for some j > i. From s � t � t↓ � u it follows that c(s, ε, t) �mul

c(s, ε, u), and c(s, ε, t) �mul {t↓} and thus c(P)��nNKB c(Q).

A collapse step constitutes an expansion adding u ≈ s followed by a contrac-
tion removing t→ s, which is a proof transformation replacing P : t↔ε

t→s s by
Q : t→p

`→r\S u↔
ε
u≈s s. We have c(P) = {(c(t, ε, s), {t}, t↓, n− i)} as by the as-

sumption on variable-disjoint rules the rule t→ s cannot occur in any Rj with
j > i. On the other hand, c(Q) = {({t↓}, {t↓}, t′|p, n− j), ({s↓, u↓}, . . .)} ∪
cS∪AC(Q) for some term t′ such that t′ ↔∗AC t↓ and some j > i. Because of t �
s � s↓, t � u � u↓, c(t, ε, s) � t↓ and t↓ DAC t′|p we have c(P)��nNKB c(Q).

An NKB′ run is fair if it is fair with respect to ⇒�,nNKB according to Defini-
tion 6.12. Note that Lemma 6.13 carries over to NKB′ as it only exploits that
the underlying calculus is an equational inference system. We can therefore
prove the following results on fairness, correctness, and completeness in exactly
the same way as for the inference system NKB.

Lemma 6.38. A nonfailing NKB′ run satisfying CPL(Rω,Reω) ⊆
⋃
i Ei is fair.

Correctness Theorem 6.39. A fair and nonfailing NKB′ run succeeds.

111

6 Normalized Completion Systems

Completeness Theorem 6.40. Assume R is a finite S-convergent system for
E and let � be an AC-compatible reduction order that contains R and S. Then
any fair and nonfailing NKB′ run from E using � will produce an S-convergent
system in finitely many steps.

Note that according to the latter result the (slightly) simpler NKB′ is equally
powerful as NKB when it comes to deriving finite S-convergent TRSs.

6.1.4 Critical Pair Criteria

Also in the setting of normalized completion critical pair criteria pose a means to
filter out critical pairs that can be ignored without compromising completeness.
Again the compositeness criterion serves as a general condition. Let L be a fixed
theory between AC and T . A critical pair criterion CPC maps (E ,R) to a set
of equations such that CPC(E ,R) is a subset of CPL(R,Re). We adapt the
notion of compositeness such that the proof orders for normalized completion
are used.

Definition 6.41. Let E be a set of equations, R a set of rewrite rules, and
�� a proof order using reduction order �. An equational proof P that has
the form of a peak s ← · ↔∗L · → t is composite in (T , E ,R) with respect to
a proof order �� if there exist terms u0, . . . , un+1 where s = u0, t = un+1

and u � ui for all 0 6 i 6 n+ 1, and proofs P0, . . . , Pn in (T , E ,R) such
that Pi proves ui ≈ ui+1 and P �� Pi for all 1 6 i 6 n. The compositeness
criterion CCPL(E ,R) returns all L-critical pairs among rules in R for which
the associated overlaps are composite.

We can now relax the result of Lemma 6.15 by showing that composite critical
pairs can be ignored without affecting fairness.

Lemma 6.42. Consider a nonfailing NKB run γ : (E0,∅) ` (E1,R1) ` (E2,R2) `
· · · and let C be a subset of

⋃
i CCP(Ei,Ri), where CCP is computed with respect

to ��NKB . If CPL(Rω,Reω) \ C ⊆
⋃
i Ei then γ is fair.

Proof. Induction on ��NKB shows that any proof in T ∪Rω can be transformed
into a normalized rewrite proof.

Any non-rewrite proof must contain (i) a peak s Rω/AC← · →Rω/AC t, or (ii)
a peak s Rω/AC← · →S/AC t, or (iii) a subproof u→Rω/AC t such that u 6= u↓,
or (iv) a peak s S/AC← · →S/AC t. In the latter three cases existence of a
smaller proof can be argued as in Lemma 6.15. This also holds for (i) if the
peak is a non-overlap, or if it is a proper overlap and the respective critical pair
occurs in

⋃
i Ei. In all these cases this smaller proof can thus be transformed

into a rewrite proof by the induction hypothesis. It remains to consider the
subcase of (i) where there are a proof P : s Rω/AC← u→Rω/AC t and a critical
pair ` ' r ∈ CPL(Rω,Reω) such that s ↔∗L C[`σ] ↔`≈r C[rσ] ↔∗L t but ` ' r
does not occur in any set Ei. Hence we must have ` ' r ∈ CCP(Ei,Ri) for
some i. Let the corresponding critical overlap be P ′ : ` ← v ↔∗L v′ → r, so
P = P [C[P ′σ]]. By definition, there are terms v0, . . . , vn+1 such that ` = v0,
r = vn+1 and v � vi, and (Ei,Ri) admits proofs Pi of vi ≈ vi+1 which are

112

6.1 Normalized Completion

smaller than P ′. By the Persistence Lemma 3.4 there are respective proofs P ′i
in T ∪ Rω such that Pi (⇒�NKB)= P ′i . By the induction hypothesis all these
proofs P ′i can be transformed into normalized rewrite proofs Qi in T ∪ Rω.
Consequently all terms in the combined proof Q : Q1 · · ·Qn of ` ≈ r must be
smaller than v, so P ′ ⇒�NKB Q and hence P = P [C[P ′σ]] ⇒�NKB P [C[Qσ]].
Hence, as P can be transformed into a smaller proof it can be transformed into
a normalized rewrite proof by the induction hypothesis.

An analogous proof can be used to derive a corresponding result for NKB′,
which relaxes Lemma 6.38.

Lemma 6.43. Consider a nonfailing finite NKB′ run γ : (E0,∅) ` (E1,R1) `
· · · ` (En,Rn) and let C be a subset of

⋃
i CCP(Ei,Ri), where CCP is computed

with respect to ��nNKB . If CPL(Rn,Ren) \ C ⊆
⋃
i Ei then γ is fair.

Several special cases of this general criterion can be checked efficiently. Con-
sider an overlap o of the form 〈`1 → r1, p, `2 → r2〉Σ giving rise to the set of
critical peaks

P : s
p,σ←−−−−

r1←`1
u
∗←→
L
u′

ε,σ−−−−→
`2→r2

t (6.8)

such that σ ∈ Σ. Let cL(P) refer to the cost of the subproof u↔∗L u′.

S-reducibility

If u 6= u↓ or u′ 6= u′↓ in an overlap of the form (6.8) then the corresponding crit-
ical pair is called S-reducible. The S-reducibility criterion SCPL(E ,R) returns
all S-reducible L-critical pairs among rules in R.

Lemma 6.44. Every S-reducible L-critical pair of the form (6.8) is composite
with respect to ��NKB and ��nNKB .

Proof. Let P be an overlap of the form (6.8), and assume u→S/AC v. We thus
also have another equational proof P1P2 of s ≈ t, with

P1 : s
p,σ←−−−−

r1←`1
u −−−→
S/AC

v P2 : v ←−−−
S/AC

u↔∗L u′
ε,σ−−−−→

`2→r2
t

As u is S/AC-reducible we have c(u′, ε, t) = {u′, t}, such that for both NKB and
NKB′ the proof costs amount to

c(P) = {(c(u, p, s), . . .), ({u′, t}, . . .)} ∪ cL(P)

c(P1) = {(c(u, p, s), . . .), (⊥, . . .)} ∪ cAC(P1)

c(P2) = {(⊥, . . .), ({u′, t}, . . .)} ∪ cAC(P2) ∪ cL(P)

where cAC(Pi) corresponds to the complexities of possibly required AC-steps in
u →S/AC v. Note that the complexities of AC steps are smaller than the first
two cost tuples in c(P). We have P ��NKB P1 and P ��NKB P2 (P ��nNKB P1

and P ��nNKB P2), so the AC-critical pair is composite for NKB (NKB′). A
symmetric argument shows compositeness of any critical pair where u′ is S/AC-
reducible.

113

6 Normalized Completion Systems

In the sequel we thus assume that both u and u′ are in normal form with
respect to→S/AC. By AC convergence of S and L ⊆ S we thus have u↔∗AC u′.
Now assume there is a rewrite step u ↔∗AC · →R v using a rule `3 → r3 at
position q, such that (`3 → r3, q) is different from (`1 → r1, p) and (`2 → r2, ε).
Thus there are proofs

P1 : s
p←−−−−

r1←`1
u

∗←−→
AC

v′
q−−−−→

`3→r3
v P2 : v

q←−−−−
r3←`3

v′
∗←−→

AC
u′

ε−−−−→
`1→r1

t (6.9)

such that P1P2 proves s ≈ t.

Primality

An AC-critical pair (6.8) is not prime if there are proofs (6.9) such that u|p BAC

v′|q. The primality criterion PCPAC(E ,R) returns all AC-critical pairs among
rules in R for which the associated overlaps are not prime.

Lemma 6.45. Every non-prime L-critical pair is composite with respect to
��NKB and ��nNKB .

Proof. As u, u′, and v′ are in S-normal form, the proof costs in (6.8) and (6.9)
have the shape

c(P) = {({u}, {u}, u|p, . . .), ({u′}, {u′}, u′, . . .)} ∪ cAC(P)

c(P1) = {({u}, {u}, u|p, . . .), ({v′}, {v′}, v′|q, . . .)} ∪ cAC(P1)

c(P2) = {({u′}, {u′}, u′, . . .), ({v′}, {v′}, v′|q, . . .)} ∪ cAC(P2)

for the cost measures underlying both NKB and NKB′. From u′ ↔∗AC v′ we
obtain {u′} �mul {v′}. Therefore u′ ↔∗AC u D u|p BAC v′|q and thus u′ BAC v′|q,
so we have P ��NKB P1 and P ��nNKB P1. Furthermore, as u|p BAC v′|q we have
P ��NKB P2 and P ��nNKB P2. It follows that P is composite.

As in standard completion, the unblockedness criterion BCPAC(E ,R) forms a
special case of the primality criterion. This criterion considers all critical pairs
superfluous where xσ is R/AC-reducible for some variable x occurring in `1 or
`2.

Connectedness

Also a normalized completion variant of the connectedness criterion [61] can be
defined. A critical pair originating from an overlap (6.8) is connected below u if
there exists a sequence of single-step proofs s = u0 ↔ u1 ↔ · · · ↔ un+1 = t in
(T , E ,R) such that u � ui for all 1 6 i 6 n. Note that connectedness below u
coincides with connectedness below u′ due to AC compatibility of �.

Lemma 6.46. If the L-critical pair s←o→ t corresponding to an overlap (6.8)
is connected below u then it is composite with respect to ��NKB and ��nNKB .

Proof. Let Pi denote the single-step proof ui ↔ ui+1 in (T , E ,R) for all 0 6
i 6 n. Let �� be one of ��NKB or ��nNKB . For both proof orders we

114

6.2 Normalized Completion with Termination Tools

have c(P) = {({u}, . . .), ({u′}, . . .)} ∪ cAC(P) while c(Pi) contains only a single
tuple of the form ({ui}, . . .), ({ui+1}, . . .), ({ui, ui+1}, . . .), or (⊥, . . .). Since
u � ui, ui+1 we have P �� Pi for all 0 6 i 6 n. As P0 · · ·Pn proves s ≈ t, the
L-critical pair is composite.

A criterion WCPAC(E ,R) performing the weak connectivity test is obtained
in a similar way as for standard completion. Assume the critical pair corre-
sponding to an overlap (6.8) admits a decomposition of the form (6.9). If both
proofs P1 and P2 are either not proper overlaps or the respective critical pair
was already considered, then the critical pair is weakly connected. It is easy to
see that weak connectedness constitutes a special case of connectedness.

Since S-reducibility, non-primality, and (weak) connectedness capture special
cases of compositeness, these criteria can also be combined. For a critical pair
s←o→ t originating from an overlap of the form (6.8), one can obtain a more
powerful mixed criterion MCPL(E ,R) by performing the following checks:

(a) If u or u′ is not in S-normal form, then s ≈ t is composite as it is S-reducible.

(b) Otherwise, if u′ is reducible with some R/AC-step strictly below the posi-
tion p of the overlap then s ≈ t is composite as it is non-prime.

(c) Otherwise, one checks whether u or u′ is (in addition to the rewrite steps
involved in the overlap) R/AC-reducible with some rule `3 → r3 at position
q. If there exists such a reduction such that for both i ∈ {1, 2} the rules `i →
ri and `3 → r3 do either not form a proper overlap, or the corresponding
critical pair was already considered then s ≈ t is composite according to
the weak connectivity test.

6.2 Normalized Completion with Termination Tools

The inference rules in Figure 6.5 describe T -normalized completion with ter-
mination tools (abbreviated NKBtt). In the orient rule, (Θ,Ψ) is again as-
sumed to form an S-normalizing pair for the terms s and t. A sequence
(E0,∅,∅) ` (E1,R1, C1) ` (E2,R2, C2) ` · · · of NKBtt inference steps is called a
run. Before giving a correctness proof we illustrate NKBtt on an example.

Example 6.47. Consider the initial set of equations E0 = {a + x ≈ b + g(a)}
where + is an AC symbol with unit 0, such that the theory T can be represented
by S = {x + 0 → x}. Note that the given equation cannot be oriented with
an AC-compatible simplification order. Thus any completion tool restricted to
orders such as AC-RPO or AC-KBO [59] fails immediately. But termination
tools can verify AC termination of the rule a + x → b + g(a) using e.g. AC
dependency pairs [2]. Hence the equation a + x ≈ b + g(a) can be oriented in
an NKBtt run. When using ACU-normalizing pairs (see Definition 6.22), this
results in the state

E1 : a + 0 ≈ b + g(a) R1 : a + x→ b + g(a) C1 : a + x→ b + g(a)

115

6 Normalized Completion Systems

orient
E] {s ' t},R, C

E ∪Θ(s, t),R∪Ψ(s, t), C′
if s = s↓, t = t↓ and C′ ∪ S is AC
terminating for C′ = C ∪Ψ(s, t)

deduce
E ,R, C

E ∪ {s ≈ t},R, C
if s ≈ t ∈ CPL(R,Re)

delete
E] {s ≈ t},R, C

E ,R, C
if s↔∗AC t

normalize
E] {s ≈ t},R, C
E ∪ {s↓ ≈ t↓},R, C

if s 6= s↓ or t 6= t↓

simplify
E] {s ' t},R, C
E ∪ {s ' u},R, C

if t→R\S u

compose
E ,R] {s→ t}, C
E ,R∪ {s→ u}, C

if t→R\S u

collapse
E ,R] {t→ s}, C
E ∪ {u ≈ s},R, C

if t→R\S u

Figure 6.5: Normalized completion with termination tools (NKBtt).

After normalizing a + 0 to a, we have

E2 : a ≈ b + g(a) R2 : a + x→ b + g(a) C2 : a + x→ b + g(a)

Since C2 ∪ {b + g(a)→ a} is AC terminating, we may perform an orient step:

E3 : R3 : a + x→ b + g(a) C3 : a + x→ b + g(a)

b + g(a)→ a b + g(a)→ a

In a subsequent compose step, the new rule can be used to reduce the first one:

E4 : R4 : a + x→ a C4 : a + x→ b + g(a)

b + g(a)→ a b + g(a)

endenumeratetoa

Three applications of deduce yield the state

E7 : a + g(a) ≈ a + a R7 : a + x→ a C7 : a + x→ b + g(a)

a + a ≈ a + b b + g(a)→ a b + g(a)→ a

a + a ≈ a

Since all terms in E7 simplify to a, the resulting trivial equations can be deleted.
As all critical pairs among rules in R7 were already deduced the run is fair, and
R7 = {a + x→ a, b + g(a)→ a} is S-convergent for E0.

116

6.2 Normalized Completion with Termination Tools

We now show that NKBtt simulates NKB runs and vice versa.

Simulation Soundness Lemma 6.48. Any run (E0,∅,∅) `nNKBtt (En,Rn, Cn)
admits an NKB′ run (E0,∅) `nNKB′ (En,Rn) using the AC-compatible reduction
order →+

(Cn∪S)/AC.

Proof. Note that all TRSs Ci∪S are AC terminating. The relations→+
(Ci∪S)/AC

are thus AC-compatible reduction orders, which we abbreviate by �i. We prove
the claim by induction on n, which is trivial for n = 0. For an NKBtt run
(E0,∅,∅) `∗ (En,Rn, Cn) ` (En+1,Rn+1, Cn+1), the induction hypothesis yields
a normalized completion run (E0,R0) `∗ (En,Rn) using reduction order �n.
Since constraint rules are never removed we have Cn ⊆ Cn+1, so the same run
can be obtained with �n+1. Case distinction on the applied NKBtt rule shows
that a step (En,Rn) ` (En+1,Rn+1) using �n+1 is possible in NKB: If orient
is applied to s ' t then Ψ(s, t) ⊆ �n+1 by definition, so NKB can apply orient
as well. In all remaining cases the step can obviously be simulated by the
corresponding NKB rule as no conditions on the order are involved.

Simulation Completeness Lemma 6.49. If (E0,∅) `nNKB′ (En,Rn) is a valid
NKB′ run using an AC-compatible reduction order � then there is also a valid
NKBtt run (E0,∅,∅) `nNKBtt (En,Rn, Cn) such that Cn ⊆ �.

Proof. By induction on n. For n = 0 the claim is trivially satisfied by setting
C0 = ∅. So suppose (E0,∅) `nNKB′ (En,Rn) ` (En+1,Rn+1). The induction
hypothesis yields an NKBtt run (E0,∅,∅) `∗ (En,Rn, Cn) such that Cn ⊆ �.
An easy case distinction on the last inference step (En,Rn) ` (En+1,Rn+1)
shows that using � for AC-termination checks allows for a corresponding NKBtt
step: If the applied inference rule is orient we have En = En+1 ∪ {s ' t} and
Rn+1 = Rn ∪Ψ(s, t) such that Ψ(s, t) ⊆ � as (Θ,Ψ) constitutes a normalizing
pair. Thus for C′ = Cn∪Ψ(s, t) also C′ ⊆ � is satisfied, ensuring AC termination
of the system C′ ∪S because S ⊆ � by assumption. Hence the NKBtt inference
rule orient can be applied to obtain (En,Rn, Cn) ` (En\{s ' t},Rn∪Ψ(s, t), C′).
In the remaining cases one can set Cn+1 = Cn and replace the applied rule by
its NKBtt counterpart since no conditions on the order are involved.

Correctness Theorem 6.50. Any finite nonfailing and fair NKBtt run suc-
ceeds.

Proof. Let (E0,∅,∅) `n (∅,Rn, Cn) be a finite and fair run. According to
Lemma 6.48 the same TRS Rn can be derived in a fair and nonfailing NKB′

run using the reduction order →+
(Cn∪S)/AC. By Theorem 6.16 the TRS Rn is

S-convergent for E0.

Example 6.51. Consider the following set of equations (adapted from [77])
describing addition on natural numbers represented in binary:

#0 ≈ # (x+ y)1 ≈ x0 + y1 triple(x) ≈ x0 + x

(x+ y)0 ≈ x0 + y0 x0 + y0 + #10 ≈ x1 + y1

117

6 Normalized Completion Systems

where + is an AC operator, 0 and 1 are unary operators in postfix notation,
and # denotes the empty bit sequence. For example, #100 represents the
number 4 in binary. When applying normalized completion with termination
tools modulo AC, the following AC-convergent system is produced.

#0→ # triple(x)→ x0 + x

(x+ #)0→ x0 + # (x+ #)1→ x1 + #

x0 + y0→ (x+ y)0 x0 + y0 + z → (x+ y)0 + z

x0 + y1→ (x+ y)1 x0 + y1 + z → (x+ y)1 + z

x1 + y1→ (x+ y + #1)0 x1 + y1 + z → (x+ y + #1)0 + z

However, normalized completion using AC-RPO or AC-KBO does not succeed.

6.3 Normalized Multi-Completion with Termination
Tools

Normalized multi-completion with termination tools closely resembles MKBtt
and oMKBtt in that it simulates multiple NKBtt runs in parallel but exploits
sharing to gain efficiency. We define normalized multi-completion with termina-
tion tools by the inference system MNKBtt working on sets of nodes. Figure 6.6
displays the inference rules of MNKBtt, where we use the notation NP

E to abbre-
viate {〈u : v,∅,∅, P,∅,∅〉 | u ≈ v ∈ E}. In addition also the optional MKBtt
rules gc and subsume (see Figure 4.4) can be used. For the sake of simplicity we
assume that Ψ(s, t) = {s→ t}, as is the case for most theories under consider-
ation. Otherwise, an orient step can add all nodes 〈` : r,Rlr,∅,∅,∅,∅〉 such
that `→ r ∈ Ψ(s, t) and 〈`′ : r′, Rrl,∅,∅,∅,∅〉 such that `′ → r′ ∈ Ψ(t, s).

An MNKBtt inference sequence N0 ` N1 ` N2 ` · · · ` Nn where N0 = NE for
some set of equations E is called a run. We establish some simple properties of
MNKBtt runs.

Lemma 6.52. Consider an MNKBtt run N0 ` N1 ` N2 ` · · · ` Nk and
a process p ∈ P(Nk). Then S ∪ C[Nk, p] is AC terminating and R[Nk, p] ⊆
→+
C[Nk,p]∪S .

Proof. By induction on k. In the base case N0 = NE for some set of equations
E . For the single process ε occurring in N0 we have R[N0, ε] = C[N0, ε] = ∅,
and S is AC terminating by assumption. In the induction step, assuming that
the claim holds for Nk, a case distinction on the rule applied in Nk ` Nk+1

shows that it is also true for Nk+1. We use the notation from Figure 6.6 and
abbreviate →+

C[Nk,p]∪S by �k.

– Assume orient is applied to a node 〈s : t, R0, R1, E, C0, C1〉. For a process
p ∈ P(Nk+1) \ (Rlr ∪ Rrl) the claim holds as R[Nk, p] = R[Nk+1, p] and
C[Nk, p] = C[Nk+1, p]. If p ∈ Rlr then p ∈ Elr \ Erl or p = q0 such that
q ∈ U . Let in the former case p′ = p and in the latter p′ = q. We then
have for both cases C[Nk+1, p] = C[Nk, p

′]∪{s→ t}, C[Nk+1, p]∪S is AC
terminating, and R[Nk+1, p] = R[Nk, p

′] ∪ {s→ t}, so with the induction

118

6.3 Normalized Multi-Completion with Termination Tools

orient
N] {〈s : t, R0, R1, E, C0, C1〉}

splitU (N) ∪ {〈s : t, R0 ∪Rlr, R1 ∪Rrl, E′, C0 ∪Rlr, C1 ∪Rrl〉}
∪NRlr

Θ(s,t) ∪N
Rrl

Θ(t,s)

if – s = s↓ and t = t↓,

– Elr, Erl ⊆ E, and E′ = E \ (Elr ∪ Erl),

– C[N, p]∪S ∪ {s→ t} is AC terminating for all p ∈ Elr and
C[N, p] ∪ S ∪ {t→ s} is AC terminating for all p ∈ Erl,

– Rlr = (Elr \Erl)∪{p0 | p ∈ U}, and Rrl = (Erl\Elr)∪{p1 |
p ∈ U} for U = Elr ∩ Erl, and

– Elr ∪ Erl 6= ∅

deduce
N

N ∪ {〈s : t,∅,∅, R ∩R′,∅,∅〉}

if – 〈` : r,R, . . . 〉, 〈`′ : r′, R′, . . . 〉 ∈ N ,

– s←o→ t ∈ CPL(`→ r, (`′ → r′)e), and

– R ∩R′ 6= ∅

delete
N] {〈s : t,∅,∅, E,∅,∅〉}

N

if s↔∗AC t and E 6= ∅

normalize
N] {〈s : t, R0, R1, E, C0, C1〉}

N ∪ {〈s↓ : t↓,∅,∅, E,∅,∅〉, 〈s : t, R0, R1,∅, C0, C1〉}

if s 6= s↓ or t 6= t↓

rewrite
N] {〈s : t, R0, R1, E, C0, C1〉}

N ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (R1 ∪ E) ∩R,∅,∅〉}

if – 〈` : r,R, . . . 〉 ∈ N such that t→`→r\S u, and

– R ∩ (R0 ∪R1 ∪ E) 6= ∅

Figure 6.6: Normalized multi-completion with termination tools (MNKBtt).

hypothesis we obtain R[Nk+1, p] ⊆ �k+1. The argument for a process in
Rrl is symmetric.

– Suppose rewrite is applied. We have C[Nk+1, p] = C[Nk, p] and therefore
�k+1 = �k, and the constraint system C[Nk+1, p] ∪ S is AC terminating
by the induction hypothesis for all p ∈ P(Nk+1).

119

6 Normalized Completion Systems

For p ∈ R ∩ R0 we have R[Nk+1, p] = (R[Nk, p] \ {s → t}) ∪ {s → u},
and R[Nk, p] contains rules s → t and ` → r such that t →`→r\S u. As
R[Nk, p] ⊆ �k we have s �k t and ` �k r. Since �k is a reduction order
and S ⊆ �k also s �k u (and thus s �k+1 u) holds. For p ∈ R∩ (R1 ∪E)
we have R[Nk+1, p] ⊆ R[Nk, p], so the proof obligation is implied by the
induction hypothesis.

– If delete, deduce, normalize, or gc was applied then C[Nk+1, p] = C[Nk, p]
and R[Nk, p] = R[Nk+1, p] for all p ∈ P(Nk+1), so the claim follows from
the induction hypothesis.

– The case of subsume can be argued as for MKBtt (see Lemma 4.24).

We can hence immediately conclude that MNKBtt produces terminating rewrite
systems:

Corollary 6.53. In an MNKBtt run N0 ` N1 ` N2 ` · · · the rewrite system
R[Nk, p]∪S is AC terminating for all node sets Nk and processes p ∈ P(Nk).

Since the inference rules of MNKBtt modify labels in the same way as the
MKBtt rules the proof of the following result is identical to Lemma 4.26.

Lemma 6.54. In an MNKBtt run N0 ` N1 ` N2 ` · · · every node set Nk is
well-encoded and satisfies the node condition.

The split set of an MNKBtt step and the predecessor of a process with respect
to an inference step are defined as in Definition 4.27. Lemmas 6.55 and 6.56
show that an MNKBtt step corresponds to a (possibly empty) NKBtt step for all
processes occurring in nodes, and conversely every NKBtt step can be modelled
by MNKBtt. The relation `= denotes the reflexive closure of the NKBtt inference
relation `.

Lemma 6.55. Let N , N ′ be well-encoded node sets which satisfy the node
condition. For an MNKBtt step N ` N ′ with split set U the NKBtt step

(E[N, p], R[N, p], C[N, p]) `= (E[N ′, p′], R[N ′, p′], C[N ′, p′]) (6.10)

is valid for all p′ ∈ P(N ′) such that p = predU (p′). There exists at least one
process p′ ∈ P(N ′) for which the step is not an equality step if the rule applied
in N ` N ′ is not gc or subsume.

Proof. By case analysis on the MNKBtt rule applied in the step N ` N ′, where
the notation from Figure 6.6 is used.

– Suppose orient was applied to a node n = 〈s : t, R0, R1, E, C0, C1〉, adding
n′ = 〈s : t, R0 ∪ Rlr, R1 ∪ Rrl, E′, C0 ∪ Rlr, C1 ∪ Rrl〉. Hence s = s↓ and
t = t↓ must hold. Let p′ be a process in P(N ′) and p = predU (p′) be
its predecessor. Let E = E[N \ {n}, p], R = R[N \ {n}, p], and C =
C[N \ {n}, p]. Obviously, R[N ′ \ {n′}, p′] = R[N \ {n}, p] and C[N ′ \
{n′}, p′] = C[N \ {n}, p], whereas E[N ′ \ ({n′} ∪NΘ), p′] = E[N \ {n}, p]
for NΘ = NRlr

Θ(s,t) ∪N
Rrl
Θ(t,s). Three cases can be further distinguished.

120

6.3 Normalized Multi-Completion with Termination Tools

i. If p′ ∈ Rlr then by definition of orient R[n′, p′] = C[n′, p′] = {s→ t}
and C[N, p] ∪ {s → t} ∪ S is AC terminating. As Rlr and Rrl are
disjoint, E[N ′, p′]\E = Θ(s, t). Step (6.10) is thus a valid orient step
in NKBtt if p ∈ E. Since p′ occurs in Rlr, either p′ ∈ Elr \ Erl or
p′ = p0 for some p ∈ U . If p′ ∈ Elr \ Erl then p ∈ E follows from
p = predU (p′) = p′ and Elr ⊆ E. Otherwise p = predU (p′) entails
p′ = p0 such that p ∈ U ⊆ E. As p ∈ E we have E[n, p] = {s ' t}
and—because of the node condition—R[n, p] = C[n, p] = ∅. Hence
the following orient step is valid in NKBtt:

(E] {s ' t},R, C) ` (E ∪Θ(s, t),R∪ {s→ t}, C ∪ {s→ t})

ii. The case where p′ ∈ Rrl is symmetric to the previous one.

iii. No process p′ /∈ Rlr ∪ Rrl is affected by N ` N ′, so p = p′ and we
have E[n, p] = E[n′, p′], R[n, p] = R[n′, p′] and C[n, p] = C[n′, p′].
The projection of the MNKBtt step to p′ is thus an identity step
(E ,R, C) `= (E ,R, C).

In all remaining cases p = p′ holds as no process splitting occurs.

– Suppose deduce adds a node 〈s : t,∅,∅, R ∩ R′,∅,∅〉. Then for all p ∈
R ∩ R′ both `1 → r1 and `2 → r2 occur in R[N, p], and s ←o→ t
constitutes an L-critical pair between the two rules. Hence deduce can also
be applied in the step (6.10), where indeed E[N ′, p] = E[N, p] ∪ {s ≈ t}.
If p 6∈ R ∩R′ then (6.10) is an identity step.

– If delete removes a node 〈s : t,∅,∅, E,∅,∅〉 then s ↔∗AC t and s ' t ∈
E[N, p] for all p ∈ E. Hence delete applies in the step (6.10), and we have
E[N ′, p] = E[N, p] \ {s ≈ t}. For all p /∈ E an identity step is obtained.

– If normalize replaces 〈s : t, R0, R1, E, C0, C1〉 by 〈s : t, R0, R1,∅, C0, C1〉
and 〈s↓ : t↓,∅,∅, E,∅,∅〉 then for a process p ∈ E we have E[N ′, p] =
(E[N, p] \ {s ≈ t}) ∪ {s↓ ≈ t↓}. Therefore (6.10) is a valid normalize step
in NKBtt. For all p /∈ E an identity step is obtained.

– Finally, suppose rewrite was used. For every process p /∈ (R0 ∪R1 ∪ E) ∩R
an identity step is obtained. Otherwise, the following possibilities are dis-
tinct due to the node condition.

i. If p ∈ R0 ∩ R then there are rules s → t and ` → r in R[N, p] such
that t →`→r\S u. We have R[N ′, p] = R[N, p] \ {s → t} ∪ {s → u},
so (6.10) is a valid compose step.

ii. If p ∈ E∩R there is an equation s ' t in E[N, p] and a rule `→ r in
R[N, p] that admit a normalized rewrite step t →`→r\S u. We have
E[N ′, p] = E[N, p] \ {s ' t} ∪ {s ' u}, so (6.10) is a simplify step.

iii. If p ∈ R1 ∩ R there are rules ` → r and t → s in R[N, p] such
that t →`→r\S u. As R[N ′, p] = R[N, p] \ {t → s} and E[N ′, p] =
E[N, p] ∪ {u ≈ s} we obtain (6.10) by an application of collapse.

121

6 Normalized Completion Systems

For any inference rule besides gc and subsume, the non-emptiness requirement
for the set of affected labels ensures that (6.10) is a strict step for some p′ ∈
P(N ′).

Lemma 6.56. Let (Θ,Ψ) be a normalizing pair such that Ψ(u, v) = {u → v}.
Assume for an NKBtt inference step (E ,R, C) ` (E ′,R′, C′) using (Θ,Ψ) there
exist a node set N and a process p ∈ P(N) such that E = E[N, p], R = R[N, p]
and C = C[N, p]. Then there is an MNKBtt inference step N ` N ′ with split
set U and a process p′ ∈ P(N ′) such that p = predU (p′), E ′ = E[N ′, p′], R′ =
R[N ′, p′] and C′ = C[N ′, p′].

Proof. In the following case distinction on the applied NKBtt rule, (∗) refers to
the proof obligations E ′ = E[N ′, p′], R′ = R[N ′, p′], and C′ = C[N ′, p′].

– Suppose orient is applied to an equation s ' t ∈ E , so s↓ = s and t↓ = t.
There must be a node n = 〈s : t, R0, R1, E, C0, C1〉 in N such that p ∈ E
and C∪{s→ t}∪S is AC terminating. If C∪{t→ s}∪S is AC terminating
as well, we set U = {p}. For Elr = Erl = {p}, Rlr = {p0} and Rrl = {p1},
orient yields

N ′ =split{p}(N \ {n}) ∪ N
{p0}
Θ(s,t) ∪N

{p1}
Θ(t,s) ∪

{〈s : t, R0 ∪ {p0}, R1 ∪ {p1}, E \ {p}, C0 ∪ {p0}, C1 ∪ {p1}〉}

For p′ = p0 we then have p = predU (p′) such that (∗) is satisfied. If on
the other hand C ∪ {t→ s} ∪ S is not AC terminating then orient can be
applied with U = ∅, Rlr = {p}, and Rrl = ∅ to obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 ∪ {p}, R1, E \ {p}, C0 ∪ {p}, C1〉} ∪N{p}Θ(s,t)

such that (∗) holds for p′ = p.

In all remaining cases we can set p′ = p since no process splitting occurs.

– In the case where deduce generates s ≈ t from an L-overlap involving rules
`1 → r1 and `2 → r2, there are nodes 〈`1 : r1, R, . . . 〉 and 〈`2 : r2, R

′, . . . 〉
in N such that p ∈ R ∩R′. A deduce step in MNKBtt yields

N ′ = N ∪ {〈s : t,∅,∅, R ∩R′,∅,∅〉}

which satisfies (∗) as well.

– If delete removes s ≈ t ∈ E because s↔∗AC t then N must contain a node
n = 〈s : t, R0, R1, E, C0, C1〉 such that p ∈ E. Since s ≈ t cannot be
oriented into an AC-terminating rule, by Lemma 6.52 the labels R0, R1,
C0 and C1 must be empty. Thus n can be removed by delete in MNKBtt.

– Suppose normalize replaces s ≈ t ∈ E by s↓ ≈ t↓ ∈ E ′. We must have
n = 〈s : t, R0, R1, E, C0, C1〉 ∈ N and the following normalize step in
MNKBtt satisfies (∗):

N ′ = (N \ {n}) ∪ {〈s : t, R0, R1,∅, C0, C1〉} ∪ {〈s↓ : t↓,∅,∅, E,∅,∅〉}

122

6.3 Normalized Multi-Completion with Termination Tools

– If compose replaces s→ t by s→ u as t→`→r\S u then N contains nodes
n = 〈s : t, R0, R1, E, C0, C1〉 and 〈` : r,R, . . . 〉 such that p ∈ R0∩R. Thus
rewrite applies and (∗) is satisfied as we obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (E ∪R1) ∩R,∅,∅〉}

– Suppose simplify replaces an equation s ' t by s ' u as t→`→r\S u. Then
N contains nodes n = 〈s : t, R0, R1, E, C0, C1〉 and 〈` : r,R, . . . 〉 such that
p ∈ E ∩R. An application of rewrite admits a step

N ′ = (N \ {n}) ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (E ∪R1) ∩R,∅,∅〉}

Since p ∈ E ∩R, (∗) holds.

– Finally, assume collapse is applied to turn a rule t → s into an equation
u ≈ s because of a normalized rewrite step t→`→r\S u. Then N contains
nodes n = 〈s : t, R0, R1, E, C0, C1〉 and 〈` : r,R, . . . 〉 such that p ∈ R1∩R.
To satisfy (∗) we apply rewrite to obtain

N ′ = (N \ {n}) ∪ {〈s : t, R0 \R,R1 \R,E \R,C0, C1〉}
∪ {〈s : u,R0 ∩R,∅, (E ∪R1) ∩R,∅,∅〉}

We define the sequence p0, . . . , pk of ancestors of a process p in an MNKBtt
run γ as in Definition 4.30. As MNKBtt steps are reflected in NKBtt steps by
Lemma 6.55 we obtain the following simulation result:

Corollary 6.57. Suppose an MNKBtt run γ : N0 ` N1 ` · · · ` Nk gives rise
to a process p ∈ P(Nk) having ancestors p0, . . . , pk. Let Ei, Ri and Ci denote
E[Ni, pi], R[Ni, pi] and C[Ni, pi], respectively. Then the sequence

γp : (E0,R0, C0) `= (E1,R1, C1) `= · · · `= (Ek,Rk, Ck)

is a valid NKBtt run, called the projection of γ to p.

Using projections, the notions of success, failure and fairness given for NKBtt
can be naturally extended to MNKBtt in exactly the same way as MKBtt inherits
them from KBtt (see Definition 4.32). It is then straightforward to establish a
correctness result for MNKBtt.

Correctness Theorem 6.58. Let NE be the initial node set for a set of equa-
tions E and let γ : NE `∗ N be a finite MNKBtt run which is nonfailing and fair
for some p ∈ P(N). Then R[N, p] is S-convergent for E.

Proof. By Corollary 6.57 there is a corresponding fair and nonfailing NKBtt run
γp : (E ,∅,∅) `∗ (∅, R[N, p], C[N, p]). Since γp is finite, R[N, p] is S-convergent
for E according to Theorem 6.50.

123

6 Normalized Completion Systems

φ(x, φ(y, z)) ≈ φ(x · y, z)

f(x · y) ≈ f(x) · f(y)

00

←
01

→

←
f(x · y) ≈ f(x) · f(y)

φ(f(x), g(y)) ≈ φ(g(y), f(x))

100

←
101

→

←
φ(f(x), g(y)) ≈ φ(g(y), f(x))

g(x · y) ≈ g(x) · g(y)

1100

←
1101

→

←
111

→

→

→

Figure 6.7: Part of the process tree developed in a run on CGA where process
1101 succeeds.

Example 6.59. We consider the system CGA describing an Abelian group with
a group action φ on itself such that two endomorphisms f and g commute with
respect to φ, as described by the set of equations E :

φ(e, x) ≈ x φ(x, φ(y, z)) ≈ φ(x · y, z) φ(f(x), g(y)) ≈ φ(g(y), f(x))

f(e) ≈ e f(x · y) ≈ f(x) · f(y)

g(e) ≈ e g(x · y) ≈ g(x) · g(y)

together with T axiomatizing Abelian group theory:

x · y ≈ y · x (x · y) · z ≈ x · (y · z) x · e ≈ x x · x−1 ≈ e

which is representable by the AC-convergent system SG given in Example 6.17.
Several equations in E are orientable in both directions. An NKBtt run thus
often has to decide for one orientation, excluding many other orientation pos-
sibilities. In contrast, an MNKBtt run can keep track of all possibilities. In the
course of a run it creates a tree of processes where each branch corresponds to
a sequence of orientation decisions. Part of the process tree developed in a run
on CGA is shown in Figure 6.7, where process 1101 succeeds with the following
S-convergent system:

f(e)→ e f(x · y)→ f(x) · f(y) i(f(x))→ f(i(x))

g(e)→ e g(x · y)→ g(x) · g(y) i(g(x))→ g(i(x))

φ(e, x)→ x φ(f(x), e)→ f(x) φ(x, f(y))→ φ(f(y) · x, e)

φ(x, φ(y, z))→ φ(x · y, z) φ(g(x), e)→ g(x) φ(x, g(y))→ φ(g(y) · x, e)

Normalized completion could naturally also be performed with respect to dif-
ferent theories, for instance ACU or group theory extended with equations
axiomatizing one or both of the endomorphisms f and g, or the group action
φ. Note that the use of termination tools is beneficial here as the equation
φ(f(x), g(y)) ≈ φ(g(y), f(x)) cannot be oriented with AC-RPO or AC-KBO.

124

6.3 Normalized Multi-Completion with Termination Tools

Example 6.60. Consider ring theory with two commuting multiplicative map-
pings f and g as defined by AC axioms for + together with the set of equations

x+ 0 ≈ x f(1) ≈ 1 x · (y + z) ≈ (x · y) + (x · z)
x+ (−x) ≈ 0 g(1) ≈ 1 (x+ y) · z ≈ (x · z) + (x · z)

1 · x ≈ x f(x · y) ≈ f(x) · f(y) (x · y) · z ≈ x · (y · z)
x · 1 ≈ x g(x · y) ≈ g(x) · g(y) f(x) · g(y) ≈ g(y) · f(x)

Since the equation f(x) · g(y) ≈ g(y) · f(x) cannot be oriented with AC-RPO or
AC-KBO, completion tools relying on such standard orders fail. But when nor-
malized completion with termination tools is performed modulo group theory
SG, we obtain the following SG-convergent TRS:

1 · x→ x x · (y + z)→ (x · y) + (x · z) f(1)→ 1

x · 1→ x (x+ y) · z → (x · z) + (y · z) g(1)→ 1

0 · x→ 0 (−x) · y → −(x · y) f(x · y)→ f(x) · f(y)

x · 0→ 0 x · (−y)→ −(x · y) g(x · y)→ g(x) · g(y)

(x · y) · z → x · (y · z) f(x) · g(y)→ g(y) · f(x)

Alternatively, normalized completion can for instance be performed modulo
ring theory or ring theory with endomorphisms.

125

Chapter 7

Constrained Equalities in
Completion-like Procedures

With maximal completion, Klein and Hirokawa [56] proposed to formulate
Knuth-Bendix completion as a maximal termination problem. Their imple-
mentation via encodings in (maximal) satisfiability problems turned out to be
surprisingly efficient, though limited to the classical reduction orders LPO and
KBO. This raises the question whether such an approach could also be ben-
eficial for variants of completion such as ordered completion and completion
modulo theories, and inductive theorem proving techniques like rewriting in-
duction. These equational deduction methods share three crucial characteristics
with standard completion: (i) they search for a rewrite system that satisfies a
joinability requirement imposed by input equalities, (ii) they work saturation-
based, and (iii) their search critically depends on a user-supplied reduction
order.

But some characteristics of maximal completion become problematic in the
settings of the above-mentioned completion-like procedures:

(1) When exploring multiple branches of the search tree, all critical pairs origi-
nating from some orientation are considered by all branches (in contrast to
multi-completion). Maintaining this large pool of equations turned out to
be a bottleneck in the implementation, and is even more critical for ordered
completion due to a larger set of (extended) critical pairs.

(2) This problem is compounded as maximal completion does not feature inter-
reduction, which is decisive for efficiency in completion-like procedures.

(3) Maximal completion always aims at orienting a maximal number of equa-
tions in the current equation pool. However, this maximality principle is
not suitable for settings such as rewriting induction (cf. Example 7.35).

We will hence investigate a generalized version of maximal completion based
on constrained equalities. Our framework allows to describe the above-mentioned
completion-like procedures in an abstract but uniform way by saturating a set of
constrained equalities C with respect to a suitable transformer. The procedure
succeeds as soon as a TRS is found which satisfies certain constraints induced
by C. This abstract setting allows for simple correctness proofs, and translating
the constraint satisfiability problem into some suitable logic admits a straight-
forward but competitive implementation. In such an implementation, the use
of constrained equalities allows for more control over joinability requirements

127

7 Constrained Equalities in Completion-like Procedures

and facilitates inter-reduction. Compared to maximal completion, this avoids
the above mentioned drawbacks (1)—(3). On the other hand our method can
still perform pure maximal completion by adjusting parameters appropriately
(see Section 8.2). For standard completion and rewriting induction this ap-
proach was already described in [55]. We here additionally account on ordered
completion and normalized completion.

Section 7.1 introduces constrained equalities. In Section 7.2 we instantiate
the framework to standard completion, in Section 7.3 to ordered completion,
and in Section 7.4 to normalized completion. Finally, in Section 7.5 we describe
how the approach can be used for rewriting induction.

7.1 Constrained Equalities

The following definition fixes our notion of constraints and the data structure
of constrained equalities, which are central to our framework.

Definition 7.1. Let a termination constraint C be defined as follows:

C ::= `→ r | > | ⊥ | ¬C | C ∨ C | C ∧ C

Given a TRS R, the relation R |= C is inductively defined such that R |= `→ r
if and only if `→ r ∈ R, and all other operators have their standard semantics
as boolean connectives. If R |= C the constraint C is said to be satisfied by R.
A constrained equality 〈s ≈ t, C〉 consists of an equation s ≈ t and a termination
constraint C. A constrained equational system (CES) C is a set of constrained
equalities.

Example 7.2. Consider the following set of equations E :

a(x, y) ≈ b(x) (1)

c(y) ≈ a(x, y) (2)

f(b(x)) ≈ b(x) (3)

f(a(x, y)) ≈ d (4)

and let the example CES C consist of the following constrained equalities:

〈c(y) ≈ b(x), a(x, y)→ b(x) ∧ f(b(x))→ b(x)〉
〈f(a(x, y)) ≈ d,¬(a(x, y)→ b(x) ∨ a(x, y)→ c(y))〉

To denote constraints in a more succinct way, we will for an equation numbered
(n) denote the rule obtained by orienting it from left to right by (n) and the
reversed rule by (n′). Hence C is written as follows:

〈c(y) ≈ b(x), (1) ∧ (3)〉 〈f(a(x, y)) ≈ d,¬((1) ∨ (2′))〉

128

7.1 Constrained Equalities

The following notations are frequently used throughout this chapter.

E> = {〈s ≈ t,>〉 | s ≈ t ∈ E}

C↓R =
{〈
s↓R ≈ t↓R, C ∧

∧
R
〉
| 〈s ≈ t, C〉 ∈ C and s↓R 6= t↓R

}
C 	R =

{〈
s ≈ t, C ∧ ¬

∧
R
〉
|
〈
s ≈ t, C

〉
∈ C
}

CJRK = {s ≈ t |
〈
s ≈ t, C

〉
∈ C and R |= C}

The set E> denotes the CES corresponding to a set of equalities with no con-
straints attached. By C↓R we denote the result of normalizing all equations
in C with respect to a TRS R, keeping only those which are not joinable, and
adding R as constraint. The CES C 	 R contains all constrained equalities in
C where constraints are extended with the negation of R. The projection CJRK
of C to R is the set of all equations whose constraints in C are satisfied by R.

Example 7.3. Let E be the set of equations from Example 7.2. Then E> is

〈a(x, y) ≈ b(x),>〉 〈c(y) ≈ a(x, y),>〉
〈f(b(x)) ≈ b(x),>〉 〈f(a(x, y)) ≈ d,>〉

Consider the following TRS R:

a(x, y)→ b(x) f(b(x))→ b(x)

Then C = (E>)↓R = {〈c(y) ≈ b(x), R〉, 〈f(b(x)) ≈ d, R〉}, where R = (1) ∧ (3).
Note that (E>)↓R′ would not be unique for, e.g., R′ = R ∪ {a(x, y) → c(y)}.
The set CES E> 	R consists of the constrained equalities

〈a(x, y) ≈ b(x),¬R〉 〈c(y) ≈ a(x, y),¬R〉
〈f(b(x)) ≈ b(x),¬R〉 〈f(a(x, y)) ≈ d,¬R〉

whereas C 	 R = {〈c(y) ≈ b(x),⊥〉, 〈f(b(x)) ≈ d,⊥〉} (after constraint sim-
plification). We have E>JRK = E , CJRK = {c(y) ≈ b(x), f(b(x)) ≈ d}, and
(E> 	R)JRK = ∅.

The proofs of the following properties are straightforward by unfolding the
above definitions.

Lemma 7.4. If E>↓R = ∅ then E ⊆ ↓R.

Lemma 7.5. (C 	R)JRK = ∅.

An ES E is said to be ground joinable by R if sσ ↓R tσ for every s ≈ t ∈ E
and substitution σ that is grounding for all terms in E . The concept of a
transformer is central to our framework:1

Definition 7.6. A function S mapping CESs to CESs is a (ground) transformer
if for any CES C and TRS R the set of equations CJRK is (ground) joinable
by R whenever S(C)JRK is (ground) joinable by R.

1 A (ground) transformer was called a (ground) reduction in [55].

129

7 Constrained Equalities in Completion-like Procedures

The following sufficient criterion will in the sequel be used to verify that a
function constitutes a (ground) transformer.

Lemma 7.7. A function S is a transformer if for any CES C and TRS R

CJRK ⊆ ∗−→
R
· =←−−−−→
S(C)JRK

· ∗←−
R

(7.1)

and a ground transformer if the inclusion (7.1) holds restricted to ground terms.

Proof. Suppose S(C)JRK is joinable by R. By (7.1), for any s ≈ t ∈ CJRK there
are terms u and v with s →∗R u ↔=

S(C)JRK v
∗
R← t. As u ↓R v by assumption,

also s ↓R t holds.
If S(C)JRK is ground joinable by R then by (7.1), for any s ≈ t ∈ CJRK and

grounding substitution σ, some u and v satisfy sσ →∗R u ↔=
S(C)JRK v

∗
R← tσ.

As u and v are ground-joinable by assumption this also holds for sσ and tσ.

Next we define a particular pattern for functions from CESs to CESs which
is parameterized by two functions F and R. It will turn out that all func-
tions matching this pattern constitute transformers. Actually all transformers
considered in the sequel will fit this shape, only F and R are instantiated ap-
propriately.

Definition 7.8. Let C be a CES, R a function mapping a CES to a set of
terminating TRSs, and F a function mapping a TRS to an ES. Then SR and
S are defined as follows:

SR(C) = (C 	R) ∪ C↓R ∪ F (R)>↓R
S(C) =

⋃
R∈R(C)

SR(C)

Lemma 7.9. S is a (ground) transformer.

Proof. Let H be an arbitrary TRS and s ≈ t ∈ CJHK. According to Lemma 7.7
and the definition of S it is sufficient to show that sσ →∗H · ↔=

SR(C)JHK ·
∗
H← tσ

for all R ∈ R(C). As s ≈ t ∈ CJHK there must be some 〈s ≈ t, C〉 ∈ C such that
H |= C. We distinguish three cases.

– If R ⊆ H and s ↓R t then sσ ↓R tσ holds for all (ground) substitutions
σ, and thus sσ ↓H tσ.

– If R ⊆ H but s 6↓R t then H |= C∧
∧
R, and 〈s↓R ≈ t↓R, C∧

∧
R〉 ∈ C↓R.

Thus s↓R ≈ t↓R ∈ SR(C)JHK. Then for all (ground) substitutions σ of s
and t we have sσ →∗H s↓Rσ ↔SR(C)JHK t↓Rσ ∗

H← tσ.

– If R * H then H |= C ∧¬
∧
R, and 〈s ≈ t, C ∧¬

∧
R〉 ∈ C 	R. Thus we

have s ≈ t ∈ SR(C)JHK. Clearly sσ ↔SR(C)JHK tσ holds for all (ground)
substitutions σ of s and t.

In the sequel we will refer to transformers S according to Definition 7.8
as standard transformers. From the definition of a (ground) transformer and
Lemma 7.9 it is clear that the composition of a transformer with itself is again
a transformer.

130

7.2 Standard Completion

Corollary 7.10. If S is a (ground) transformer then Sn is a (ground) trans-
former for all n > 0.

We present a straightforward observation before turning to a concrete appli-
cation of our framework.

Lemma 7.11. If S(C)JRK = ∅ then F (R) ⊆ ↓R for all R ∈ R(C).

Proof. If S(C)JRK = ∅ then SR(C)JRK = ∅ for all R ∈ R(C). Let R ∈ R(C)
and s ≈ t ∈ F (R), so 〈s↓ ≈ t↓,

∧
R〉 ∈ F (R)>↓R. As F (R)>↓R ⊆ SR(C) and

SR(C)JRK = ∅ we must have {〈s↓R ≈ t↓R,
∧
R〉}JRK = ∅. Since R |=

∧
R

this implies s↓R = t↓R, so s ↓R t.

7.2 Standard Completion

We will now instantiate the standard transformer S from Definition 7.8 to a
transformer SKB that allows us to formulate a completion procedure in the
constrained equality framework.

Definition 7.12. Given an ES E , let SKB be the standard transformer such
that for all R in R(C) we have R ⊆ ↔∗E and F (R) = CP(R), for any CES C.

Saturating a CES with respect to the transformer SKB constitutes a comple-
tion procedure, as was already shown in [55]:

Theorem 7.13. Let C = SnKB(E>). If CJRK = ∅ for some R ∈ R(C) then R
is convergent for E.

Proof. Let R ∈ R(C) and CJRK = ∅. According to Corollary 7.10 SnKB is a
transformer, hence E ⊆ ↓R. SinceR ⊆ ↔∗E by assumption we obtain↔∗R =↔∗E .
We now distinguish two cases. If n = 0 then E must be empty. Since termination
of R and the inclusion R ⊆ ↔∗E entail emptiness of R, the claim trivially holds.
If n > 0, it is not difficult to see that CJRK = ∅ implies SKB(C)JRK = ∅. Thus
by Lemma 7.11 we have CP(R) ⊆ ↓R which implies confluence of R. Since R
is terminating by construction and ↔∗R =↔∗E , R is convergent for E .

The choice of suitable TRSs R is obviously a challenge in an implementation.
This issue is addressed in Chapter 8. We now illustrate our procedure by means
of an example.

Example 7.14. Consider the ES E from Example 3.18:

a(x, y) ≈ b(x) (1)

a(x, y) ≈ c(y) (2)

f(b(x)) ≈ b(x) (3)

f(a(x, y)) ≈ d (4)

131

7 Constrained Equalities in Completion-like Procedures

In the initial CES C0 = E> = {〈(1),>〉, 〈(2),>〉, 〈(3),>〉, 〈(4),>〉} we can orient
all equations by choosing R0 = {(1), (2), (3), (4)}. Let us abbreviate R0 =
(1) ∧ (2) ∧ (3) ∧ (4). We then have

C0 	R0 = {〈(1),¬R0〉, 〈(2),¬R0〉, 〈(3),¬R0〉, 〈(4),¬R0〉}
C0↓R0

= ∅
F (R0)>↓R0

= {〈(5),>〉, 〈(6),>〉, 〈(7),>〉}↓R0

= {〈(5), R0〉, 〈(7), R0〉, 〈(8), R0〉}

where (5), (6), and (7) stem from the overlaps 〈(1), ε, (2)〉, 〈(1), 1, (4)〉, and
〈(2), 1, (4)〉, and (8) is the result of R0-normalizing (6):

b(x) ≈ c(y) (5)

f(b(x)) ≈ d (6)

f(c(x)) ≈ d (7)

b(x) ≈ d (8)

For R(C0) = {R0} we therefore obtain the following CES C1 = SKB(C0):

C1 = {〈(1),¬R0〉, 〈(2),¬R0〉, 〈(3),¬R0〉, 〈(4),¬R0〉, 〈(5), R0〉, 〈(7), R0〉, 〈(8), R0〉}

Let R1 = R0 ∪ {(7), (8)} ∈ R(C1) and R1 = R0 ∧ (7) ∧ (8), so ¬R0 ∧ ¬R1 can
be simplified to ¬R0. This yields

C1 	R1 = {〈(1),¬R0〉, 〈(2),¬R0〉, 〈(3),¬R0〉, 〈(4),¬R0〉}
∪ {〈(5), R0 ∧ ¬R1〉, 〈(6), R0 ∧ ¬R1〉, 〈(7), R0 ∧ ¬R1〉}

C1↓R1
= {〈(9), R0 ∧R1〉}

F (R1)>↓R1
= {〈(9), R1〉}

where the additional equation (9) is the result of rewriting (5):

d ≈ c(x) (9)

Note that C1↓R1
and F (R1)>↓R1

can be merged. For R(C1) = {R1} we get the
following CES C2 = SKB(C1):

C2 = {〈(1),¬R0〉, 〈(2),¬R0〉, 〈(3),¬R0〉, 〈(4),¬R0〉, 〈(5), R0 ∧ ¬R1〉}
∪ {〈(6), R0 ∧ ¬R1〉, 〈(7), R0 ∧ ¬R1〉, 〈(9), R1〉}

For R(C2) = {R2} where R2 = R1 ∪ {(9′)} we now have SKB(C2)JR2K = ∅,
so R2 is convergent for E . This would also hold for the smaller TRS R′2 =
{(1), (6), (8), (9′)}. Note that the run might proceed slightly differently if dif-
ferent normal forms are chosen, but it will still succeed.

In Example 3.18 we argued that any KB run which initially orients (2) must
fail—but our completion run did not fail despite the fact that (2) was oriented in
the beginning. This example thus illustrates that in contrast to the completion
methods considered in previous chapters, the completion procedure induced by
the constraint equality framework is not vulnerable to unfortunate selection
sequences.

132

7.3 Ordered Completion

7.3 Ordered Completion

We will now instantiate the above framework to ordered completion. The func-
tion F is slightly changed in that it gets the CES C as additional parameter.

Definition 7.15. Given an ES E , let SO be the standard transformer such that
for any CES C every R in R(C) is totally terminating and satisfies R ⊆ ↔∗E ,
and F (R, C) = CPB(R∪ CJRK).

Before being able to prove correctness of an ordered completion procedure
relying on SO we need some auxiliary results.

Lemma 7.16. If R ⊆ � for some total reduction order � and CP�(R∪ E) ⊆
↓R ∪↔E then (R, E) is ground convergent with respect to �.

Proof. Let R′ = R∪E�. This (possibly infinite) TRS is obviously terminating.
The assumption CP�(R∪ E) ⊆ ↓R ∪↔E implies that CP(R′) ⊆ ↓R ∪↔E and
thus CP(R′) ⊆ ↓R′ . By the Critical Pair Lemma 3.8 the TRS R′ is thus locally
ground confluent, and by Newman’s Lemma ground confluent. Hence (R, E) is
ground convergent with respect to �.

Lemma 7.17. If S(C)JRK = CJRK and R ∈ R(C), then F (R, C) ⊆ ↓R∪↔CJRK.

Proof. If S(C)JRK = CJRK then SR(C)JRK = CJRK for all R ∈ R(C). Let
R ∈ R(C) and s ≈ t ∈ F (R), so 〈s↓ ≈ t↓,

∧
R〉 ∈ F (R, C)>↓R. If s ↔CJRK t

does not hold then we must have {〈s↓R ≈ t↓R,
∧
R〉}JRK = ∅. From R |=

∧
R

it follows that s↓R = t↓R, so s ↓R t.

The following result states that if the R-projection of a CES C is saturated
with respect to the ground transformer SO then the system (CJRK,R) is ground-
convergent. It thus proposes an ordered completion procedure based on the
constrained equality framework.

Theorem 7.18. Let C = SnO(E>) such that SO(C)JRK = CJRK for some R ∈
R(C). Then (CJRK,R) is ground convergent for E with respect to a ground-total
reduction order �.

Proof. Let � be a ground-total reduction order such that R ⊆ � holds. Such
an ordering exists as R is totally terminating. Thus every ground instance of an
equation in CJRK is orientable by �. Let R′ = CJRK� be the TRS consisting of
all these ground instances. All equations in CJRK are trivially ground-joinable
by R′, and thus also by R∪R′. As SnO is a transformer by Corollary 7.10 and
SO(C)JRK = CJRK, all equations in E are ground-joinable by R∪R′.

By Lemma 7.17, CPB(R∪ CJRK) ⊆ ↓R ∪ CJRK. As B ⊆ � implies CP�(R∪
CJRK) ⊆ CPB(R∪CJRK) we have CP�(R∪CJRK) ⊆ ↓R∪CJRK. By Lemma 7.16
it follows that (CJRK,R) is ground convergent for E with respect to �.

The following example illustrates the induced ordered completion procedure.

133

7 Constrained Equalities in Completion-like Procedures

Example 7.19. Consider the ES E from Example 5.13. From the three initial
constrained equalities C0 = E> = {〈(1),>〉, 〈(2),>〉, 〈(3),>〉} we may choose
R0 = {(1), (2)} ∈ R(C0). Abbreviating R0 = (1) ∧ (2) results in the CES

C1 = {〈(1),¬R0〉, 〈(2),¬R0〉, 〈(3),>〉, 〈(4), R0〉, 〈(5), R0〉}

where (4) is derived from the critical overlap 〈(3), 1, (1)〉, while (5) stems from
rewriting the extended critical pair obtained from 〈(3′), 1, (2)〉:

(x+−x) · 1 ≈ 0 (4)

0 ≈ x+−x (5)

Now we can for instance take R1 = {(1), (2), (4), (5′)} ∈ R(C1). We write R1

as a shorthand for 1 ∧ 2 ∧ 4 ∧ 5′, and obtain

C2 ={〈(1),¬R0 ∧ ¬R1〉, 〈(2),¬R0 ∧ ¬R1〉, 〈(3),¬R1〉, 〈(4), R0 ∧ ¬R1〉}∪
{〈(5), R0 ∧ ¬R1〉, 〈(6), R1〉, 〈(7), R1〉}

where (6) and (7) are obtained from rewriting (2) with (5′) and the extended
critical overlap 〈(3′), ε, (5′)〉, respectively:

0 · 1 ≈ 0 (6)

−x+ x ≈ 0 (7)

For R2 = {(5′), (6), (7)} ∈ R(C2) and C3 = SO(C2) we now have C3JR2K =
SO(C3)JR2K, so (C3JR2K,R2) is ground convergent for E ; and as C3JR2K is empty,
R2 is actually convergent for E .

We remark that in contrast to the confluence criterion CP(R) ⊆ ↓R used for
standard completion, the criterion for ground convergence stated in Lemma 7.16
is not a necessary one.

Example 7.20. Consider the system (E ,R):

(x · y) · z → x · (y · z) x · y ≈ y · x x · (y · z) ≈ y · (x · z)

Let � be an LPO. Then (E ,R) does not satisfy the criterion in Lemma 7.16
as witnessed by x · (z · y) ←o→ y · (x · z) ∈ CP�(E ∪ R). But (E ,R) can be
shown ground-convergent by checking all possible relationships between ground
instantiations of variables occurring in critical pairs [78].

In fact ground confluence of terminating ordered rewrite systems was shown
to be undecidable [52], although it is decidable for systems compatible with a
certain class of reduction orders (including recursive path orders) [27].

7.4 Normalized Completion

We next discuss a normalized completion procedure based on constrained equal-
ities. Since the underlying rewrite relation is different from the setting in the

134

7.4 Normalized Completion

previous sections we will first adapt some definitions, borrowing notation from
Chapter 6. Let S be a fixed AC-convergent TRS for the theory T . In the sequel
we will only consider TRSs R such that R ∪ S is AC terminating, and hence
also →R\S is AC terminating. For a TRS R and a term s, let s�R\S denote a

term t such that s→!
R\S · →

!
S/AC t. We define C�R\S as follows:

C�R\S=
{〈
s�R\S≈ t�R\S , C ∧

∧
R
〉
| 〈s ≈ t, C〉 ∈ C and s�R\S 6= t�R\S

}
Next, the notion of a transformer is adapted to the notion of an S-transformer

which takes S-normalized rewriting into account.

Definition 7.21. A function S constitutes an S-transformer if for any CES C
and TRS R we have CJRK ⊆ �R\S whenever S(C)JRK ⊆ �R\S .

Similar as for transformers in Lemma 7.7 we give a simple criterion for a
function to be an S-transformer.

Lemma 7.22. S is an S-transformer if for any CES C and TRS R

CJRK ⊆ ∗−−−→
R\S

· ∗−−−→
S/AC

· =←−−−−→
S(C)JRK

· ∗←−−−
S/AC

· ∗←−−−
R\S

(7.2)

Proof. Suppose S(C)JRK ⊆ �R\S . By assumption, for any s ≈ t ∈ CJRK there
are terms u and v such that s →∗R\S · →

∗
S/AC u ↔=

S(C)JRK v
∗

S/AC← ·
∗

R\S← t.
As u �R\S v also s �R\S t holds.

Next we define a function which will turn out to form an S-transformer. Its
shape closely resembles that of a standard transformer, except that we now
consider S-normalized rewriting and respective normal forms.

Definition 7.23. Given an ES E , let SN be the mapping defined as follows:

SR(C) = (C 	R) ∪ C�R\S ∪ F (R)>�R\S

SN(C) =
⋃

R∈R(C)

SR(C)

where all R in R(C) satisfy R ⊆ ↔∗E∪T , R∪S is AC terminating, and F (R) =
CPL(Re) ∪CPAC(S,R) ∪CPAC(R,Se) for some theory L between AC and T .

Lemma 7.24. SN is an S-transformer.

Proof. Let s ≈ t ∈ CJHK. According to Lemma 7.22 it is sufficient to show
sσ →∗H\S · →

∗
S/AC · ↔

=
SR(C)JHK ·

∗
S/AC← ·

∗
H\S← tσ for any R ∈ R(C). By

assumption 〈s ≈ t, C〉 ∈ C for some C such that H |= C. We distinguish three
cases.

– If R ⊆ H and s �R\S t then also s �H\S t.

– IfR ⊆ H but s 6�R\S t thenH |= C∧
∧
R, and 〈s′ ≈ t′, C∧

∧
R〉 ∈ C�R\S ,

where s′ = s�R\S and t′ = t�R\S . Thus s′ ≈ t′ ∈ SR(C)JHK, so

s
∗−−−→
H\S

· ∗−−−→
S/AC

s′ ←−−−−−→
SR(C)JHK

t′
∗←−−−

S/AC
· ∗←−−−
H\S

t

135

7 Constrained Equalities in Completion-like Procedures

– If R * H then H |= C ∧¬
∧
R, and 〈s ≈ t, C ∧¬

∧
R〉 ∈ C 	R. Thus we

have s ≈ t ∈ SR(C)JHK.

Before stating a result that induced a normalized completion procedure we
need to verify that consider the critical pairs in F (R) is sufficient to guarantee
normalized S-convergence. The following result serves this purpose.

Lemma 7.25. Suppose R∪ S is AC terminating and

CPL(Re) ∪ CPAC(S,R) ∪ CPAC(R,Se) ⊆ �R\S (7.3)

for some theory L such that AC ⊆ L ⊆ T . Then R is S-convergent.

Proof. Lemma 6.14 shows that CPAC(Re) ⊆ ↔∗T · ↔CPL(Re) · ↔∗T . By AC con-
vergence of S for T , assumption (7.3), and Lemma 6.5, the relation→(R∪S)/AC

is thus locally confluent modulo AC. As →(R∪S)/AC is terminating it is conflu-
ent according to the counterpart of Newman’s Lemma for confluence modulo
an equivalence [45, Lemma 7].

Hence there exists a joining sequence s →∗(R∪S)/AC v ∗
(R∪S)/AC← t for all

terms s, t such that s↔∗(R∪S)/AC t. It remains to show that s �R\S t. To this
end, we assume that the term v is in normal form with respect to →(R∪S)/AC,

and show that u →∗R\S · →
∗
S/AC v whenever u →!

(R∪S)/AC v for any term

u. The proof is by induction on u and the well-founded relation →+
(R∪S)/AC.

In the base case u is in normal form and there is nothing to prove. Suppose
u →(R∪S)/AC u′ →!

(R∪S)/AC v. By the induction hypothesis, u′ →∗R\S · →
∗
S/AC

v. If u →R/AC u′ such that u = u↓S/AC or u →S/AC u′ then it is easy to
see that u →∗R\S · →

∗
S/AC v holds as well. So assume u →R/AC u′ such that

there is some term w with u →S/AC w. As →(R∪S)/AC is confluent we have
w ↓(R∪S)/AC v, and as v = v↓(R∪S)/AC actually w →∗(R∪S)/AC v must hold. We
may apply the induction hypothesis to conclude w →∗R\S · →

∗
S/AC v and thus

also u→∗R\S · →
∗
S/AC v.

Similar to the cases of standard and ordered completion, we show that sat-
urating a CES with respect to the S-transformer SN constitutes a normalized
completion procedure.

Theorem 7.26. Let C = SnN(E>). If CJRK = ∅ for some R ∈ R(C) then R is
S-convergent for E.

Proof. Suppose R ∈ R(C) and CJRK = ∅. By Lemma 7.24 SN is an S-
transformer, and an inductive argument shows that also SnN is an S-transformer.
Hence E ⊆ �R\S , and since R ⊆ ↔∗E∪T by assumption, the relations ↔∗E∪T
and ↔∗R∪T coincide. If n = 0 then E ⊆ ↔∗T . As R ⊆ ↔∗E∪T and R ∪ S is
AC terminating we must have R ⊆ →+

S/AC, so the claim holds by AC con-

vergence of S. If n > 0 it is not difficult to see that CJRK = ∅ implies
SN(C)JRK = ∅, so F (R) ⊆ �R\S . As R ∪ S is AC terminating, R is S-
convergent by Lemma 7.25.

The following example illustrates how Theorem 7.26 induces a normalized
completion procedure.

136

7.4 Normalized Completion

Example 7.27. Consider the TRS S representing Abelian groups:

e · x→ x (1)

i(x) · x→ 0 (2)

i(0)→ 0 (3)

i(i(x))→ x (4)

i(x · y)→ i(x) · i(y) (5)

Let L = AC and consider one equation axiomatizing a group endomorphism:

f(x · y) ≈ f(x) · f(y) (6)

From the initial CES C0 = E> = {〈(6),>〉} we can for instance choose R0 =
{(6′)}. Writing R0 = (6′), this results in the CES

C1 = {〈(6),¬R0〉, 〈(7), R0〉, 〈(8), R0〉, 〈(9), R0〉, 〈(10), R0〉, 〈(11), R0〉}

where the following new equations are in CPAC(SG, (6
′)) ∪ CPAC((6′),SeG):

i(f(x · y)) ≈ i(f(x)) · i(f(y)) (7)

f(y) ≈ i(f(x)) · f(x · y) (8)

i(f(x)) · i(f(y)) · f(x · y) ≈ e (9)

i(f(x)) · i(f(y)) · i(z) ≈ i(f(x · y)) · i(z) (10)

i(f(x)) · i(f(y)) · i(z) · i(w) ≈ i(f(x · y)) · i(z) · i(w) (11)

Taking R1 = {(6), (7), (8′), (9), (10′), (11′)} now yields the CES

C2 = {〈(6),¬R0 ∧ ¬R2〉, 〈(7), R0 ∧ ¬R1〉, 〈(8), R0 ∧ ¬R1〉, 〈(9), R0 ∧ ¬R1〉}
∪ {〈(10), R0 ∧ ¬R1〉, 〈(11), R0 ∧ ¬R1〉, 〈(12), R1〉, 〈(13), R1〉}

for the following additional equations in F (R1)�R1\S :

f(e) · f(x) ≈ f(x) (12)

f(i(x)) · f(x) ≈ f(e) (13)

If we then choose R2 = R1 ∪ {(12), (13)}, the resulting CES

C3 = {〈(6),¬R0 ∧ ¬R2〉, 〈(7), R0 ∧ ¬R1〉, 〈(8), R0 ∧ ¬R1〉, 〈(9), R0 ∧ ¬R1〉}
∪ {〈(10), R0 ∧ ¬R1〉, 〈(11), R0 ∧ ¬R1〉, 〈(12), R1 ∧ ¬R2〉, 〈(13), R1 ∧ ¬R2〉}
∪ {〈(14), R2〉, 〈(15), R2〉, . . .}

considers the following equations:

f(e) ≈ e (14)

f(i(x)) ≈ i(f(x)) (15)

besides 7 additional ones. ForR3 = R2∪{(14), (15)} we now have SN(C3)JR3K =
∅, so R3 is S-convergent for E . This would also hold for the S-canonical system
R′3 = {(6), (14), (15)}.

137

7 Constrained Equalities in Completion-like Procedures

7.5 Rewriting Induction

Finally the constrained completion framework can also be instantiated to an
inductive theorem proving tool based on rewriting induction [55]. We briefly
recall some relevant definitions related to inductive theorem proving.

Definition 7.28. An ESH is an inductive consequence ofR0, denotedR0 `i H,
if sσ ↔∗R0

tσ for all s ≈ t in H and ground substitutions σ.

Let R0 be a TRS with defined symbols FD and constructor symbols FC . A
term t = f(t1, . . . , tn) is basic with respect to R0 if f ∈ FD and ti ∈ T (FC ,V)
for all 1 6 i 6 n. We call a position p ∈ Pos(t) basic in t if t|p is basic. A TRS
is quasi-reducible if no ground basic term is in normal form.

Example 7.29. Let F = {0, s,+} be a sorted signature such that 0 : nat , s :
nat → nat and + : nat × nat → nat . Consider the following TRS R0:

x+ 0→ x (1)

x+ s(y)→ s(x+ y) (2)

The only defined symbol in R0 is +. Hence any basic term must be of the form
sn(0) + sm(0) for some n,m > 0. Obviously no such term is in normal form,
therefore R0 is quasi-reducible.

Definition 7.30. LetR0 andR be TRSs such thatR0 is quasi-reducible. Then
R is R0-expandable if for every ` → r ∈ R there exists a position in ` which
is basic with respect to R0. We write Expd(R0,R) for the set of all critical
pairs originating from overlaps 〈`1 → r1, p, `2 → r2〉 such that `1 → r1 ∈ R0,
`2 → r2 ∈ R, and p is a fixed (depending on `2 → r2) basic position in `2.

Example 7.31. The TRS R consisting of the single rule

(x+ y) + z → x+ (y + z) (3)

is R0-expandable with respect to the TRS R0 from Example 7.29 as position 1
in the left-hand side is basic. Because of the overlaps 〈(1), 1, (3)〉 and 〈(2), 1, (3)〉
we have Expd(R0,R) = {x+ z ≈ x+ (0 + z), s(x+ y) + z ≈ x+ (s(y) + z)}.

Let R(C) be a set of R0-expandable, terminating TRSs such that for every
R ∈ R(C) we have R0 ⊆ R and `σ ↔∗R0∪E rσ for all ` → r ∈ R and ground
substitutions σ. Let SRI(C) be the standard transformer such that F (R) =
Expd(R0,R). The following result by Reddy [86] forms the basis of rewriting
induction.

Lemma 7.32. Let R and H be TRSs such that R is quasi-reducible and R∪H
is terminating. If Expd(R,H) ⊆ ↓R∪H then R `i H.

Lemma 7.32 is now used to show that saturating a CES with respect to the
ground transformer SRI constitutes a rewriting induction procedure.

Theorem 7.33. Let C = SnRI(E>). If CJRK = ∅ for some R ∈ R(C) then
R0 `i E.

138

7.5 Rewriting Induction

Proof. Let R ∈ R(C) and CJRK = ∅. By Lemma 7.9 the function SRI is a
ground transformer, so E> is ground joinable by R. If n = 0 then E must
be empty such that the claim trivially holds. Otherwise, since CJRK = ∅ also
SRI(C)JRK = ∅. Hence Expd(R0,R) is ground joinable by R. Since R0 ⊆ R
and R is terminating, R0 `i R holds by Lemma 7.32. As E> is ground joinable
by R also R0 `i E holds.

To illustrate our rewriting induction procedure we verify that associativity is
an inductive consequence of the TRS R0 used as running example.

Example 7.34. Consider the quasi-reducible TRS R0 from Example 7.29. Let
E consist of the single equality

(x+ y) + z ≈ x+ (y + z) (3)

We obtain the initial CES C0 = {〈(3),>〉}. Suppose R(C0) consists of the TRS
R1 = {(1), (2), (3)}. Then expanding (3) at the basic position 1 results in

C1 = {〈(3),¬R1〉, 〈(4), R1〉, 〈(5), R1)〉}

with

x+ z ≈ x+ (0 + z) (4)

s(x+ y) + z ≈ x+ (s(y) + z) (5)

In fact it is not difficult to see that orienting (5) and (3) from left to right
will lead to an infinite run. However, if R(C1) contains R2 = {(1), (2), (3′)}
then expansion of (3′) at position 2 considers the overlaps 〈(1), 2, (3′)〉 and
〈(2), 2, (3′)〉. These give rise to the equations

x+ y ≈ (x+ y) + 0 x+ s(y + z) ≈ (x+ y) + s(z)

which are both joinable by R2. Hence we obtain

C2 = {〈(3),¬R1 ∧ ¬R2〉, 〈(4), R1 ∧ ¬R2〉, 〈(5), R1 ∧ ¬R2〉}

and as CJR2K = ∅ we conclude that R0 `i E .

This example illustrates that similar as in Knuth-Bendix completion, the
orientation of an equation to a rule is crucial, and a bad choice can easily
lead to divergence. But in the constrained completion setting a bad choice can
always be recovered at a later stage.

It is worth noting that the maximality principle which forms the basis of
maximal completion is not appropriate for rewriting induction. Maximal com-
pletion may always orient as many rules as possible because of the following
fact: Suppose R ⊆ ↔∗E , R is terminating, and CP(R) ⊆ ↓R. If R′ ⊆ ↔∗E ,
R ⊆ R′, and R′ is terminating then CP(R′) ⊆ ↓R′ .

In case of rewriting induction, this corresponds to the following property:
Suppose R0 is quasi-reducible and R is a TRS such that R0 `i R, R0 ∪ R is
terminating, and Expd(R0,R) ⊆ ↓R0∪R. If R ⊆ R′ and R0∪R′ is terminating
as well then also Expd(R0,R′) ⊆ ↓R0∪R′ . But this need not hold, as the
following example shows [55]:

139

7 Constrained Equalities in Completion-like Procedures

Example 7.35. Consider the following TRS R0:

0 + x→ x (1)

s(x) + y → s(x+ y) (2)

and the equations

(x+ y) + z ≈ x+ (y + z) (3)

x+ s(x) ≈ s(x+ x) (4)

For R = {(3)} and R′ = {(3), (4)} we have R0 `i R′. The TRS R′ is termi-
nating and Expd(R0,R) ⊆ ↓R0∪R if (3) is expanded at position 1, but if (4) is
expanded at position ε then Expd(R0,R′) 6⊆ ↓R0∪R′ as s(x + s(s(x))) 6↓R0∪R′

s(s(x) + s(x)).

140

Chapter 8

Implementation and Experiments

In this chapter we describe our implementations of a tool for multi-completion
with termination tools as well as a completion tool based on the constrained
equality framework, and report on experimental results.

8.1 A Multi-Completion Tool

Our tool mkbTT implements classical, ordered, and normalized multi-completion
with termination tools. The tool is written in the programming language
OCaml. Binaries and sources are available from the tool’s website

http://cl-informatik.uibk.ac.at/mkbtt/

where also a web interface can be found.

8.1.1 Implementation

In the following sections we provide implementation details which were found
to be of special importance.

Control

The basic control of mkbTT is a multi-completion variant of a discount loop,
very similar to the one originally proposed for completion with multiple reduc-
tion orders [62]. Pseudo-code describing the control loop is given in Figure 8.1.
The procedure advances two node sets containing open nodes No and closed
nodes Nc, corresponding to passive and active facts. Intuitively, closed nodes
have been fully exploited with respect to the orient and rewrite inference rules,
and to every pair of closed nodes deduce has been applied exhaustively. There-
fore, at the beginning of a run Nc is empty whereas No contains the set of
initial nodes.

We briefly describe the components occurring in the main control loop. At the
beginning of each recursive call it is checked whether some process succeeded.
In standard and normalized completion, a process p is considered successful if it
does not occur in an open node or in a closed equation label, i.e., all of E[Nc, p],
R[No, p] and E[No, p] are empty. In the setting of ordered completion, a pro-
cess p is successful if it does not occur in No. If no successful process exists but
there are open nodes left, choose selects a node n from the set of open nodes.
Different selection strategies are considered for this purpose (see Section 8.1.1).

141

http://cl-informatik.uibk.ac.at/mkbtt/

8 Implementation and Experiments

procedure mkbTT(No,Nc)

if ∃ successful process p then return p

else if No = ∅ then fail

else n := choose(No) ;

No := (No \ {n}) ·∪ rewrite({n},Nc) ;

if n 6= 〈. . . ,∅,∅,∅,∅,∅〉 then

(n,No,Nc) := orient(n,No,Nc) ;

if n 6= 〈. . . ,∅,∅, . . . , . . . , . . .〉 then

No := No ·∪ delete(rewrite(Nc, {n})) ;

Nc := gc(Nc) ;

Nd := deduce(n,Nc) ;

No := No ·∪ gc(delete(Nd ·∪ rewrite(Nd ,Nc))) ;

Nc := Nc ·∪ {n} ;

mkbTT(No,Nc) ;

Figure 8.1: Control in mkbTT.

The function rewrite(N,N ′) applies rewrite to nodes in N by employing nodes
in N ′ as rules. Nodes are implemented as mutable structures, so the original ob-
jects are modified and only newly created nodes are returned. In S-normalized
completion runs, all nodes are immediately S-normalized upen creation. The
function call orient(n,No,Nc) is used to apply the orient inference to node n. It
returns the modified node along with the node sets No and Nc adapted by the
split operation. Immediately after rewrite and deduce calls, delete is invoked to
filter out nodes with equal terms. After having been subjected to rewrite, all
labels in a node might become empty. The purpose of gc is to filter out such
nodes. The call deduce(n,Nc) returns all equational consequences originating
from deduce inference steps involving node n together with some node from
Nc. To avoid redundant nodes, the union operation ·∪ exploits the subsume
inference.

Termination Checking

Two possibilities for termination checks in orient inference steps are supported.
Our tool can interface any external termination checker which complies to a
minimal interface: It must take as argument the name of a file specifying the
termination problem in TPDB format1 and print YES on the first line of the
output if (AC) termination could be established. Alternatively, termination
checks can be performed internally by interfacing TTT2 [60] with the user’s
favourite termination strategy supplied in TTT2’s strategy language. For AC-
termination, we added implementations of AC-RPO [87] and AC-KBO [94],
both based on SMT encodings.

1 http://www.lri.fr/~marche/tpdb/

142

http://www.lri.fr/~marche/tpdb/

8.1 A Multi-Completion Tool

Term Indexing

Equational reasoning tools typically spend a major part of computation time
on rewriting and deducing equational consequences. A variety of sophisticated
term indexing techniques [93] have been developed in order to speed up filtering
out matching and unifiable terms. Also mkbTT relies on indexing techniques
to quickly sift through nodes that are applicable for inferences. For instance,
for deduce inferences the retrieval of unifiable (sub)terms is needed. For rewrite
steps, encompassments have to be retrieved, which can be achieved by repeat-
edly retrieving subsumptions. To select unifiable terms, mkbTT implements
path indexing and discrimination trees [41,79], for variant and subsumption re-
trieval also code trees [103] are supported. Moreover, AC discrimination trees [8]
are used for subsumption retrieval if normalized completion is applied and AC
operators are present.

Selection Strategies

An iteration of mkbTT’s main control loop starts by selecting a node to process
next. For this purpose a choice function picks the node where a given cost
heuristic evaluates to a minimal value. The measure applied in this selection
has significant impact on performance. To allow for a variety of possibilities,
a strategy language is defined that is general enough to cover selection strate-
gies that proved to be useful, but also captures some concepts used in choice
strategies of other tools. A strategy is specified by the grammar rule

strategy ::= ? | (node,strategy) | float(strategy : strategy)

Here node refers to a node property, which is in turn defined via properties of
process sets, processes, sets of equations, rewrite systems and term pairs:

node ::= data(term pair) | el(process set) | -node | node + node | *
process set ::= min(process) | sum(process) | #

process ::= process + process | e(eqs) | r(trs) | c(trs)
eqs ::= sum(term pair) | #
trs ::= sum(term pair) | cp(eqs) | #

term pair ::= smax | ssum

The properties forming the basic elements of strategies are captured by integer
values. The following paragraphs explain the different components.

– A node property of a node n = 〈s : t, . . . , E, . . .〉 can be its creation time
(denoted by *), a property of the node’s data s : t, or a process set
property pp of its equation labels E, which is written as el(pp). Node
properties can also be added or inverted.

– A process set property takes either the sum or the minimum over a prop-
erty of the involved processes, or may simply be the number of processes
it contains, which is denoted by #.

143

8 Implementation and Experiments

– Given a current node set N , a process property of a process p may be an
equation set property ep of its equation projection E[N, p] or a rewrite
system property tp of either its rule projection R[N, p] or its constraint
projection C[N, p], which is expressed by writing e(ep), r(tp) and c(tp),
respectively. Process properties can also be added.

– An equation set property of a set of equations E can be its cardinality (#)
or the sum over a term pair property of the contained equations. A rewrite
system property of a rewrite system R can additionally be a property of
its set of critical pairs CP(R).

– A term pair property of s : t can be the sum |s| + |t| or maximum
max{|s|, |t|} of the sizes of the involved terms, which is specified by writing
ssum and smax.

– Finally, properties are combined to obtain selection strategies. The sim-
plest possible strategy is ?, which is implemented by picking a node ran-
domly. Alternatively, a strategy may combine a node property np with
another strategy s to a tuple (np,s). By using this rule multiple times, a
node property list of the form (np1, . . . (npk,?) . . .) can be constructed.
To mix strategies, a strategy can also be of the shape r(s1:s2), where r is
assumed to be a rational value in the closed interval [0, 1]. Node property
lists are evaluated by mapping each node to the corresponding tuple of in-
teger values, its cost, and choosing the (lexicographic) minimum. In case
of a mixed strategy r(s1:s2), the strategy s1 is applied with probability
r, and s2 is used in the remaining cases.

As selection measures have considerable impact, many different strategies for
automated reasoning tools have been reported in the literature. For instance,
Vampire [104] employs a size/age ratio when deciding on a fact to be processed
next. If this ratio is (e.g.) 2 : 3 then out of 5 selections 2 will pick the oldest
and 3 the smallest node, i.e., the node where the sum of its term sizes |s|+ |t|
is minimal. In mkbTT this approach can be achieved with the strategy

ssize/age(r) = r((data(ssum),?):(*,?))

where the parameter r ∈ [0, 1] controls the ratio of size-determined selections,
e.g., a size/age ratio of 2 : 3 corresponds to r = 0.6.

The “best-first” selection approach applied in Slothrop [107] corresponds to
advancing a process for which |E[N, p]|+ |CP(R[N, p])|+ |C[N, p]| is minimal.
When combined with, for example, a size/age ratio, this is expressed as follows:

sslothrop(r) = (el(min(e(#)+r(cp(#))+c(#))),ssize/age(r))

In mkbTT, the strategies smax and ssum turned out to be beneficial. These
strategies first restrict attention to processes where the number of symbols in
E[N, p] and C[N, p] is minimal, then select nodes with minimal data and finally
go for a node which has the greatest number of processes in its equation label:

ssum = (el(min(e(sum(ssum))+c(sum(ssum)))),(data(ssum),(-el(#),?))))

144

8.1 A Multi-Completion Tool

The strategy smax differs from ssum only in that ssum is replaced by smax. To use
mkbTT with other heuristics than those just described, a user-defined strategy
can be specified via a command line option.

Certification

If mkbTT is run in standard completion mode and TTT2 is interfaced internally,
it can produce a proof in CPF format. This output contains a termination proof
(provided by TTT2) and a proof that the resulting rewrite rules are part of the
equational theory induced by the input equations. Correctness of this proof
can then be certified by CeTA [102], which verifies the output of mkbTT, checks
joinability of all critical pairs as well as the input equations, and hence certifies
convergence of the resulting TRS. Certifiable proofs produced by mkbTT can
be obtained from the website.

8.1.2 Usage

Command Line Interface

The tool mkbTT is equipped with a simple command line interface. It expects
an input problem in TPTP3 [100] or TPDB format, where in the latter case
both the old textual and the newer XML format2 are supported. If the input
problem is in TPDB format then all its rewrite rules are actually treated as
equations.

Several options allow to configure the tool. If the input problem is in the old
textual format and the option -po is set then pre-orientation is activated, i.e.,
all strict rules in the (relative) input problem are preserved whereas all weak
rules are considered as equations. Both a global and a local timeout in seconds
can be specified using -t and -T. The termination prover is given as argument to
the -tp option. Alternatively, if TTT2 is used internally a termination strategy
can be supplied with the -s option. A selection strategy can be given with the
option -ss, using the grammar described in Section 8.1.1.

Critical pair criteria can be applied by supplying -cp with appropriate ar-
guments. For standard and ordered completion, the criteria of unblockedness,
primality, connectedness and their combination are available by using the ar-
guments blocked, prime, connected, and all, respectively. For normalized
completion, primality and S-reducibility can be used, where the latter is en-
abled with the argument sreduce.

For standard and ordered completion, isomorphism checks are to be specified
via the option -is with optional arguments rename, rename+, perm, or perm+.
With the suffix + we compare processes pairs in every iteration, otherwise checks
are only performed when a process is split. By default mkbTT applies a heuristic
to determine which isomorphism is potentially applicable.

Term indexing techniques used for rewriting and unification in standard and
ordered completion may be selected with the options -ix and -ui together with
one of nv, pi, dt, or—in the case of rewriting—ct, referring to naive search,

2 http://www.termination-portal.org/

145

http://www.termination-portal.org/

8 Implementation and Experiments

path indexing, discrimination trees, and code trees respectively. For normalized
completion, AC-discimination trees are used by default.

The option -kp expects a floating point value larger than 1 and allows to give
a process filtering rate. For example, -kp 1.2 deletes all processes that exceed
the cost of the best process by 20%.

By default mkbTT applies standard completion. Ordered completion can be
used with the option -o, and normalized completion with the option -n. In
the latter case, a theory representation with respect to which completion is
performed can be supplied via the option -th followed by a file containing the
TRS S. If no such argument is given then mkbTT detects an applicable theory
automatically (currently ACU, groups and rings are supported, besides AC).

To control output, the flags -ct, -st and -p require mkbTT to print the
completed system, statistics and a proof in case of success. Furthermore, the
tool offers a checking mode where a file containing a rewrite system supplied
via the option -ch is tested for termination, confluence and for allowing rewrite
proofs for the the input equalities.

As an example, the call

mkbtt -t 600 -T 5 -tp aprove -cp prime WSW06_CGE2.trs

runs the tool on CGE2 for at most 600 seconds using a script calling AProVE [42]
for termination checks with a timeout of 5 seconds, and employs the critical pair
criterion PCP.

Web Interface

Besides a command line interface, mkbTT can also be executed via a web in-
terface. The screenshot in Figure 8.2 provides an impression. Various options
may be configured by the user.

8.2 A Constrained Completion Tool

We furthermore improved and extended the implementation of constrained com-
pletion presented in [55] to the tool CC for standard and ordered completion
based on the constrained equality framework. We outline how our framework
was automated, give some implementation details and comment on the tool’s
usage.

8.2.1 Automation of the Constrained Equality Framework

For all of the procedures discussed in Chapter 7, our approach suggests a
straightforward automation by repeatedly applying the respective reduction S
to the initial constraint set. The remaining challenge is to find a suitable set of
terminating TRSs R(C) given a set of constrained equalities C. To accomplish
this task we exploit the fact that reduction orders can be encoded as satisfia-
bility problems. Such encodings are well established nowadays [26,37,63,114].

In our tool the TRSs R(C) result from solving an optimization problem over
SAT or SMT constraints in a similar way as in maximal completion, but by

146

8.2 A Constrained Completion Tool

Figure 8.2: Web interface of mkbTT.

147

8 Implementation and Experiments

taking the termination constraints in the constrained equalities into account.
We briefly sketch our approach to automation for the setting of standard com-
pletion.

We consider a signature F . Any satisfiability encoding of a reduction order
translates a TRS R over F into a formula φR such that φR is satisfiable by
an assignment α if and only if ` �α r for all rules ` → r ∈ R, where �α is a
reduction order on T (F ,V).

In the sequel we consider terms in T (F ,V) and an assignment α inducing a
reduction order �α on T (F ,V).

Definition 8.1. Let an order constraint be defined by the following BNF:

C ::= p` > rq | x | > | ⊥ | ¬ C | C ∨ C | C ∧ C

Let O be a mapping from termination constraints to order constraints which
satisfies O(`→ r) = p` > rq and preserves the boolean structure.

For an assignment α and an order constraint ψ we write α |= ψ if α satisfies
ψ. This relation is inductively defined such that α |= p` > rq if and only if
` �α r, and all boolean connectives have their usual semantics.

For a termination constraint C and an assignment α, let R(C) denote the set
of rewrite rules occurring in C. The TRS Rα(C) is then defined as follows:

Rα(C) = {`→ r | `→ r ∈ R(C) and ` �α r}

Lemma 8.2 ([55]). Let C be a termination constraint and α an assignment.
If α |= O(C) then Rα(C) |= C.

Let C be a CES. We assume that all termination constraints C occurring in
C involve only terms in T (F ,V). We then write Rα(C) for the TRS

Rα(C) = {`→ r | 〈` ' r, C〉 ∈ C, ` �α r and α |= O(C)}

Lemma 8.3. Let C be a termination constraint and α an assignment. If

α |=
∧

〈s≈t,C〉∈C

ps > tq ∨ pt > sq ∨ ¬O(C)

then C↓RαJRαK = ∅.

Proof. Suppose α |= ps > tq ∨ pt > sq ∨ ¬O(C) for some 〈s ≈ t, C〉 ∈ C.
As 〈s ≈ t, C〉 ∈ C we have 〈s ≈ t, C ∧

∧
Rα〉 ∈ C↓Rα . If α |= ¬O(C) then

α 6|= O(C ∧
∧
Rα), so s ≈ t 6∈ C↓RαJRαK. Otherwise, if α |= ps > tq or

α |= pt > sq then Rα(C) |= s → t or Rα(C) |= t → s by Lemma 8.2, so s → t
or t→ s are in Rα and hence s ↓Rα t. Thus s ≈ t 6∈ C↓RαJRαK.

According to Theorem 7.13, the aim is to find a TRS R such that C =
SnKB(E>) and CJRK = ∅ for some R ∈ R(C). Recall that our transformers have
the following general shape (cf. Definition 7.8):

SR(C) = (C 	R) ∪ C↓R ∪ F (R)>↓R
S(C) =

⋃
R∈R(C)

SR(C)

148

8.3 Experiments

If C = SR(C′), we have CJRK = ∅ if and only if (C 	R)JRK = ∅, C↓RJRK = ∅,
and F (R)>↓RJRK = ∅. While (C 	 R)JRK = ∅ holds by Lemma 7.5 for any
TRS R, it is not clear how to determine in advance whether F (R)>↓RJRK = ∅.

But Lemma 8.3 suggests a criterion for C↓RJRK = ∅ which can be used
to choose TRSs R ∈ R(C): Given a CES C and previously chosen TRSs
R1, . . . ,Rn−1, we try to find an assignment αn such that αn maximizes the
number of satisfied clauses in the following formula:∧

〈s≈t,C〉∈C

ps � tq ∨ pt � sq ∨ ¬C (8.1)

If such an assignment αn is found, we set Rn = Rαn . In order to achieve
progress, we moreover require αn 6= αi for all 1 6 i < n.

In the settings of ordered completion, the TRSs in R(C) are selected in exactly
the same way.

8.2.2 Implementation

The tool CC is based on the completion tool presented in [55], but we im-
proved the standard completion module and implemented ordered completion
to compare with mkbTT. Sources and binaries are available from the website
of mkbTT.

CC is written in OCaml and uses Yices [36] as backend to solve maximal
satisfiability problems. As reduction orders LPO and KBO are available.

Experiments showed that it is beneficial to change the maximization goal (8.1)
by introducing weight factors n,m ∈ N:∧

〈s≈t,C〉∈C

(ps � tq ∨ pt � sq) · n ∨ C ·m

Note that we obtain maximal completion if m = 0. In our experiments, n = 2
and m = 1 turned out to be the most successful.

8.2.3 Usage

The tool CC offers a simple command line interface. Input problems are ex-
pected to be in the textual TPDB format, where all rewrite rules in the input
TRS are regarded as equations.

By default standard completion is applied. The option -o switches to ordered
completion. The applied reduction order can be controlled with the options
-lpo, -kbo, and -lpokbo. In the latter case, CC tries to find TRSs that are
compatible with LPO or KBO. Finally, -K allows to control the numer of TRSs
to be contained in R(C).

8.3 Experiments

We ran experiments on a server equipped with eight dual-core AMD Opteron R©

processors 885 running at a clock rate of 2.6GHz with 64GB of main memory.

149

8 Implementation and Experiments

8.3.1 Standard Completion

We will first focus experimental results obtained with mkbTT, reporting on the
influence of various ingredients. The section on standard completion will be
concluded by comparing mkbTT with CC and other completion tools.

Our test set comprises 101 problems collected from the literature. In the
following paragraphs we summarize results obtained for the whole test set, and
illustrate our conclusions with selected examples from that database. For this
purpose, systems with prefix TPTP refer to theories underlying unit equal-
ity problems in TPTP 3.6.0 [100], prefix SK90 refers to [95, Section 3], and
WSW06 refers to the Slothrop [107]. The prefixes BGK94 and C89 mark sys-
tems stemming from [23] and [25], respectively. The full experimental data can
be obtained from the website. All experiments described in the following ta-
bles featured a timeout of 600 seconds. If a successful completion could not be
achieved within that period this is marked by ∞, whereas ⊥ indicates failure.
If not stated otherwise, in all of the following experiments the following default
settings of mkbTT were used: We interface TTT2 internally with termination
strategy dp-lpo-kbo and a termination timeout of two seconds, apply selection
strategy smax, and use the critical pair criterion PCP. We use only renaming iso-
morphisms, controlled by the auto heuristic. As term indexing techniques code
trees and discrimination trees allow to retrieve encompassments and unifiable
terms, respectively.

Termination

Tables 8.1 and 8.2 show results obtained with different termination strategies
when interfacing TTT2 internally. In Table 8.1, the first three columns refer
to plain LPO, KBO (with weights of two bits), and their combination. The
strategy tkbo refers to transfinite KBO, i.e., KBO with ordinal weights and
subterm coefficients [113]. The strategy poly corresponds to linear polynomial
interpretations with coefficients of two bits.

Table 8.2 reports on results obtained with more sophisticated termination
strategies: dp-kbo, dp-lpo, and dp-lpo-kbo combine dependency pairs, a depen-
dency graph approximation, the subterm criterion and some simple counting
techniques with reduction pair processors using KBO, LPO, and both, respec-
tively. In both tables, columns (1) show the time required for completion and
columns (2) the percentage of time spent on termination.

The use of plain reduction orders such as LPO or KBO often results in com-
paratively fast completions (as e.g. in the cases of SK90-3.04 and SK90-3.27 for
LPO and TPTP-GRP493-1 for KBO) because little time is spent on termination
checks as can be seen from the bottom line. On the other hand, plain reduction
orders have comparatively limited power when it comes to orienting equations,
which can prevent success as in case of WS06-proofreduct or the CGE systems.
Overall, this results in fewer completions than obtained with more complex
strategies that offer a higher flexibility. We could not find a system where
polynomial interpretations are beneficial, and the bottom line shows that ter-
mination checks are very time consuming in this case. The overall success rate

150

8.3 Experiments

lpo kbo lpo + kbo tkbo poly

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

C89-A3 ∞ 234.0 17 245.2 21 460.5 56 ∞
SK90-3.04 0.7 52 ∞ 0.7 48 8.5 72 ∞
SK90-3.27 5.6 21 23.4 7 23.9 11 23.4 58 446.8 31

TPTP-GRP493-1 ∞ 37.5 15 39.7 19 ∞ ∞
TPTP-GRP496-1 66.0 15 60.0 19 56.6 25 ∞ ∞
WS06-proofreduct ∞ ∞ ∞ ∞ ∞
WSW06-CGE3 ∞ ∞ ∞ ∞ ∞
successes 69 67 74 57 41

average time 13.8 19.1 17.3 21.3 20.7

termination % 18 23 29 69 60

Table 8.1: Different reduction orders.

turned out to be best with dp-lpo-kbo, supposedly since a combined strategy
can cope best with problems where LPO is beneficial and problems where KBO
is preferable. There are systems that can be completed with a plain reduction
order but not with a strictly more powerful termination strategy employing
dependency pairs, like TPTP-GRP496-1 using KBO. This illustrates that more
termination power does not necessarily result in a higher chance for success
because many possibilities for orienting equations also induce many processes,
which can deteriorate performance significantly.

Selection Strategies

Table 8.3 demonstrates the crucial impact of selection strategies in mkbTT.
Columns (1) give the time required for completion and columns (2) the number
of control loop iterations (i.e., selected nodes). In line with previous observa-
tions from the theorem proving literature, we found that the selection strategy
is critical for the success of a run. While for some systems such as SK90-3.07,
TPTP-GRP490-1 or the CGE examples it is beneficial to use smax, there are also
systems like BGK94-M8 which can only be solved using ssum, and problems like
SK90-3.22 for which a mere size/age ratio works best. It thus seems impossible
to determine a single best strategy. Since overall smax could complete most sys-
tems and is fastest on average, it is used by default in a specialized and faster
implementation.

Critical Pair Criteria

Table 8.4 compares results obtained with mkbTT using the primality criterion
PCP, the connectedness criterion CCP and the mixed criterion MCP. Columns
(1) list the time required for completion, columns (2) the number of redundant

151

8 Implementation and Experiments

dp-lpo dp-kbo dp-lpo-kbo

(1) (2) (1) (2) (1) (2)

C89-A3 65.0 48 71.8 50 74.8 51

SK90-3.04 2.6 53 ∞ 2.7 54

SK90-3.27 34.8 29 27.9 21 29.7 27

TPTP-GRP493-1 ∞ 92.4 29 93.1 32

TPTP-GRP496-1 ∞ 60.0 32 63.4 37

WS06-proofreduct 174.9 93 179.5 92 182.4 92

WSW06-CGE3 43.7 80 42.5 80 44.3 81

successes 76 78 80

average time 13.2 17.5 18.1

termination % 55 49 51

Table 8.2: Termination strategies involving dependency pairs.

smax ssum sslothrop ssize/age sold

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

BGK94-D8 195.0 112 ∞ 370.4 161 352.2 352 158.8 149

BGK94-D16 45.2 102 117.8 132 ∞ ∞ 152.1 151

BGK94-M8 ∞ 14.6 22 ∞ ∞ ∞
C89-A2 28.1 108 165.6 270 ∞ ∞ 138.8 109

SK90-3.07 86.2 161 ∞ ∞ ∞ ∞
SK90-3.22 ∞ ∞ ∞ 25.0 99 ∞
TPTP-GRP490-1 130.9 218 ∞ 564.0 182 ∞ ∞
WSW06-CGE3 46.8 49 439.1 325 232.0 87 138.2 136 132.0 85

successes 79 68 68 71 68

average time 22.6 31.2 61.8 52.8 35.7

Table 8.3: Different selection strategies.

152

8.3 Experiments

none PCP CCP MCP

(1) (1) (2) (1) (2) (1) (2)

BGK94-D12 78.4 ∞ 23.6 24 23.1 38

C89-A3 96.3 73.7 24 93.5 24 76.4 54

TPTP-GRP457-1 7.9 2.8 17 4.8 29 4.0 33

TPTP-GRP484-1 343.6 53.0 35 111.2 76 105.1 80

TPTP-GRP490-1 ∞ 130.8 67 80.0 155 90.4 174

TPTP-GRP496-1 80.3 77.4 60 65.3 100 64.8 104

WSW06-CGE3 44.0 45.2 14 44.8 29 44.8 29

successes 79 78 80 80

average time 21.6 23.5 18.7 18.4

redundant CPs 834 1529 1605

time to check 5.1 32.7 28.4

Table 8.4: Different critical pair criteria.

critical pairs for the successful process and columns (3) the total number of
created nodes.

We found a single system, TPTP-GRP490-1, which could only be completed
when using PCP, CCP or MCP. For a number of systems the use of critical
pair criteria results in a considerably smaller number of nodes and consequently
some speedup, as in the cases of C89-A3, TPTP-GRP457-1 or TPTP-GRP496-
1. This is also reflected in the reduced average time for completion with CCP
and MCP. However, there are also examples such as BGK94-D12 which can
no longer be completed when using PCP (although CCP and MCP work), and
examples such as TPTP-GRP484-1 where a less powerful criterion results in less
control loop iterations and thus, a shorter completion time. In these cases the
selection strategy smax seems to be influenced by the critical pair criterion in
an unfortunate way: the effect of critical pair criteria for a certain system was
generally found to depend on the selection strategy. When comparing the three
criteria, it turns out that PCP detects the least number of critical pairs, but
performs redundancy checks very fast (see the bottom line). When summing up
all critical pairs filtered out for successful processes, CCP is twice as effective as
PCP. The criterion BCP is a little less effective than PCP, relevant results can
be obtained from the website. Overall MCP turned out to be most beneficial.

Term Indexing

Table 8.5 compares the term indexing techniques implemented in mkbTT to
retrieve variants and encompassments. Here nv abbreviates naive filtering of
the node database, pi refers to path indexing, dt refers to discrimination trees
and ct to code trees. Columns (1) list the time required for completion while
columns (2) and (3) give the percentage of time spent on retrieval and rewrite

153

8 Implementation and Experiments

nv pi dt ct

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

BGK94-D8 173.9 6 19 180.8 3 21 160.1 1 15 151.8 1 13

C89-A2 29.3 6 17 29.6 4 16 27.5 1 12 25.5 1 11

SK90-3.07 48.6 13 33 50.8 6 33 44.4 2 26 40.8 1 24

TPTP-GRP481-1 40.7 12 36 42.0 7 42 34.8 2 33 32.9 1 28

successes 79 79 79 79

average time 21.1 21.1 19.0 17.9

time/retrieval 104.8 51.5 11.5 6.8

time/maintenance 0.8 1.2 0.8 0.5

Table 8.5: Different term indexing techniques.

operations, respectively. While all indexing techniques allow to complete the
same number of systems, the time consumed by retrieval operations can be
reduced significantly when using discrimination trees or code trees. Table 8.5
singles out some examples where the gain is especially significant. When com-
paring the time required for rewrite steps, discrimination trees fall back behind
code trees since the retrieved candidate nodes still have to be checked for sub-
suming the query term. This is not required when using a technique achieving
perfect filtering such as code trees.

The bottom lines sum up indexing-related computation times over the whole
database. It turns out that the retrieval time can be reduced by more than 90%
using discrimination trees or code trees. As expected, maintenance operations
such as insertion and removal consume hardly any time.

Concerning the retrieval of unifiable terms in deduce operations, the use of
term indexing techniques turned out to be less influential. Compared to naive
filtering, discrimination trees decrease the average share of time spent on re-
trieval from 1% to 0.3%.

Isomorphisms

Isomorphism checks can be performed either only on process splits, or repeat-
edly for every process pair. Table 8.6 compares both possibilities for renamings
(ren) and argument permutations (ap) with the setting where no isomorphism
checks are used (a + indicates repeated checks). The setting auto refers to
mkbTT’s default strategy, which determines at the beginning of a completion
run whether the initial equations allow for a nontrivial renaming or argument
permutation. In this case repeated checks are performed throughout the de-
duction. Columns (1) give the time required for completion in seconds, and
columns (2) the number of processes emerging in the course of a run.

Renaming checks, especially when performed repeatedly, turned out to be
useful for a number of problems, in particular the CGE systems. Also for some
string systems like SK90-3.28 and SK90-3.29, and TPTP-GRP011-4 the number

154

8.3 Experiments

none ren ren+ ap auto

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

C89-A3 64.8 174 65.6 174 77.1 161 65.4 174 77.4 161

SK90-3.02 0.1 7 0.1 7 0.1 7 0.1 3 0.1 7

SK90-3.28 101.7 499 102.8 499 157.6 385 102.4 499 156.3 385

SK90-3.29 3.5 128 2.6 97 3.0 73 3.5 128 3.0 73

TPTP-GRP011-4 3.0 13 1.8 6 1.8 6 3.0 13 1.8 6

WSW06-CGE2 37.7 50 37.6 50 7.0 11 37.5 50 7.0 11

WSW06-CGE3 175.1 163 176.6 163 46.0 35 176.8 163 46.0 35

successes 80 80 80 80 80

average time 18.3 18.3 23.1 18.3 17.8

Table 8.6: Different isomorphisms.

of processes could be reduced, although this does not always result in faster
completions due to the time required for checking. Argument permutations
were useful for just two small systems in the benchmark set, one of which is
SK90-3.02 where the number of processes could be halved, and repeated checks
did not turn out to be useful at all.

On the other hand, especially repeated checks for isomorphisms can be costly
if no isomorphic process pairs appear. This is for example the case for SK90-3.28
and the CGE systems when used with argument permutations. Overall the auto
setting prevails concerning number of successes and average time, although the
heuristic does not always go for the best choice.

Novel Completions

While Slothrop was the first completion tool to handle CGE2 (in more than
200 seconds), mkbTT can also complete the systems CGE3, CGE4 and CGE5

describing the theory of 3, 4 and 5 commuting group endomorphisms within
18, 145 and 35796 seconds, respectively (when using repeated isomorphism
checks and decreasing the number of processes by using the -kp option). Our
tool also produced the first convergent TRS for the proof reduction system
WS06-proofreduct presented in [106].

Comparison with Other Tools

We now compare mkbTT with Maxcomp [56], Slothrop [107], and KBCV [98]. To
this end we used the extension of our previous test set, which is available from
the Maxcomp website and comprises 115 problems. In the following tables, the
prefix KH11 marks systems stemming from [56].

Table 8.7 compares mkbTT with other implementations of completion with
termination tools, namely Slothrop and KBCV. The table lists the time required
for a successful completion in seconds. The last two lines give the number

155

8 Implementation and Experiments

mkbTT Slothrop KBCV

BGK94-M12 ∞ 38.8 6.0

SK90-3.26 ∞ ∞ 20.9

SK90-3.28 223.8 436.6 ∞
TPTP-GRP454-1 9.6 ∞ 6.2

WS06-proofreduct 237.9 208.2 ∞
WSW06-equiv-proofs 7.3 33.5 ∞
successes 87 76 87

average time 40.1 28.2 11.1

Table 8.7: Comparing mkbTT with Slothrop and KBCV.

mkbTT Maxcomp CC

standard LPO KBO LPO KBO LPO KBO

BGK94-D10 123.4 97.2 69.2 0.6 ∞ 2.2 ∞
BGK94-D16 128.0 304.8 53.3 34.0 ∞ 3.6 ∞
OKW95-dt1 3.1 2.0 ∞ 40.8 ∞ 0.03 ∞
SK90-3.22 ∞ ∞ ∞ 3.2 5.7 ∞ 1.6

WS06-proofreduct 237.9 ∞ ∞ ⊥ ∞ ∞ ∞
WSW06-equiv-proofs 7.3 ⊥ ⊥ ∞ ∞ ∞ ∞
successes 87 75 72 86 69 84 56

average time 40.1 19.1 30.2 3.6 8.6 1.0 3.6

Table 8.8: Comparison of mkbTT, Maxcomp, and CC.

of successes and the average time required to compute a convergent system,
respectively. Note that for this comparison the Slothrop code was incorporated
into mkbTT such that the same termination backend can be used. Overall,
mkbTT solves about 15% more problems than Slothrop. Nevertheless, due to
different selection strategies which are favorable for different problems there
are also examples where Slothrop can produce a convergent system but our tool
(with its default strategy) cannot, such as the system BGK94-M12. The tool
KBCV is based upon completion with termination tools as presented in [107],
but does not feature multi-completion. It is more successful than mkbTT for
some problems such as BGK94-M12 where mkbTT has to keep track of many
processes. On the other hand, it does, e.g., not succeed in case of the CGE
systems where mkbTT gains efficiency from the use of isomorphisms.

Table 8.8 compares with Maxcomp [56] and CC. Even with its more complex
standard termination strategy, mkbTT can complete only one problem more
than Maxcomp, although Maxcomp of course fails on problems like WSW06-
equiv-proofs, WS06-proofreduct, or also the CGE problems which cannot be com-

156

8.3 Experiments

mkbTT Maxcomp with LPO Maxcomp with KBO

successes 1109 821 812

Table 8.9: Comparison of mkbTT and Maxcomp on a subset of TPDB.

pleted using plain LPO or KBO. Also, Maxcomp is decidedly more efficient. The
tool CC yields similar results as Maxcomp, although it turned out to be a bit
less efficient, lagging two successes behind.

The difference between mkbTT and Maxcomp grows when a benchmark set
requiring more sophisticated termination techniques is considered, as shown in
Table 8.9. Here the 3061 problems in TPDB version 7 were considered which
are not already confluent and could be completed by at least one of the tools
within 600 seconds.

8.3.2 Ordered Completion

As testbed we used 138 equational systems which comprise the 115 systems
used for standard completion, plus all theories underlying TPTP [100] unit
equality problems, plus examples collected from the literature [6, 44, 78]. All
experiments described in the following tables featured a timeout of 600 sec-
onds. If a successful completion could not be achieved within that period this
is marked by ∞, whereas ⊥ indicates failure. If not stated otherwise we used
the following default settings of mkbTT: We interface TTT2 internally with a
termination timeout of two seconds and strategies which guarantee total termi-
nation. Apart from the termination strategy we use the same default settings
as for standard completion.

Table 8.10 gives an overview of results obtained with different termination
strategies. The first three strategies apply plain LPO and KBO (with weights
of two bits), and transfinite KBO. Besides plain reduction orders, we also ex-
perimented with termination strategies combining multiple techniques. The
strategy lpo + kbo iteratively removes rules using LPO and KBO in parallel,
and total additionally applies linear polynomial interpretations. Columns (1)
show the time required for completion and columns (2) the percentage of time
spent on termination.

We briefly comment on some issues that seem noteworthy. Again some prob-
lems such as TPTP-GRP445-1 cannot be completed with LPO, but any strategy
involving KBO works. For others such as KH11-fib KBO fails (or requires much
more time, as in KH11-rl-theory) but any strategy with LPO works. The com-
bined strategies are obviously more likely to succeed in both cases, and are hence
most powerful. Nevertheless there are also problems like TPTP-GRP487-1 where
LPO and KBO succeed, but total does not, presumably since the combined
strategy gives rise to an enlarged search space resulting in an increased number
of processes and hence worse performance. One problem (Example 5.44) could
only be solved with the total strategy and tkbo, whereas for TPTP-GRP452-
1 only tkbo was successful. As was to be expected, these total termination

157

8 Implementation and Experiments

lpo kbo tkbo lpo + kbo total

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

KH11-fib 1.8 86 ∞ ∞ 2.6 90 15.7 98

KH11-rl-theory 4.3 16 244.9 2 293.2 17 4.5 51 10.5 79

TPTP-GRP445-1 ∞ 5.8 14 11.4 55 5.5 28 11.7 67

TPTP-GRP452-1 ∞ ∞ 192.1 30 ∞ ∞
TPTP-GRP487-1 59.5 7 80.7 24 ∞ 95.0 35 ∞
Example 5.44 ∞ ∞ 0.2 64 ∞ 0.1

WSW06-CGE3 ∞ ∞ ∞ ∞ ∞
successes 89 88 81 96 90

average time 13.4 20.9 17.1 22.4 27.1

termination % 12 16 57 30 83

Table 8.10: Ordered completion using different termination strategies.

mkbTT CC

lpo kbo lpo kbo

successes 89 88 55 47

average time 13.4 18.5 2 6.6

Table 8.11: Ordered completion with mkbTT and CC.

techniques are too weak to complete problems such as WSW06-CGE3.

Table 8.12 shows theorem proving results obtained with mkbTT. Examples
stem from the unit equality division of TPTP 3.6.0 [100]. The test set e consists
of 215 problems rated easy, d contains 565 problems classified as difficult. The
columns list (1) the number of successes, (2) the average time for a successful
run in seconds (given a timeout of 600 seconds), and (3) the percentage of time
spent on termination checks. Both Waldmeister [72] and E [92] solve about 200
problems in e and more than 400 of the d set.

total kbo lpo dp+lpo

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

e 149 43.9 82 163 16.6 8 164 24.3 14 138 49.9 80
d 116 66.0 64 148 64.8 4 152 50.6 6 121 55.0 17

Table 8.12: Performance of mkbTT on TPTP UEQ problems.

158

8.3 Experiments

mkbTT CiME
AC AG auto

(1) (2) (1) (2) (1) (2) (1)

G94-abelian groups (AG) 1.6 77 0.1 5 0.1 5 0.05
AG + homomorphism 181.7 928 4.8 104 4.8 104 0.05

LS96-G0 1.9 82 0.1 8 0.1 8 ?
LS96-G1 ∞ 12.4 49 12.5 49 ?
G94-arithmetic 14.9 503 – 13.8 483 ?
G94-AC-ring with unit 22.9 501 7.2 301 0.1 9 0.1
MU04-binary arithmetic 2.9 199 – 3.0 185 ?
MU04-ternary arithmetic 18.1 816 – 17.3 781 ?
Example 6.47 0.3 26 – 0.3 26 ?
Example 6.59 ∞ 15.4 486 15.2 486 ?
Example 6.60 ∞ 216.7 457 145.1 400 ?
G94-semiring 3.3 209 – 3.5 193 0.1
K00-sum 1.4 4 – 1.4 4 ?

completed systems 10 7 13 4

Table 8.13: Normalized completion with mkbTT.

8.3.3 Normalized Completion

Normalized completion experiments with mkbTT were run on problems col-
lected from the literature. The prefixes attached to problems indicate their
source: G94 refers to [40] and MU04 refers to [77], LS96 is associated with finite
group representations in [71], and K00 refers to [64].

In Table 8.13 we compare mkbTT results with CiME [28]. In the first two
settings for mkbTT, the theory T was chosen to be AC and the theory of abelian
groups (AG), respectively, whereas automatic theory detection was applied for
the last setting. Termination checks were done with MuTerm [1], and the pri-
mality critical pair criterion was used. The global timeout and the timeout for
each termination check were set to 300 and 2 seconds, respectively. Columns (1)
list the total time in seconds while columns (2) give the number of nodes cre-
ated during the run. The symbol ∞ marks a timeout, and – indicates that the
theory is not applicable. In line with [75], we observed that completion with
respect to larger theories T is typically more efficient, although completion
modulo ACU yields only slight improvements compared to AC. As expected,
CiME is much faster if an appropriate reduction order is supplied as input. But
as already mentioned, such a reduction order is hard to determine in advance,
and in some cases no usable AC-RPO or polynomial interpretation exists. This
is e.g. the case for commuting group actions (cf. Example 6.59, where mkbTT
is able to find an ACU-convergent system in a bit more than one hour. In case
of a system decribing commuting ring homomorphisms (cf. Example 6.59), our
tool succeeds using normalized completion modulo group theory/ring theory in
216.7/145.1 seconds producing 457/400 nodes, respectively.

Concerning critical pair criteria, we found that the primality criterion de-

159

8 Implementation and Experiments

creased the total number of nodes by nearly 40%, which reduces the compu-
tation time by about 25%. S-reducibility does not filter out any critical pairs
if completion modulo ACU is performed. For normalized completion modulo
group theory, very few redundant critical pairs are detected. The connected-
ness criterion was found to be comparatively expensive, and also the combined
criterion could not achieve the same performance gain as the simpler primality
criterion due to the additional effort of testing the criterion.

160

Chapter 9

Conclusion

This thesis explored fully automatic procedures for variants of Knuth-Bendix
completion. To this end two complementary approaches were discussed:

(1) Multi-completion with termination tools is based upon a classical inference
system but develops a reduction order en route using a termination prover.
It keeps track of multiple branches of the search tree in parallel and shares
inferences to gain efficiency.

(2) Completion-like procedures based on the constrained equality framework
phrase a completion process as a maximal satisfiability problem.

We summarize our findings and contributions for each of the discussed com-
pletion methods.

For standard completion, a combined approach of multi-completion and the
use of termination tools was presented in Chapter 4. Isomorphisms were pro-
posed as a means to detect superfluous processes and hence, restrict the search
tree, and critical pair criteria as a means to confine the number of equational
consequences. Multi-completion with termination tools was implemented in the
tool mkbTT. Our experiments (see Chapter 8) proved mkbTT to be competitive
with other state-of-the-art tools, and gave rise to several novel completions. We
also evaluated the usefulness of isomorphisms, critical pair criteria, term index-
ing techniques, and selection strategies.

A completion procedure based on the constrained equality framework was
recalled in Section 7.2. Although already presented in [55], the implementation
in the tool CC was considerably improved. When comparing mkbTT with this
enhanced version of CC both tools could handle about equally many problems.
Problems which require termination power beyond plain reduction orders could
only be handled by mkbTT, since CC is inherently limited to reduction orders for
which orientability can be encoded as a satisfiability problem. But CC turned
out to be more efficient for problems where mkbTT runs into a timeout due
to an unfortunate selection sequence or too many possibilities for orientation.
Judging from our test set, we conclude that for many common input problems
standard reduction orders are actually sufficient.

Ordered completion was discussed in Chapter 5, and its well-known inference
system slightly simplified for finite runs. Critical pair criteria were shown sound
for both settings. Refutational theorem proving results were given as well. We
then discussed how termination tools—instead of fixed reduction orders—can

161

9 Conclusion

be used in ordered completion procedures. We showed that, in contrast to
standard completion, only termination techniques guaranteeing total termina-
tion can be used. Hence the wide variety of termination techniques offered by
modern termination tools can hardly be exploited. Moreover, extended critical
pairs need to be over-approximated. We also covered ordered multi-completion
with termination tools. This approach was implemented in our tool mkbTT
as well, which thus, to the best of our knowledge, constitutes the first ordered
completion tool that does not require the input of a suitable reduction order.

In Section 7.3 we developed an ordered completion procedure based on the
constrained equality framework, which is also covered by CC. Our experiments
comparing mkbTT with CC showed that CC behaves much worse than mkbTT
in the setting of ordered completion. One reason for this difference lies in
the fact that CC includes all equations in critical pair computations whereas
mkbTT includes only unorientable equations. For refutational theorem proving,
mkbTT turned out to lag behind modern equational theorem provers such as
Waldmeister or E. We conclude that for ordered completion the reduction order
has less impact than in standard completion because ordered completion cannot
fail.

Normalized completion—being the most recent and widely applicable ap-
proach for completion modulo theories—was considered in Chapter 6. We re-
visited the entire underlying theory and could improve the central ingredient of
a normalizing pair. We gave detailed completeness and uniqueness proofs, and
verified soundness of critical pair criteria in the setting of normalized comple-
tion. Moreover, correctness of a slightly simplified inference system for finite
runs was proven. We also presented normalized completion and normalized
multi-completion with AC-termination tools. A respective implementation was
added to mkbTT, which hence constitutes the first normalized completion tool
that does not require a reduction order as input. In our experiments we com-
pared mkbTT with CiME and could produce novel completions for several input
problems concerned with algebraic structures. In Section 7.4 we also formalized
a normalized completion procedure based on the constrained equality frame-
work.

As future work, it could be worth investigating whether further equational
reasoning techniques may benefit from the use of termination techniques and/or
multi-completion, e.g., abstract congruence closure methods, different paramod-
ulation calculi and inductive theorem proving procedures.

However, for abstract congruence closure the gain might be limited as a
favorable reduction order can always be determined in advance. Concerning
paramodulation, it seems worth noting that, as for ordered completion, appli-
cable termination techniques are limited to total termination. Moreover, the
order plays a less critical role than, e.g., in standard completion as a wrong
choice does not cause failure. For rewriting induction, the use of termination
tools [3] and a multi-completion like approach tracking multiple contexts [89]
were already investigated.

162

Publications

For completeness all publications emerging from my PhD studies are collected
in the following list (in order of appearance).

– H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Multi-completion
with Termination Tools (System Description). In Proc. of the 4th Interna-
tional Joint Conference on Automated Reasoning (IJCAR 2008), volume
5195 of LNCS, pages 306–312, 2008.

– C. Sternagel, R. Thiemann, S. Winkler, and H. Zankl. CeTA—A Tool
for Certified Termination Analysis. In Proc. of the 10th International
Workshop on Termination (WST 2009), pages 84–87, 2009.

– H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Constraint-Based
Multi-Completion Procedures for Term Rewriting Systems. In IEICE
Transactions on Information and Systems E92-D (2), pages 220–234, 2009

– S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Optimizing mkbTT
(System Description). In Proc. of the 21st International Conference on
Rewriting Techniques and Applications (RTA 2010), LIPIcs 13, pages
373–384, 2010.

– S. Winkler and A. Middeldorp. Termination Tools in Ordered Comple-
tion. In Proc. of the 5th International Joint Conference on Automated
Reasoning (IJCAR 2010), volume 6173 of LNCS, pages 518–532, 2010.

– S. Winkler and A. Middeldorp. AC Completion with Termination Tools.
In Proc. of the 23rd International Conference on Automated Deduction
(CADE-23), volume 6803 of LNCS, pages 492–498, 2011

– H. Zankl, S. Winkler, and A. Middeldorp. Automating Ordinal Inter-
pretations. In Proc. of the 12th International Workshop on Termination
(WST 2012), pages 94–98, 2012.

– S. Winkler, H. Zankl, and A. Middeldorp. Ordinals and Knuth-Bendix
Orders. In Proc. of the 18th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR 2012), volume
7180 of LNCS, pages 420–434, 2012.

– S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Multi-Completion
with Termination Tools. Journal of Automated Reasoning, 2013, to ap-
pear.

163

Bibliography

[1] B. Alarcón, R. Gutiérrez, J. Iborra, and S. Lucas. Proving termination of
context-sensitive rewriting with MU-TERM. In 6th PROLE, volume 188
of ENTCS, pages 105–115, 2007.

[2] B. Alarcón, S. Lucas, and J. Meseguer. A dependency pair framework
for A∨C-termination. In Proc. 8th International Workshop on Rewriting
Logic and its Applications (WRLA 2010), volume 6381 of LNCS, pages
35–51, 2010.

[3] T. Aoto. Rewriting induction using termination checker. In Proc. of
the 24th Annual Meeting of the Japan Society for Software Science and
Technology, pages 61–74, 2007.

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[5] F. Baader and W. Snyder. Unification theory. In Handbook of Automated
Reasoning, pages 445–532. Elsevier, 2001.

[6] L. Bachmair. Canonical Equational Proofs. Progress in Theoretical Com-
puter Science. Birkhäuser, 1991.

[7] L. Bachmair. Associative-commutative reduction orderings. Information
Processing Letters, 43(1):21–27, 1992.

[8] L. Bachmair, T. Chen, and I. Ramakrishnan. Associative-commutative
discrimination nets. In Proc. of the 5th International Joint Conference on
Theory and Practice of Software Development (TAPSOFT 1993), volume
668 of LNCS, pages 61–74, 1993.

[9] L. Bachmair and N. Dershowitz. Critical pair criteria for completion.
Journal of Symbolic Computation, 6(1):1–18, 1988.

[10] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a con-
gruence. Theoretical Computer Science, 67(2-3):173–201, 1989.

[11] L. Bachmair and N. Dershowitz. Equational inference, canonical proofs,
and proof orderings. Journal of the ACM, 41(2):236–276, 1994.

[12] L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational
proofs. In Proc. of the 1st Annual IEEE Symposium on Logic in Computer
Science (LICS 1986), pages 346–357. IEEE Computer Society, 1986.

165

Bibliography

[13] L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without
failure. In H. Aı̈t Kaci and M. Nivat, editors, Resolution of Equations
in Algebraic Structures, volume 2: Rewriting Techniques of Progress in
Theoretical Computer Science, pages 1–30. Academic Press, 1989.

[14] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217–247, 1994.

[15] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodu-
lation. Information and Computation, 121(2):172–192, 1995.

[16] L. Bachmair and D. Plaisted. Termination orderings for associative-
commutative rewriting systems. Journal of Symbolic Computation,
1(4):329–349, 1985.

[17] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure.
Journal of Automated Reasoning, 31(2):129–168, 2003.

[18] T. Baird, G. Peterson, and R. Wilkerson. Complete sets of reductions
modulo associativity, commutativity and identity. In Proc. of the 7th
International Conference on Rewriting Techniques and Applications (RTA
1996), volume 355 of LNCS, pages 29–44, 1989.

[19] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by
polynomial interpretations and its implementation. Science of Computer
Programming, 9(2):137–159, 1987.

[20] M. Bofill, G. Godoy, R. Nieuwenhuis, and A. Rubio. Paramodulation and
Knuth–Bendix completion with nontotal and nonmonotonic orderings.
Journal of Automated Reasoning, 30(1):99–120, 2003.

[21] R. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[22] B. Buchberger. Ein algorithmisches Kriterium fr die Lösbarkeit eines
algebraischen Gleichungssystems. Aequationes mathematicea, 4(3):374–
383, 1970.

[23] R. Bündgen, M. Göbel, and W. Küchlin. A fine-grained parallel comple-
tion procedure. In Proc. of the International Symposium on Symbolic and
Algebraic Computation (ISSAC 1994), pages 269–277, 1994.

[24] G. Butler and D. Lankford. Experiments with computer implementations
of procedures which often derive decision algorithms for the word prob-
lem in abstract algebras. Technical Report MTP-7, Louisiana Technical
University, 1980.

[25] J. Christian. Fast Knuth-Bendix completion: Summary. In Proc. of the
3rd International Conference on Rewriting Techniques and Applications
(RTA 1992), volume 355 of LNCS, pages 551–555, 1989.

166

Bibliography

[26] M. Codish, V. Lagoon, and P. Stuckey. Solving partial order constraints
for LPO termination. Journal of Satisfiability, Boolean Modeling and
Computation, 5:193–215, 2008.

[27] H. Comon, P. Narendran, R. Nieuwenhuis, and M. Rusinowitch. Deciding
the confluence of ordered term rewrite systems. ACM Transactions on
Computational Logic, 4(1):33–55, 2003.

[28] E. Contejean and C. Marché. CiME: Completion modulo E. In Proc. of
the 7th International Conference on Rewriting Techniques and Applica-
tions (RTA 1996), volume 1103 of LNCS, pages 416–419, 1996.

[29] J. Denzinger, M. Kronenburg, and S. Schulz. DISCOUNT – a dis-
tributed and learning equational prover. Journal of Automated Reasoning,
18(1):189–198, 1997.

[30] N. Dershowitz. Orderings for term rewriting systems. Theoretical Com-
puter Science, 17(3):279–301, 1982.

[31] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computa-
tion, 3(1,2):69–116, 1987.

[32] N. Dershowitz, J. Hsiang, A. Josephson, and D. Plaisted. Associative-
commutative rewriting. In Proc. of the 8th International Joint Conference
on Artificial Intelligence (IJCAI 1983), pages 940–944, 1983.

[33] N. Dershowitz, L. Marcus, and A. Tarlecki. Existence, uniqueness, and
construction of rewrite systems. SIAM Journal of Computing, 17:629–639,
1988.

[34] N. Dershowitz and D. Plaisted. Rewriting. In Handbook of Automated
Reasoning, pages 535–610. Elsevier, 2001.

[35] J. Dick, J. Kalmus, and U. Martin. Automating the Knuth-Bendix or-
dering. Acta Informatica, 28:95–119, 1990.

[36] B. Dutertre and L. D. Moura. A fast linear-arithmetic solver for DPLL(T).
In Proc. of the 18th International Conference on Computer Aided Verifi-
cation (CAV 2006), volume 4144 of LNCS, pages 81–94, 2006.

[37] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for
proving termination of term rewriting. Journal of Automated Reasoning,
40(2-3):195–220, 2008.

[38] M. Fay. First order unification in equational theories. In Proc. 4th Work-
shop on Automated Deduction (CADE-4), volume 87 of LNCS, pages 161–
167, 1979.

[39] M. Ferreira and H. Zantema. Total termination of term rewriting. Appli-
cable Algebra in Engineering, Communication and Computing, 7(2):133–
162, 1996.

167

Bibliography

[40] W. Gehrke. Detailed catalogue of canonical term rewrite systems gener-
ated automatically. Technical report, RISC Linz, 1992.

[41] A. Geser. An improved general path order. Applicable Algebra in Engi-
neering, Communication and Computing, 7(6):469–511, 1996.

[42] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In Proc. of the 3rd
International Joint Conference on Automated Reasoning (IJCAR 2006),
volume 4130 of LNAI, pages 281–286, 2006.

[43] G. Godoy and R. Nieuwenhuis. Paramodulation with built-in abelian
groups. In Proc. of the 15th Annual IEEE Symposium on Logic in Com-
puter Science (LICS 2000), pages 413–424. IEEE Computer Society, 2000.

[44] J. Hsiang and M. Rusinowitch. On word problems in equational theories.
Technical report, INRIA Lorraine, 1987. Unpublished manuscript.

[45] G. Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

[46] G. Huet. A complete proof of correctness of the Knuth-Bendix completion
algorithm. Journal of Computer and System Sciences, 23(1):11–21, 1981.

[47] J.-P. Jouannaud. Confluent and coherent equational term rewriting sys-
tems: Application to proofs in abstract data types. In Proc. of the 8th
Colloquium on Trees in Algebra and Programming (CAAP 1983), vol-
ume 59 of LNCS, pages 269–283, 1983.

[48] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a
set of equations. SIAM Journal of Computation, 15(4):1155–1194, 1986.

[49] J.-P. Jouannaud and C. Marché. Termination and completion modulo
associativity, commutativity and identity. Theoretical Computer Science,
104(1):29–51, 1992.

[50] S. Kamin and J. Lévy. Two generalizations of the recursive path ordering.
Unpublished manuscript, University of Illinois, 1980.

[51] D. Kapur, D. Musser, and P. Narendran. Only prime superpositions need
be considered in the Knuth-Bendix completion procedure. Journal of
Symbolic Computation, 6(1):19–36, 1988.

[52] D. Kapur, P. Narendran, and F. Otto. On ground-confluence of term
rewriting systems. Information and Computation, 86(1):14–31, 1990.

[53] D. Kapur, G. Sivakumar, and H. Zhang. A new method for proving
termination of AC-rewrite systems. In Proc. of the 10th Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 1990), volume 472 of LNCS, pages 133–148, 1990.

168

Bibliography

[54] C. Kirchner and H. Kirchner. Constrained equational reasoning. In Proc.
of the International Symposium on Symbolic and Algebraic Computation
(ISSAC 1989), pages 382–389, 1989.

[55] D. Klein. Equational Reasoning and Completion. PhD thesis, Japan
Advanced Institute of Science and Technology, 2012.

[56] D. Klein and N. Hirokawa. Maximal completion (system description). In
Proc. of the 22nd International Conference on Rewriting Techniques and
Applications (RTA 2011), volume 10 of LIPIcs, pages 71–80, 2011.

[57] D. Knuth and P. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages
263–297. Pergamon Press, 1970.

[58] H. Koike and Y. Toyama. Inductionless induction and rewriting induction.
Computer Software, 17(6):1–12, 2000. In Japanese.

[59] K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-
Bendix order. Information and Computation, 183(2):165–186, 2003.

[60] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termina-
tion tool 2. In Proc. of the 20th International Conference on Rewriting
Techniques and Applications (RTA 2009), volume 5595 of LNCS, pages
295–304, 2009.

[61] W. Küchlin. A confluence criterion based on the generalised Newman
lemma. In Proc. of the 2nd European Conference on Computer Algebra
(EUROCAL 1983), volume 204 of LNCS, pages 390–399, 1985.

[62] M. Kurihara and H. Kondo. Completion for multiple reduction orderings.
Journal of Automated Reasoning, 23(1):25–42, 1999.

[63] M. Kurihara and H. Kondo. Efficient BDD encodings for partial order
constraints with application to expert systems in software verification. In
Proc. of the 17th International Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Expert Systems (IEA/AIE
2004), volume 3029 of LNAI, pages 827–837, 2004.

[64] K. Kusakari. AC-Termination and Dependency Pairs of Term Rewriting
Systems. PhD thesis, Japan Advanced Institute of Science and Technol-
ogy, 2000.

[65] D. Lankford and A. Ballantyne. Decision procedures for simple equa-
tional theories with associative-commutative axioms: Complete sets of
associative-commutative reductions. Technical Report ATP-39, Univer-
sity of Texas, 1977.

[66] D. Lankford and A. Ballantyne. Decision procedures for simple equa-
tional theories with commutative axioms: Complete sets of commutative
reductions. Technical Report ATP-35, University of Texas, 1977.

169

Bibliography

[67] D. Lankford and A. Ballantyne. Decision procedures for simple equa-
tional theories with permutative axioms: Canonical sets of permutative
reductions. Technical Report ATP-37, University of Texas, 1977.

[68] P. Le Chenadec. Canonical forms in finitely presented algebras. Pitman,
1986.

[69] I. Lepper. Derivation lengths and order types of Knuth-Bendix orders.
Theoretical Computer Science, 269(1-2):433–450, 2001.

[70] P. Lescanne. REVE: A rewrite rule laboratory. In Proc. of the 4th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS
1987), volume 247 of LNCS, pages 482–483, 1987.

[71] S. Linton and D. Shand. Some group theoretic examples with completion
theorem provers. Journal of Automated Reasoning, 17(2):145–169, 1996.

[72] B. Löchner and T. Hillenbrand. A phytography of Waldmeister. AI
Communications, 15(2,3):127–133, 2002.

[73] C. Marché. Réécriture modulo une théorie présentée par un système
convergent et décidabilité du problème du mot dans certaines classes de
théories équationnelles. PhD thesis, Université Paris-Sud, 1993.

[74] C. Marché. Normalised rewriting and normalised completion. In Proc. of
the 9th Annual IEEE Symposium on Logic in Computer Science (LICS
1994), pages 394–403. IEEE Computer Society, 1994.

[75] C. Marché. Normalized rewriting: An alternative to rewriting modulo a
set of equations. Journal of Symbolic Computation, 21(3):253–288, 1996.

[76] C. Marché. Normalized rewriting: An unified view of Knuth-Bendix com-
pletion and Gröbner bases computation. In Symbolic Rewriting Tech-
niques, volume 15 of Progress in Computer Science and Applied Logic,
pages 193–208. Birkhäuser, 1998.

[77] C. Marché and X. Urbain. Modular and incremental proofs of AC-
termination. Journal of Symbolic Computation, 38(1):873–897, 2004.

[78] U. Martin and T. Nipkow. Ordered rewriting and confluence. In Proc. of
the 10th International Conference on Automated Deduction (CADE-10),
volume 449 of LNCS, pages 366–380, 1990.

[79] W. McCune. Experiments with discrimination-tree indexing and path
indexing for term retrieval. Journal of Automated Reasoning, 9(2):147–
167, 1992.

[80] Y. Métivier. About the rewriting systems produced by the Knuth-Bendix
completion algorithm. Information Processing Letters, 16(1):31–34, 1983.

[81] A. Middeldorp and H. Zantema. Simple termination of rewrite systems.
Theoretical Computer Science, 175(1):127–158, 1997.

170

Bibliography

[82] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving.
In Handbook of Automated Reasoning, pages 371–443. Elsevier, 2001.

[83] G. Peterson and M. Stickel. Complete sets of reductions for some equa-
tional theories. Journal of the ACM, 28(2):233–264, 1981.

[84] D. Plaisted. Equational reasoning and term rewriting systems. In Hand-
book of logic in artificial intelligence and logic programming, volume 1,
pages 274–364. Oxford University Press, 1993.

[85] D. Plaisted and A. Sattler-Klein. Proof lengths for equational completion.
Information and Computation, 125(2):154–170, 1996.

[86] U. Reddy. Term rewriting induction. In Proc. of the 10th International
Conference on Automated Deduction (CADE-10), volume 449 of LNCS,
pages 162–177, 1990.

[87] A. Rubio. A fully syntactic AC-RPO. Information and Computation,
178(2):515–533, 2002.

[88] A. Rubio and R. Nieuwenhuis. A total AC-compatible ordering based on
RPO. Theoretical Computer Science, 142(2):209–227, 1995.

[89] H. Sato and M. Kurihara. Multi-context rewriting induction with termi-
nation checkers. IEICE Transactions, 93-D(5):942–952, 2010.

[90] H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Multi-completion
with termination tools (system description). In Proc. of the 4th Interna-
tional Joint Conference on Automated Reasoning (IJCAR 2008), volume
5195 of LNAI, pages 306–312, 2008.

[91] A. Sattler-Klein. About changing the ordering during Knuth-Bendix com-
pletion. In Proc. of the 11th International Symposium on Theoretical As-
pects of Computer Science (STACS 1994), volume 775 of LNCS, pages
175–186, 1994.

[92] S. Schulz. The E Equational Theorem Prover, 2009. Available from
http:// www.eprover.org.

[93] R. Sekar, I. V. Ramakrishnan, and A. Voronkov. Term indexing. In
Handbook of Automated Reasoning, pages 1853–1964. Elsevier, 2001.

[94] J. Steinbach. AC-termination of rewrite systems: A modified Knuth-
Bendix ordering. In Proc. of the 2nd Conference on Algebraic and Logic
Programming (ALP 1990), pages 372–386, 1990.

[95] J. Steinbach and U. Kühler. Check your ordering – termination proofs and
open problems. Technical Report SR-90-25, Universität Kaiserslautern,
1990.

[96] J. Steinbach and M. Zehnter. Vademecum of polynomial orderings. Tech-
nical Report SR-90-03, Universität Kaiserslautern, 1990.

171

http://
www.eprover.org

Bibliography

[97] T. Sternagel, R. Thiemann, H. Zankl, and C. Sternagel. Recording com-
pletion for finding and certifying proofs in equational logic. In Proc. of
the 1st International Workshop on Confluence (IWC 2012), pages 31–36,
2012.

[98] T. Sternagel and H. Zankl. KBCV - Knuth-Bendix completion visual-
izer. In Proc. of the 5th International Joint Conference on Automated
Reasoning (IJCAR 2012), volume 7364 of LNCS, pages 530–536, 2012.

[99] A. Stump and B. Löchner. Knuth-Bendix completion of theories of com-
muting group endomorphisms. Information Processing Letters, 98(5):195–
198, 2006.

[100] G. Sutcliffe. The TPTP problem library and associated infrastructure:
The FOF and CNF parts, v3.5.0. Journal of Automated Reasoning,
43(4):337–362, 2009.

[101] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, 2003.

[102] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Proc. of the 22nd International Conference on Theorem Proving
in Higher-Order Logics, volume 5674 of LNCS, pages 452–468, 2009.

[103] A. Voronkov. The anatomy of Vampire. Journal of Automated Reasoning,
15(2):237–265, 1995.

[104] A. Voronkov. Algorithms, datastructures, and other issues in efficient
automated deduction. In Proc. of the 1st International Joint Conference
on Automated Reasoning (IJCAR 2001), volume 2083 of LNCS, pages
13–28, 2001.

[105] U. Waldmann. Cancellative abelian monoids and related structures in
refutational theorem proving (parts I and II). Journal of Symbolic Com-
putation, 33(6):777–861, 2002.

[106] I. Wehrman and A. Stump. Mining propositional simplification proofs
for small validating clauses. In Proc. of the 3rd Workshop on Pragmatics
of Decision Procedures in Automated Reasoning (PDPAR 2005), volume
144 of ENTCS, pages 79–91, 2005.

[107] I. Wehrman, A. Stump, and E. Westbrook. Slothrop: Knuth-Bendix
completion with a modern termination checker. In Proc. of the 17th In-
ternational Conference on Rewriting Techniques and Applications (RTA
2006), volume 4098 of LNCS, pages 287–296, 2006.

[108] A. Weiermann. Termination proofs for term rewriting systems by lexico-
graphic path orderings imply multiply recursive derivation lengths. The-
oretical Computer Science, 139(1-2):355–362, 1995.

172

Bibliography

[109] F. Winkler. Reducing the complexity of the Knuth-Bendix completion-
algorithm: A “unification” of different approaches. In Proc. of the 2nd
European Conference on Computer Algebra (EUROCAL 1983), volume
204 of LNCS, pages 378–389, 1985.

[110] S. Winkler and A. Middeldorp. Termination tools in ordered comple-
tion. In Proc. of the 6th International Joint Conference on Automated
Reasoning (IJCAR 2010), volume 6173 of LNAI, pages 518–532, 2010.

[111] S. Winkler and A. Middeldorp. AC completion with termination tools.
In Proc. of the 23rd International Conference on Automated Deduction
(CADE-23), volume 6803 of LNAI, pages 492–498, 2011.

[112] S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Multi-completion
with termination tools. Journal of Automated Reasoning, 2013. Accepted
for publication. Available from the mkbTT website.

[113] S. Winkler, H. Zankl, and A. Middeldorp. Ordinals and Knuth-Bendix
orders. In Proc. of the 18th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR 2012), volume
7180 of LNCS, pages 420–434, 2012.

[114] H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. Journal
of Automated Reasoning, 43(2):173–201, 2009.

[115] H. Zankl and A. Middeldorp. Satisfying KBO constraints. In Proc. of the
18th International Conference on Rewriting Techniques and Applications
(RTA 2007), volume 4533 of LNCS, pages 389–403, 2007.

173

Index

(Θ,Ψ), 97
(Θgen,Ψgen), 98
>lex, ∼lex, 6
>mul, ∼mul, 7
C[n, i], C[N, i], 48
E[n, i], E[N, i], 38, 48
Nω, 39
R[n, i], R[N, i], 38, 48
[α]A(t), 7
BCP(E ,R), 34
BCPAC(E ,R), 114
BCP�(E ,R), 82
C 	R, 129
CCP(E ,R), 32
CCPL(E ,R), 112
CCP�(E ,R), 80
CJRK, 129
CP(R), CP(R1,R2), 6
CPC(E ,R), 32
CPCm, 63
FC , FD, 6
CPT (R), CPT (R1,R2), 12
CP�(E ∪ R), 70
E>, 129
Es≈t, 76
Eω, 18
EXTT (R), 12
FAC, 12
PosF (t), 5
MCP(E ,R), 35
MCPL(E ,R), 115
MCP�(E ,R), 82
PCP(E ,R), 33
PCPAC(E ,R), 114
PCP�(E ,R), 82
P(N), 48
Pos(t), 5
Re, 13

Rω, 18
SCPL(E ,R), 113
SKB(C), 131
SN(C), 135
SO(C), 133
SRI(C), 138
PosV(t), 5
WCP(E ,R), 35
WCPAC(E ,R), 115
WCP�(E ,R), 82
∼=θ, 65
←o→, 6, 12
↔∗T , 6
·D, ·B , 5
·DAC, ·BAC, 12
�R\S , 94
C↓R, 129
C�R\S , 135
⇒, 11
⇒�KB, 20
⇒�,nKB , 31
⇒�NKB, 95
⇒�,nNKB, 110
⇒=, 11
⇒�oKB, 70
⇒�,noKB, 78
root(t), 5
←×→, 6, 12
�� , 11
��KB , 20
��nKB , 31
��NKB , 95
��nNKB , 110
��oKB , 70
��noKB , 78
D, B, 5
DAC, BAC , 12
→R,T , 11

175

Index

→R/T , 11

→R\S , 94

↓R, 6

→∗R, 6

→+
R, 6

→!
R, 6

KB, 21

KB′, 30

KBtt, 45

MKB′, 38, 43

MKBtt, 49

MNKBtt, 119

NKB, 99

AC, 109

NKB′, 110

NKBtt, 116

CC, 146

mkbTT, 141

oKB, 71

oKB′, 78

oKBtt, 84

oMKB, 83

oMKBtt, 88

AC-RPO, 14, 13–16

algebra, 7

ancestors, 55

canonical, 6

S-, 105

CES, 128

confluence, 6

constrained equality, 128

constructor symbols, 6

contraction rule, 18

convergence, 6

S-, 95, 105

ground, 70

modulo T , 11

conversion, 6

critical pair, 6

extended, 70

modulo T , 12

critical pair criteria, 32–35, 80–82,
112–115

S-reducibility, 113

MKBtt, 63

compositeness, 32, 80, 112
connectedness, 34, 82, 114
experiments, 151
primality, 33, 82, 114
unblockedness, 34, 82, 114

Critical Pair Lemma, 22, 72
AC, 95
Extended, 72

defined symbols, 6

encompassment, 5
equational proof, 10, 10–11
equational system, see ES
ES, 5
eventual simplification, 60
expansion rule, 18
extended rule, 12
extended rules

AC, 13

fairness
KB, 24
MKB, 41
MKBtt, 55
NKB, 100
oKB, 73
oMKB, 83
strong, 61
sufficient

oKBtt, 86
oMKBtt, 92

goal, 75

inductive consequence, 138
inference sequence

equational, 18
inference system

equational, 18–20
isomorphism, 65, 64–67

experiments, 154

joinability, 6

KBO, 9, 9–10

lexicographic combination, 6
LPO, 8, 8–9

176

Index

multiset extension, 7

node
MKB, 37
MKBtt, 48
projection

MKB, 38
MKBtt, 48

normalized rewriting, 94
normalizing pair, 97

ACU, 107
Abelian groups, 108
commutative rings, 108
general, 98

orientable instances, 70
overlap, 6

extended, 70
modulo T , 12

Persistence Lemma, 19
predecessor, 52
process, 47
projected run, 55
proof

order, 11
reduction relation, 11, 20, 31,

71, 79, 95, 111

reduced, 6
S-, 105

reduction order, 7, 6–10
T -compatible, 11
completable, 69
complete, 69
ground-total, 7

rewrite proof, 11
rewrite relation, 6

selection strategies, 143
experiments, 151

signature, 5
simplification order, 7
simplifying, 25, 74
Soundness Lemma, 18
split set, 52
substitution, 5

grounding, 5

instance, 5
symmetrization, 107

property, 108

term, 5
basic, 138
position, 5
subterm, 5

term indexing, 143
experiments, 153

term rewrite system, see TRS
termination, 6

modulo T , 11
modulo AC, 13–16
simple, 7
total, 7

termination constraint, 128
totalizability, 85
transformer, 129
S-, 135
ground, 129
normalized completion, 135
ordered completion, 133
rewriting induction, 138
standard completion, 131

TRS, 5
R0-expandable, 138
quasi-reducible, 138

weight function, 9
well-encodedness, 47

177

	Introduction
	Preliminaries
	Term Rewriting
	Reduction Orders
	Equational Proofs
	Rewriting Modulo a Set of Equalities
	AC Rewriting

	Knuth-Bendix Completion
	Abstract Equational Inference Systems
	Standard Completion
	Finite Runs
	Critical Pair Criteria

	Multi-Completion with Termination Tools
	Multi-Completion
	Completion with Termination Tools
	Multi-Completion with Termination Tools
	Critical Pair Criteria
	Isomorphisms

	Ordered Completion Systems
	Ordered Completion
	Refutational Theorem Proving
	Finite Runs
	Critical Pair Criteria

	Ordered Multi-Completion
	Ordered Completion with Termination Tools
	Ordered Multi-Completion with Termination Tools

	Normalized Completion Systems
	Normalized Completion
	Special Normalizing Pairs
	AC Completion
	Finite Runs
	Critical Pair Criteria

	Normalized Completion with Termination Tools
	Normalized Multi-Completion with Termination Tools

	Constrained Equalities in Completion-like Procedures
	Constrained Equalities
	Standard Completion
	Ordered Completion
	Normalized Completion
	Rewriting Induction

	Implementation and Experiments
	A Multi-Completion Tool
	Implementation
	Usage

	A Constrained Completion Tool
	Automation of the Constrained Equality Framework
	Implementation
	Usage

	Experiments
	Standard Completion
	Ordered Completion
	Normalized Completion

	Conclusion
	Publications
	Bibliography
	Index

