
Encoding Dependency Pair Techniques and
Control Strategies for Maximal Completion?

Haruhiko Sato and Sarah Winkler

Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Japan

Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{haru@complex.ist.hokudai.ac.jp,sarah.winkler@uibk.ac.at}

Abstract. This paper describes two advancements of SAT-based Knuth-
Bendix completion as implemented in Maxcomp. (1) Termination tech-
niques using the dependency pair framework are encoded as satisfiability
problems, including dependency graph and reduction pair processors. (2)
Instead of relying on pure maximal completion, different SAT-encoded
control strategies are exploited.
Experiments show that these developments let Maxcomp improve over
other automatic completion tools, and produce novel complete systems.

Keywords: term rewriting, completion, SAT encoding, dependency pairs

1 Introduction

Recently, some impressive progress was been achieved by exploiting SAT/SMT
solvers in theorem proving [6]. Maximal completion is a simple yet highly effi-
cient Knuth-Bendix completion approach which relies on MaxSAT solving [5].
It is hence inherently limited to compute complete term rewrite systems (TRSs)
whose termination can be expressed as a SAT problem. The maximal completion
tool Maxcomp restricts to LPO and KBO, which naturally narrows the range of
possible completions. For instance, in the following presentation of CGE2 the last
equation cannot be oriented:

e · x ≈ x f(x · y) ≈ f(x) · f(y) x · (y · z) ≈ (x · y) · z
i(x) · x ≈ e g(x · y) ≈ g(x) · g(y) f(x) · g(y) ≈ g(y) · f(x)

In general, Maxcomp cannot complete CGE problems, which describe commuting
group endomorphisms as occurring in the theory of uninterpreted functions [10].
Another potential limitation of Maxcomp is given by the fact that its exclusive
search strategy is to orient as many equations as possible.

This paper presents two advancements of Maxcomp. (1) Our abstract frame-
work for SMT encodings allows to first switch from a termination problem to
a dependency pair (DP) problem and subsequently apply an arbitrary sequen-
tial combination of dependency pair processors. We give encodings for different

? This research was supported by the Austrian Science Fund project I963.

2 Haruhiko Sato and Sarah Winkler

estimations of the dependency graph (DG), and show how to apply reduction
pair processors in this context. Though encoding termination of a TRS as a sat-
isfiability problem has become common practice, to the best of our knowledge
all previous encodings restrict to a specific reduction order or interpretations
into a particular domain. (2) The original version of Maxcomp always tried to
generate a complete TRS by orienting as many equations as possible. However,
this control strategy is not always optimal to guide the proof search. We de-
vised satisfiability encodings for a number of alternative control strategies, and
compared them experimentally.

Our results show that these enhancements allow Maxcomp to not only com-
plete CGE problems but in general improve over previous automatic completion
tools. Though we described preliminary results on DP encodings in [7], our re-
cent work on control strategies greatly enhanced the tool’s power and scalability.

The remainder of this paper is structured as follows. Section 2 collects some
preliminaries before our encodings for dependency pair techniques are outlined
in Section 3. Section 4 presents the developed control strategies. Some further
implementation issues are described in Section 5, and experimental results are
presented in Section 6.

2 Preliminaries

We assume familiarity with term rewriting [1]. Knuth-Bendix completion aims
to transform an equational system (ES) E0 into a TRS R which is complete
for E0, i.e., terminating, confluent and equivalent to E0. The set of critical pairs
CP(`1 → r1, `2 → r2) denotes all equations `2σ[r1σ]p ≈ r2σ such that p is a
function symbol position in `2, `2|p and `1 are unifiable with mgu σ, and if p = ε
then the two rules are not variants. We write CP(R) for the set of critical pairs
among rules from a TRS R. The relation ↓R denotes →∗R · ∗R←. We also write
(s ≈ t) ↓R for an equation s′ ≈ t′ such that s′ and t′ are some R-normal forms
of s and t, respectively, and mean the natural extension to sets of equations E
when writing E ↓R. For an ES E we write Ẽ to denote the set of all equations
` ≈ r such that ` ≈ r ∈ E ∪ E−1 and `→ r is a valid rewrite rule.

Maximal completion is a simple completion approach based on MaxSAT
solving. For an input ES E0, it tries to compute ΦE0(E0) as follows:

Definition 1. Let E be a fixed ES. For any ES C, ΦE is defined by

ΦE(C) =

{
R if E ∪ CP(R) ⊆ ↓R for some R ∈ R(C)
ΦE(C ∪ S(C)) otherwise

(1)

where R(C) consists of terminating TRSs R such that R ⊆ C̃, and S(C) ⊆↔∗C.

Theorem 1 ([5]). The TRS ΦE0(E0) is complete for E0 if it is defined.

In the maximal completion tool Maxcomp, R(C) is computed by maximizing
the number of satisfied clauses in

∨
s≈t∈C [s > t] ∨ [t > s], subject to the side

constraints implied by the SAT/SMT encoding [· > ·] of some reduction order

Encoding DP Techniques and Control Strategies for Maximal Completion 3

>, and S(C) is a subset of
⋃
R∈R(C) (CP(R) ∪ E0)↓R.

In this paper we use the dependency pair (DP) framework to show termi-
nation of TRSs [4]. A DP problem is a pair of two TRSs (P,R), it is finite if
it does not admit an infinite chain. A DP processor Proc is a function which
maps a DP problem to either a set of DP problems or “no”. It is sound if a DP
problem d is finite whenever Proc(d) = {d1, . . . , dn} and all of di are finite.

For an ES C, let the set of dependency pair candidates DPC(C) be all rules

F (t1, . . . , tn)→ G(u1, . . . , un) such that f(t1, . . . , tn) ≈ r ∈ C̃, r D g(u1, . . . , un)
but ` 6B g(u1, . . . , un), and F,G are fresh function symbols.

3 Encodings

We first illustrate the idea of our encodings by means of a simple example.

Example 1. Suppose one wants to encode termination according to the following
strategy in three stages: first dependency pairs are computed, then two reduction
pair processors based on the reduction pairs (>poly,>poly) and (>lpo,>lpo) are
applied, using monotonic polynomial interpretations and LPO, respectively. Let
[· >poly ·] denote a SAT encoding of >poly, and similar for the other relations.

Suppose that the current set of equations contains a potential rule α : aa→
ba. (To enhance readability we here use string notation and write aa to denote
the term a(a(x)), etc.) Note that this rule gives rise to the dependency pair
β : Aa→ Ba if b is a defined symbol. Rule α gives rise to the following constraints:

S0
α →W 1

α ∧Xdef
a ∧ (Xdef

b → S1
β) (a)

S1
β → [Aa >poly Ba] ∧ (¬[Aa >poly Ba]→ S2

β) (b)

S2
β → [Aa >lpo Ba] ∧ (¬[Aa >lpo Ba]→ S3

β)

W 1
α → [aa >poly ba] ∧ (¬[aa >poly ab]→W 2

α) (c)

W 2
α → [aa >lpo ba]

¬S3
β (d)

Here the boolean variables S0
α,W

1
α, . . . ,W

3
α, S

1
β , . . . , S

3
β express strict/weak ori-

entation of α and β in different proof stages, and Xdef
a , Xdef

b express whether a
and b are defined. The constraint (a) triggers the DP β and “moves” rule α to
the weak component. Constraint (b) expresses that if the DP β is not oriented
it remains to be considered, both for stage 2 and 3. Constraint (c) ensures that
rule α is weakly oriented. Since monotonic polynomial interpretations allow for
rule removal, α can be removed after stage 2 if it was strictly oriented. Finally,
(d) demands that the DP β needs no consideration after stage 3.

The following paragraphs transfer standard notions of the DP framework to
our satisfiability setting.

Definition 2. A DP problem encoding is a tuple D = (S,W, ϕ) consisting of
two sets of boolean variables S = {S`→r | ` → r ∈ P} and W = {W`→r | ` →

4 Haruhiko Sato and Sarah Winkler

r ∈ R} for TRSs P and R, and a formula ϕ. We call an assignment α finite for
a DP problem encoding (S,W, ϕ) if α(ϕ) = > and the DP problem (PSα ,RWα) is
finite, given by the TRSs PSα = {` → r | S`→r ∈ S, α(S`→r) = >} and RWα =
{`→ r |W`→r ∈ W, α(W`→r) = >}.

Definition 3. A DP processor encoding Proc maps a DP problem encoding
D = (S,W, ϕ) to a finite set of DP problem encodings Proc(D) = {D1, . . . ,Dn}.
The encoding Proc is sound if for any D such that Proc(D) = {D1, . . . ,Dn} and
any assignment α that is finite for all Di, it also holds that α is finite for D.

Definition 4. The set of initial variables for an ES C is IC = {I`→r | ` ≈ r ∈
C̃}. For an ES C the initial DP problem encoding is given by DC = (S,W, ϕ)

where S = {S`→r | `→ r ∈ DPC(C)}, W = {W`→r | ` ≈ r ∈ C̃} and

ϕ =
∧

`≈r∈C̃

I`→r →

W`→r ∧Xdef
root(`) ∧

∧
s→t∈DPC(`→r)

Xdef
root(t) → Ss→t


Lemma 1. Let C be an ES. Suppose there is a tree whose nodes are DP problem
encodings satisfying the following conditions:

– The root is the initial DP problem encoding DC.
– For every non-leaf node D with children D1, . . . ,Dn there is a sound processor

encoding Proc such that Proc(D) = {D1, . . . ,Dn}.
Let the leaves be {(Si,Wi, ϕi) | 1 ≤ i ≤ k}. If an assignment α satisfies

k∧
i=1

ϕi ∧
∧

s→t∈Si

¬Ss→t

then the TRS R = {`→ r | ` ≈ r ∈ C̃, α(I`→r) = >} is terminating.

Proof. By induction on the tree structure, α is finite for all nodes. Termination
of R follows from finiteness of α for the root DC . ut

Definition 5 (Reduction pair processor). Let (>,>) be a reduction pair
and π an argument filtering, with satisfiability encodings [· >π ·] and [· >π ·]

A DP problem encoding (S,W, ϕ) is mapped to {(S ′,W ′, ϕ∧TS∧TW)} where
S ′ = {S′`→r | S`→r ∈ S}, W ′ = {W ′`→r |W`→r ∈ W}, and

TS =
∧

S`→r∈S
S`→r → [` >π r] ∧ (¬[` >π r]→ S′`→r)

TW =
∧

W`→r∈W
W`→r →W ′`→r ∧ [` >π r]

Here all boolean variables in S ′ and W ′ are assumed to be fresh. Concrete
encodings [· >π ·] and [· >π ·] for LPO/RPO, KBO as well as reduction orders
given by polynomial and matrix interpretations—also with argument filterings
and usable rules—are well-studied, see for instance [8, 15, 3, 14, 13].

Note that Definition 5 can easily be modified to admit rule removal by adding
clauses (¬[` >π r]→W ′`→r) to the conjunction definiting TW , similar as for TS .

Encoding DP Techniques and Control Strategies for Maximal Completion 5

Definition 6 (Dependency graph processor). A DP problem encoding of
the form (S,W, ϕ) is mapped to {(S ′,W ′, ψ)} such that S ′ = {S′`→r | S`→r ∈ S},
W ′ = {W ′`→r | S`→r ∈ S} ∪ {W ′`→r |W`→r ∈ W}, and ψ = ϕ ∧ TS ∧ TW where

TS =
∧

Sp,Sp′∈S
Sp ∧ Sp′ ∧ [p⇒ p′] ∧ ¬S′p ∧ ¬S′p′ → Xw

p > Xw
p′

TW =
∧

S`→r∈S
S`→r →W ′`→r ∧

∧
W`→r∈W

W`→r →W ′`→r

Here TS encodes cycle analysis of the graph in the sense that a cycle p1 ⇒
p2 ⇒ · · · ⇒ pn ⇒ p1 issues the unsatisfiable constraint Xw

p1 > Xw
p2 > · · · >

Xw
pn > Xw

p1 . For the formula [s→ t⇒ u→ v] encoding the presence of an edge
from s→ t to u→ v one can simply use > if root(t) = root(u) and ⊥ otherwise.
(We also experimented with an encoding in terms of the unifiability between
REN(CAP(t)) and u, but due to reasons of space do not present it here.)

The above encoding does not allow to use different orderings in SCCs, in
contrast to what is commonly done in termination provers. However, it can be
modified to consider SCCs by mapping a problem encoding to k independent
problem encodings.

Definition 7 (Dependency graph processor with k SCCs). A DP problem
encoding D = (S,W, ϕ) is mapped to {Di}1≤i≤k = {(Si,Wi, ψi)}1≤i≤k where
Si = {Si,`→r | S`→r ∈ S}, Wi = {Wi,`→r | S`→r ∈ S} ∪ {Wi,`→r | W`→r ∈ W},
ψi = ϕ ∧ Tscc(k) ∧ TS(i) ∧ TW (i), and

Tscc(k) =
∧
Sp∈S

1≤Xscc
p ≤k ∧

∧
Sp,Sp′∈S

Sp ∧ Sp′ ∧ [p⇒ p′]→ X⇒p,p′ ∧Xscc
p ≥Xscc

p′

TS(i) =
∧

Sp,Sp′∈S
X⇒p,p′ ∧Xscc

p = i ∧Xscc
p′ = i ∧ ¬Si,p ∧ ¬Si,p′ → Xw

p > Xw
p′

TW (i) =
∧
Sp∈S

Sp ∧Xscc
p = i→Wi,p ∧

∧
Wp∈W

Wp →Wi,p

Here X⇒p1,p2 is a boolean variable encoding the presence of both DPs p1 and
p2 as well as an edge from p1 to p2, and Xscc

p is an integer variable assigning an
SCC number to a DP p. Hence Tscc(k) encodes the separation of the graph into
at most k SCCs, and TS(i), TW (i) encode conditions to orient the ith SCC.

Soundness of all the above encodings can be shown by relating them to their
processor counterparts [4], but we omit the proofs here due to lack of space.

4 Control Strategies

In its original version, Maxcomp generated terminating TRSs R(C) by orient-
ing as many equations in C as possible. This was motivated by the following
observation: whenever a TRS R is complete for E0, then any terminating TRS
R′ satisfying R ⊆ R′ ⊆ ↔∗E0 is complete for E0 as well. However, this choice

6 Haruhiko Sato and Sarah Winkler

of R(C) has drawbacks in the case where the selected TRS is not yet complete:
In case of multiple possibilities, the search is not guided towards “more useful”
TRSs. Moreover, the chosen TRSs are large such that critical pair generation
and normalization tend to be inefficient.

We therefore experimented with different components of control strategies
which can be combined in a variety of ways. The following desirable properties
of TRSs R ∈ R(C) constitute the basis of the below definitions, reflecting the
aim to eventually derive a complete TRS for the axioms E0.

(1) All nontrivial equations in C should be reducible by R.
(2) The axioms E0 should be derivable from R.
(3) Preferably, the critical pairs of R should be joinable.

We use sets of constraints cs and mc, where constraints in cs have to be always
satisfied, whereas the number of satisfied constraints from mc is to be maximized.
To determine cs and mc, the following options c and mc are considered:

c ::= Red | Comp mc ::= None | MaxRed | CPRed | Oriented | NotOriented

Here Red ensures property (1) by demanding that ϕred(C) is satisfied.

ϕred(C) =
∧

s≈t∈C
ϕred(s ≈ t) ϕred(s ≈ t) =

∨
{I`→r | `→ r ∈ C̃ reduces s or t}

Option Comp ensures property (2) by demanding that ϕcomp(C) is satisfied. To
that end, every equation ` ≈ r ∈ C is associated with a fresh boolean variable
E`≈r and a fresh integer variable w`≈r.

ϕcomp(C) =
∧

`≈r∈E0

E`≈r ∧
∧

`≈r∈C

E`≈r → ` = r ∨ I`→r ∨ Ir→` ∨ ϕ↔(` ≈ r)

ϕ↔(` ≈ r) =
∨

E∈D`≈r

∧
e′∈E

Ee′ ∧ w`≈r > we′

Here D`≈r consists of ESs E ⊆ C satisfying ` ↔∗E r, and w`≈r avoids cyclic
dependencies among equations by requiring that equations are only derived from
equations associated with smaller values. Suitable sets De can be collected when
rewriting equations: Whenever an equation e is simplified to e′ using rules R,
{e′} ∪ R is added to De, and {e} ∪ R is added to De′ .

Concerning options for mc, None requires nothing, MaxRed maximizes the
number of clauses ϕred(s ≈ t) for s ≈ t ∈ C, Oriented maximizes the number of
oriented equations in C, and NotOriented maximizes the number of unoriented
equations in C. The option CPRed tries to reduce as many critical pairs of R ∈
R(C) as possible by maximizing the number of satisfied clauses in ϕCPred(C).
Here R(C) consists of all rewrite rules `→ r such that ` ≈ r ∈ C̃.

ϕCPred(C) = {Ir1 ∧ Ir2 → ϕred(s ≈ t) | r1, r2 ∈ R(C) and s ≈ t ∈ CP(r1, r2)}

5 Implementation

We next describe some further implementation details of our extension of Max-
comp, which will in the sequel be referred to as MaxcompDP. The general layout

Encoding DP Techniques and Control Strategies for Maximal Completion 7

function maxcomp(C,S)
R(C),S ′ := max k(C,S, k)
for all R ∈ R(C)
if CP(R) ∪ E0 ⊆↓R then R
else C := C ∪ select(n, (CP(R) ∪ C)↓R)

maxcomp(C,S ′)

Fig. 1. Main control function.

of Maxcomp based on the control loop shown in Figure 1 was kept. As input
parameters, the function maxcomp obtains a set of equations C and an overall
strategy S (described below). The ES C is initialized with E0. In each recursive
call, the max k function tries to find k terminating TRSs R(C) according to the
strategy S, and it returns a possibly modified strategy S ′. For each R ∈ R(C),
if R is confluent and joins E0 then maxcomp succeeds; otherwise n new equations
are selected and added to C. In order to find R(C), max k uses (MAX)SAT calls
to Yices [2]. In some important aspects MaxcompDP deviates from Maxcomp, the
next paragraphs describe these changes.

Termination Strategies. Termination of TRSs R(C) is encoded according to
a certain termination strategy. Besides LPO and KBO as used in Maxcomp,
MaxcompDP now also provides as base orders simple linear polynomial interpre-
tations of the shape x1+. . .+xn+c and the instance MPOL of the weighted path
order [13]. We implemented the DP techniques presented in Section 3, and also
support argument filterings for LPO and KBO. Overall, termination strategies
can thus be constructed according to the following grammar:

o ::= LPO | KBO | MPol | LPol t ::= os | DP(os) | DG(os) | DGk(int, os)

where os abbreviates o list, which is interpreted as lexicographic combination of
the associated reduction orders/reduction pairs. DP switches to a DP problem
using Definition 4, while DG and DGk use DG encodings according to Defini-
tions 6 and 7, respectively. In the sequel we consider the strategies tlpo := [LPO],
tdp := DP([LPol, LPO]), tdg := DG([LPol, LPO]) and tdg2 := DGk(2, [LPol, LPO]).

Overall Strategies. An overall strategy S for the max k function combines
termination and control strategies and has the type (t, c set,mc) list. Such a
strategy is used as follows: If S is the empty list, max k fails. If S is a nonempty
list (t, cs,mc) :: S ′, max k tries to find a TRS Ri by satisfying the constraints t
and cs, and maximizing the satisfied constraints of mc, such that Ri is dif-
ferent from R1, . . . ,Ri−1. If max k can find k TRSs in this way, it returns
R1, . . . ,Rk and S. If it fails to do so for Ri, it tries to find the remaining
TRSs using strategy S ′, and returns S ′. This allows to change to a more appro-
priate termination and/or control strategy if the current one can, e.g., not orient

8 Haruhiko Sato and Sarah Winkler

sufficiently many equations. We experimented with different strategies such as
Sred := [(t, {Red})], Scomp := [(t, {Red,Comp})], SCPred := [(t, {Red},CPRed)],
Smaxcomp := [(t,∅,Oriented)], SnotOriented := [(t, {Red,Comp},NotOriented)] for
different termination strategies t. Here we write (t, cs) for (t, cs,None). The
strategy Smaxcomp corresponds to the original Maxcomp approach. For a ter-
mination strategy t, sfull(t) denotes (t, {Red,Comp},CPRed), and Sfull(t) de-
notes [sfull(t)]. The Sauto strategy turned out particularly useful, it is defined by
[sfull(tlpo), sfull(tdp), (tlpo , {Comp},MaxRed)].

The number k has considerable impact; MaxcompDP lets the user control it
by an input parameter. By default, k = 6 in the first two recursive calls and
k = 2 afterwards. The rationale behind this choice is that considering a wide
variety of orientations in the beginning of a run reduces the risk of getting stuck
with an initial, possibly unfortunate orientation.

Selection of New Equations. The select function in Figure 1 plays the role
of S(C) from Definition 1. Maxcomp by default selected up to 7 equations of size
at most 20 from the set CP(R) ↓R (since it is practically infeasible to add all
critical pairs). In contrast, MaxcompDP does not only add critical pairs of a TRS
R to C but also reduced equations. Therefore the n smallest equations from the
set (CP(R) ∪ C)↓R are selected, without inducing a size bound. The number n
can be controlled by the user, by default n = 12.

Incremental Termination Checks. The formulas obtained with our termina-
tion encodings easily grow large. However, though in the course of a completion
run many satisfiability checks are required, the termination constraint issued for
a specific rule does not change. We hence use Yices in an incremental way: when-
ever a new equation ` ≈ r gives rise to a potential rule ` → r, its termination
constraint [` > r] is computed and added to the context of Yices. To find a ter-
minating TRS, we temporarily add the constraints cs and mc according to the
current control strategy but backtrack after the SAT check. This allows to use
the same Yices context throughout the completion run, and issue termination
constraints only once per rule (though new constraints need to be computed if
the termination strategy changes).

MaxcompDP as well as all experimental results are available from

http://cl-informatik.uibk.ac.at/software/maxcompdp

6 Experiments

Table 1 summarizes our experimental results for the test bed comprising 115
equational systems from the distribution of mkbTT [12], run on a system equipped
with an Intel Core i7 with four cores of 2.1GHz each and 7.5 GB of memory.
Each ES was given a time limit of 600 seconds, timeouts are marked ∞. The
rows labeled (1)–(4) correspond to MaxcompDP using Sfull with different ter-
mination strategies, and (5) applies the automatic mode Sauto as described in

Encoding DP Techniques and Control Strategies for Maximal Completion 9

Section 5. Rows (DP1)–(DP5) use tdp within different control strategies, and
(LPO1) combines tlpo with Smaxcomp . All runs used the default values for k and
n. Finally, we compare with other completion tools that are automatic in that
no reduction order is required as input, namely Maxcomp, mkbTT, KBCV [9],
and Slothrop [11].

Column # lists the number of successful completions, the next column gives
the average time for a completion in seconds. Columns (a)–(d) show the results
for some selected systems, namely CGE2, CGE5, proofreduction, and equiv proofs.

avg. time (a) (b) (c) (d)

(1) Sfull(tlpo) 81 2.2 ∞ ∞ ∞ ∞
(2) Sfull(tdp) 89 33.5 17.1 79.5 5.2 3.1
(3) Sfull(tdg) 86 37.3 18.5 155.5 5.7 3.1
(4) Sfull(tdg2) 89 41.0 12.3 254.0 13.2 6.5
(5) Sauto 97 11.6 4.1 104.4 3.6 1.5

(DP1) Smaxcomp 56 4.8 157.7 ∞ 7.5 3.9
(DP2) Sred 81 31.8 568.4 ∞ 9.8 2.1
(DP3) Scomp 87 45.9 15.5 302.7 3.4 2.2
(DP4) SCPred 90 29.7 17.1 273.5 9.2 3.4
(DP5) SnotOriented 85 15.9 3.6 15.9 20.6 3.8

(LPO1) Smaxcomp 77 13.5 ∞ ∞ ∞ ∞
Maxcomp 87 3.8 ∞ ∞ ∞ ∞
mkbTT 85 40.1 33.5 ∞ 7.3 237.9
KBCV 88 12.4 ∞ ∞ ∞ ∞
Slothrop 67 65.8 460.4 ∞ ∞ 352.9

Table 1. Experimental Results.

The DP strategy (2) allows to successfully complete problems (a)–(d), which
cannot be completed using LPO or KBO. However, some other systems are lost,
compared to the setting using LPO. Typically, these problems require many it-
erations and/or give rise to many equations. Also, the average time compared to
(1) is multiplied. Settings (3) and (4) require more encoding effort such that com-
pletion takes even more time than for setting (2). However, the tradeoff between
the more complex encoding and the gain in power turns out more beneficial for
setting (4), which can complete the same number of problems as (2) but more
than (3). Overall Sauto proved to be most powerful since it can often be efficient
by applying LPO, but also switch to a more sophisticated strategy in case of
unorientable equations.

Concerning control strategies, a comparison of (1) with (LPO1) and (2) with
(DP1) suggests that Smaxcomp is by far more suited for plain reduction orders
than for complex DP strategies. One reason for that might be that powerful
DP strategies can orient more equations such that Smaxcomp gives rise to even

10 Haruhiko Sato and Sarah Winkler

larger TRSs. But we also observed that Smaxcomp with DPs prefers unfortunate
orientations in presence of group theory, which occurs in many problems.

All of Sred , Scomp and SCPred positively influence the number of completed
systems (though at the price of lower efficiency). In the Sauto setting, their
combination was most successful.

As Table 1 shows, MaxcompDP with strategy Sauto can complete more sys-
tems than any other automatic completion tool, although the tools are incom-
parable in the sense that for each tool there is an ES that it can complete, but
no other tools can. It manages to complete CGE5 in 104.4 seconds, whereas for
mkbTT it was a major effort requiring more than 35000 seconds. Moreover, Max-
compDP can also complete CGE6 and CGE7 in 307 and 362 seconds, respectively
(the latter using n = 18, though). No other tool could complete these ESs so far.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, Cambridge, 1998.

2. B. Dutertre and L.M. de Moura. A fast linear-arithmetic solver for DPLL(T). In
CAV, volume 4144 of LNCS, pages 81–94, 2006.

3. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. JAR, 40(2-3):195–220, 2008.

4. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In LPAR, volume 3452
of LNCS, pages 301–331, 2005.

5. D. Klein and N. Hirokawa. Maximal completion. In RTA, volume 10 of LIPIcs,
pages 71–80, 2011.

6. K. Korovin. Inst-Gen—a modular approach to instantiation-based automated rea-
soning. In Programming Logics, pages 239–270, 2013.

7. H. Sato and S. Winkler. A satisfiability encoding of dependency pair techniques
for maximal completion. In WST, 2014.

8. P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving
termination using recursive path orders and SAT solving. In FroCoS, volume 4720
of LNCS (LNAI), pages 267–282, 2007.

9. T. Sternagel and H. Zankl. KBCV—Knuth-Bendix completion visualizer. In IJ-
CAR, volume 7364 of LNCS, pages 530–536, 2012.

10. A. Stump and B. Löchner. Knuth-Bendix completion of theories of commuting
group endomorphisms. IPL, 98(5):195–198, 2006.

11. I. Wehrman, A. Stump, and E.M. Westbrook. Slothrop: Knuth-Bendix completion
with a modern termination checker. In RTA, volume 4098 of LNCS, pages 287–296,
2006.

12. S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Multi-completion with
termination tools. JAR, 50(3):317–354, 2013.

13. A. Yamada, K. Kusakari, and T. Sakabe. A unified ordering for termination prov-
ing. Science of Computer Programming, 2014. To appear.

14. H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for argument filterings.
In SOFSEM, volume 4362 of LNCS, pages 579–590, 2007.

15. H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. JAR, 43(2):173–
201, 2009.

