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Abstract—Within the growing area of data-aware processes,
Data Petri nets (DPNs) with arithmetic data have recently gained
popularity thanks to their ability to balance simplicity with
expressiveness. DPNs can be automatically mined from event
data, but these process discovery techniques typically come
without any correctness guarantees. In particular, the generated
models may violate the crucial property of data-aware soundness.
While data-aware soundness can be checked automatically for a
large class of models, nothing is known about how to repair
such processes once a violation is detected. In this paper we are
concerned with repairing DPNs so that the refined model satisfies
the desired soundness properties. Our approach is based on
conservative behavioural changes, which are minimally invasive
in the sense that the behaviour of the repaired model coincides
with that of the original model except for (prefixes of) traces that
caused the violation. We show experimentally that the approach
can be used to repair unsound DPNs from the literature.

Index Terms—data-aware processes, process repair, soundness

I. INTRODUCTION

Multi-perspective process models combine control-flow
modeling, which specifies the legal execution sequencings of
activities within process executions, with additional dimen-
sions. A prominent example are data-aware process models,
which explicitly represent how information systems dynami-
cally operate over data through activities; they are of growing
relevance for business process management (BPM) applica-
tions. Specifically, we consider here Data Petri Nets (DPNs),
which are a simple but expressive and flexible data-aware
representation [14], [16].

A central characterization of correctness of processes is
soundness [17]. Intuitively, it requires that (i) all process
activities can be executed in some execution; (ii) from every
reachable configuration the process can be concluded by
reaching a final configuration and (iii) final configurations
are always reached in a ‘clean way’, without leaving any
thread of the process still hanging. The counterpart of this
classical property for data-aware processes is data-aware
soundness [2], [7]. The combination of data and arithmetics in
addition to the control-flow perspective makes checking data-
aware soundness highly challenging, and for DPNs it is in
fact undecidable [11]. Nevertheless, a number of techniques
for checking data-aware soundness [2], [7] were proposed,
including extensions of these models to account for activities
that perform arithmetic operations on case data [9], [11].

Notably, it was shown to be decidable for relevant classes
of DPNs.

However, existing soundness checking techniques do not
come with corresponding actionable techniques on how to
revise and adapt a DPN that results to be unsound. This is
essential in process mining pipelines. In fact, alongside such
pipelines, models are continuously transformed and modified
through automated techniques and manual interventions. For
data-aware processes, unsoundness may arise: (i) from a
discovery step, as discovery is typically handled with a two-
phase approach, where first the control-flow is discovered, and
in a second step it is enriched with data [4], [12], [15]; (ii) from
a manual intervention step, as mastering the interplay between
control-flow and data is particularly challenging.

In this paper, we devise a novel approach for repairing
unsound processes so that they become data-aware sound,
by exploiting techniques developed for the verification and
soundness analysis of DPNs. This approach can then be used
as a component within a process mining pipeline, to ensure
that whenever a DPN is discovered or manually altered, the
resulting model can be made sound.

Our approach is based on two general principles: (1) Be-
havioural conservatism: We follow the premise that repairs
should affect as little as possible the behaviors that are
already permitted by the process, since these are assumed to
account for executions recorded in the log. (2) Control flow
conservatism: Considering that discovery techniques guaran-
teeing control-flow soundness actually exist [3], [15], [16], and
recalling the typical two-phase discovery approach mentioned
above, we consider input DPNs in which the underlying Petri
Net, accounting only for the control-flow dimension, is already
sound. Our task is then to enforce data-aware soundness by
modifying the transition guards, irrespective of the approach
used for their discovery (e.g., decision-aware control-flow
discovery techniques or decision-annotated process mining
techniques [4]). However, except for the removal of dead
transitions, the control flow is not modified.

Due to the undecidability of the soundness checking task,
which is required to build repaired DPNs, our procedure is a
partial one. It is guaranteed to terminate for a simple class of
DPNs, namely when guards are variable-to-variable/constant
comparisons. For more general DPNs it need not terminate
(see Sec. III), although in experiments this did not occur.



Notwithstanding this limitation, since existing discovery
techniques cannot guarantee data-aware soundness in the pres-
ence of data and arithmetical conditions, we believe this to be
an important contribution in the context of automated process
discovery from event logs. We thus regard this work as the first
step towards applications in which the automated discovery
of data-aware processes is followed by a repair activity to
enforce desirable properties like soundness. We start by giving
a concrete example:

Example I.1. The following DPN models a management
process for road fines by the Italian police [16].

p7

p5create fine
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payment
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send fine
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This model was generated from real-life logs by automatic
discovery techniques paired with domain knowledge [16],
but without any correctness guarantee. One requirement of
data-aware soundness is that a process can reach a final state
from any reachable configuration. This property is violated
here, as the process can get stuck in p7 if e.g. d=1. We call
such process runs blocked. One can ask now how to repair
the process to make it data-aware sound, while at the same
time keeping behavior unchanged as much as possible.

In principle, two different approaches are conceivable to get
rid of blocked runs as in Ex. I.1, without modifying the control
flow: transition guards can be made more restrictive, so that
the blocked run is no longer possible; we call this repair by re-
stricting behavior. Alternatively, guards can be relaxed so that
the blocked run can continue; we call this repair by extending
behavior. This paper presents repair procedures based on both
of these paradigms, and show that the imposed modifications
are minimal w.r.t. process behavior. We also implemented the
procedures, and performed preliminary experiments.
To summarize, our contributions are the following:

1) We propose two repair procedures that either restrict or
extend process behavior to obtain data-aware soundness.

2) The results of these procedures are shown to be data-
aware sound, and we prove that they modify the process
behavior as little as possible (Props. III.1 and III.5).

3) These procedures are implemented on top of the tool ada.
By a conformance checking experiment, we also verify
that the repair procedure not only makes the process data-
aware sound, but also does not harm conformance with
actual behaviors in an event log, in the spirit of [5].

For clarity, we summarize also the limitations of our approach.
First, our procedure makes two assumptions on the input DPN:

(A1) The Petri net underlying the input DPN must be sound.
This is, however, not a limitation since all data-aware DPNs
must have a sound underlying Petri net. (A2) The DPN must
be in a class where data-aware soundness can be checked,
e.g., all guards must be variable-to-constant comparisons. In
this particular case our procedure is guaranteed to terminate,
but this need not hold in general (see Sec. III).

The remainder of the paper is structured as follows. In
Sec. II, we recall preliminaries about DPNs and an approach
to check data-aware soundness. In Sec. III, we present two
repair procedures, based on either restricting or extending
behavior. Their implementation and experiments are described
in Sec. IV. In Sec. V, we conclude with a discussion and
directions for future work.

II. BACKGROUND

This section recaps background on DPNs and data-aware
dynamic systems as process models, and constraint graphs.

We assume a set of process variables V , each of which
is associated with a sort from the set Σ = {int,rat} with
associated domains D(int) = Z and D(rat) = Q. For σ ∈Σ,
Vσ denotes the subset of variables of type σ. To manipulate
variables, we consider expressions c, called constraints:

c := n⩾n | n ̸=n | n=n | r⩾r | r>r | r ̸=r | r=r | c∧c | c∨c
n := vi | k | n+ n | −n r := vr | q | r + r | −r

where vi ∈ Vint, vr ∈ Vrat, k ∈ Z, and q ∈ Q. Constraints
will be used to capture conditions on the values of variables
that are read and written during the execution of process activ-
ities. The set of constraints over a set of variables V is denoted
C(V ). We will also consider first-order formulas that have
constraints as atoms. Since such formulas are over the theory
of linear arithmetic, satisfiability is decidable; moreover, linear
arithmetic is known to enjoy quantifier elimination [1]: if φ
is a formula with atoms in C(V ∪{x}), there is some φ′ with
free variables V that is logically equivalent to ∃x.φ. We denote
logical equivalence by ≡, and logical entailment by |=.

A. Data Petri nets.

We adopt the standard definition of DPNs [14], [16]. We
consider two disjoint, marked copies of the set of process
variables V , denoted V r = {vr | v ∈V } and V w = {vw |
v ∈V }, called the read and write variables. They are used to
refer to variable values before and after executing a transition,
respectively. We write V for a vector that contains the variables
in V ordered in an arbitrary but fixed way, and V

r
and V

w

for vectors ordering V r and V w in the same way.

Definition II.1. A data Petri net (DPN) is a tuple N =
⟨P, T, F, ℓ,A, V, guard⟩, where (1) ⟨P, T, F, ℓ⟩ is a Petri net
with non-empty, disjoint sets of places P and transitions
T , a flow relation F : (P × T ) ∪ (T × P ) 7→ N and a
labelling function ℓ : T 7→ A, where A is a finite set of
activity labels; (2) V is a finite set of process variables; and
(3) guard : T 7→ C(V r ∪ V w) is a guard mapping.
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Fig. 1. A DPN (left) and a corresponding DDSA (right).

Example II.2. The process in Fig. 1 (left) is a DPN modeling
a simple auction process with variables V = {o, t} of sort
rat, where o holds the last offer issued by a bidder, and t is
a timer. Action init fixes the timer t to a positive value and the
offer o to 0; while the timer did not expire, it can be decreased
(action timer), or bids can be issued, increasing the current
offer (bid); the item can be sold if the timer expired and the
offer is positive (hammer); and reset can restart the process
if o is 0. The initial and final marking are {p0} and {p3},
respectively, and we assume o and t have initial value 0.

Also the process in Ex. I.1 is a DPN. The vari-
ables read and written by a transition t are denoted by
read(t) = {v | vr occurs in guard(t)} and write(t) =
{v | vw occurs in guard(t)}. For instance, for t the activity
labelled bid in Fig. 1, write(t) = {o} and read(t) = {o, t}. An
assignment with domain V is a state variable assignment, to
distinguish it from a transition variable assignment β, which
has as domain the annotated variables V r ∪ V w.

A state in a DPN is a pair (M,α) of a marking M : P 7→
N of the underlying Petri net, together with a state variable
assignment α. It thus simultaneously describes the control flow
progress and the current values of all variables, as specified
by α. E.g., ({p0},

[
t=0
o=0

]
) is a state for the DPN of Ex. II.2.

Definition II.3 (Transition firing). Transition t ∈ T is enabled
in (M,α) if a transition variable assignment β exists such that:

(i) β(vr) = α(v) for every v ∈ read(t), i.e., β is as α for
read variables;

(ii) β |= guard(t), i.e., β satisfies the guard; and
(iii) M(p) ⩾ F (p, t) for every p such that F (p, t) ⩾ 0.
An enabled transition may fire, producing a new state (M ′, α′),
s.t. M ′(p) = M(p)− F (p, t) + F (t, p) for every p ∈ P , and
α′(v)=β(vw) for every v ∈ write(t), and α′(v)=α(v) for
every v ̸∈ write(t). Such a pair (t, β) is called (valid) transi-
tion firing, and we denote its firing by (M,α) (t,β)−−−→ (M ′, α′).

Given a DPN N , we fix one state (MI , αI ) as initial, where
MI is the initial marking of the underlying Petri net and αI

is a state variable assignment specifying the initial values of
all variables in V . Similarly, we denote the final marking as
MF , and call final any state of the form (MF , αF ) for some
αF . For instance, the net in Ex. II.2 admits a transition firing
({p0},

[
t=0
o=0

]
) init−−→ ({p1, p2},

[
t=1
o=0

]
) from its initial state, while

({p3},
[
t=0
o=5

]
) is a final state.

A state (M ′, α′) is reachable in a DPN if there is a sequence

of transition firings (MI , αI )
(t1,β1)−−−−→ . . . (tn,βn)−−−−−→ (M ′, α′).

Such a sequence is also written (MI , αI ) →∗ (M ′, α′) and
called a run. Below, we assume that DPNs are bounded, i.e.,
the number of tokens in reachable markings is upper-bounded,
and that there exists at least one run to a final state.

Definition II.4. A DPN is data-aware sound iff:
(P1) for all M , α such that (MI , αI ) →∗ (M,α) there is

some α′ such that (M,α) →∗ (MF , α
′), i.e., any run

can be continued to a final state;
(P2) for all M , α such that (MI , αI )→∗ (M,α) and

M ⩾MF it is M =MF , i.e., termination is clean; and
(P3) for all t ∈ T there is a sequence (MI , αI ) →∗

(M,α) (t,β)−−−→ (M ′, α′) for some M , M ′, α, α′, and β,
i.e., there are no dead transitions.

For instance, as described informally in Ex. I.1, the DPN
given there is not data-aware sound. Specifically, it violates
(P1) in Def. II.4, since there is a run to a state ({p7}, α) with
α(d) = 1. Also the DPN in Fig. 1 is not data-aware sound: it
violates (P3) because the reset transition is unreachable as it
requires o to be 0, but in marking {p3} the value of o must
be positive. It also violates (P3) because after the following
run no further step is possible:

({p0},
[
t=0
o=0

]
) init−−→ ({p1, p2},

[
t=1
o=0

]
) timer−−−→ ({p1, p2},

[
t=0
o=0

]
) (1)

B. Data-aware Dynamic Systems with Arithmetic.

To analyze DPNs, we will transform them into the sim-
pler model of data-aware dynamic systems with arithmetic
(DDSAs) [7], [13].

Definition II.5. A DDSA B = ⟨B, bI ,A, T r,BF , V, αI ,
guard⟩ is a labeled transition system where (1) B is a finite
set of control states, or simply states, with bI ∈B the initial
one; (2) A is a set of actions; (3) Tr ⊆ B×A×B is a
transition relation; (4) BF ⊆ B are final states; (5) V is the
set of process variables; (6) αI the initial variable assignment;
and (7) guard : A 7→ C(V r ∪ V w) specifies executability
constraints for actions over V r ∪V w.

Every bounded DPN N can be unfolded to an equivalent
DDSA B over the same set of data variables, by taking
reachable markings of N as states of B, so that the initial
and final markings become initial and final states, respectively.
Actions, transition guards, and the initial valuation need not
be modified; details can be found in the description of the
procedure DPNtoDDS [11]. Fig. 1 (right) shows a DDSA
which corresponds to the DPN in Fig. 1 (left). The action
guards are the same as in the DPN, but omitted for readability.

We assume below that all actions of DDSA transitions are
distinct, which can be ensured by adding copies of actions.

Let B= ⟨B, bI ,A, T r,BF , V, αI , guard⟩ be a given DDSA.
If state b ∈ B admits a transition to b′ via action a, i.e.,
(b, a, b′) ∈ Tr, we write b a−→ b′. A state of B is a pair (b, α)
where b∈B and α is an assignment with domain V . An action
a leads from a state (b, α) to a new state (b′, α′) by updating
the assignment α according to the action guard, exactly as in



DPNs: B admits a step from state (b, α) to (b′, α′) via action
a, denoted (b, α) a−→ (b′, α′), if b a−→ b′, α′(v) = α(v) for all
v ∈ V \ write(a), and the transition assignment β given by
β(vr) = α(v) and β(vw) = α′(v) for all v ∈ V , satisfies the
guard of a, that is, β |= guard(a).
A run ρ of a DDSA B is a sequence of steps

(bI , αI ) = (b0, α0)
a1−→ (b1, α1)

a2−→ · · · an−−→ (bn, αn)

We call the abstraction of a run the corresponding transition
sequence b0

a1−→ b1
a2−→ · · · an−−→ bn. For instance, for the

DDSA in Fig. 1 (right), Eq. (1) can also be seen as a run of
the DDSA, as each DPN marking is a state of the DDSA.

Data-aware soundness of DPNs can be directly checked on
the corresponding DDSAs [11]. To that end, we say that a
state (b, α) is a blocked state of a DDSA B if there is a run
ρ : (bI , αI ) →∗ (b, α) but no derivation (b, α) →∗ (bf , α

′), for
any bf ∈BF and α′. A run is called blocked if it ends in a
blocked state, such as the run in Eq. (1).

Lemma II.6 ( [11, Lem. 1]). Given a DPN N and B =
DPNtoDDS(N ) with control states B,

• N satisfies (P1) iff B has no blocked states,
• N satisfies (P2) iff all b∈B that corresponding to a

marking M with M > MF are unreachable in B, and
• N satisfies (P3) iff for all transitions t∈T of N there

are some b, b′ ∈ B s.t. (b, ℓ(t), b′) ∈ Tr is reachable.

As remarked above, the DPN from Fig. 1 violates (P1), and
indeed the respective DDSA has a blocked state (see Eq. (1)).

C. Constraint Graphs

Constraint graphs are (in the lucky case, finite) abstractions
of the state spaces of DDSAs, they were introduced to check
data-aware soundness [11]. We recapitulate the main idea:

Let B= ⟨B, bI ,A, T r,BF , V, αI , guard⟩ be a given DDSA.
The transition formula ∆a of action a is given by
∆a(V

r
, V

w
)= guard(a)∧

∧
v ̸∈write(a) v

w = vr. This formula
simply expresses conditions on variables before and after
executing the action: guard(a) must hold, and the values of all
variables that are not written are copied. E.g., for action bid in
Fig. 1 (right), we have guard(bid) = (tr > 0)∧(ow >or), thus
write(bid) = {o}, so ∆bid = (tr > 0)∧ (ow >or)∧ (tw = tr).

Every node of a constraint graph contains a first-order
formulas φ with free variables V to describe a set of variable
assignments. We use the transition formula ∆a to update φ in
order to register the effects of executing a, as follows:

Definition II.7. For a formula φ with free variables V and
action a, update(φ, a) = ∃U.φ[U/V ] ∧ ∆a[U/V

r
, V /V

w
],

where U is a set of variables that has the same cardinality as
V and is disjoint from all variables in φ.

Here, φ[U/V ] is the result of replacing variables V in φ by
U , and similar for ∆a. For instance, if V = (o, t) we can take
the renamed variables U = (o′, t′); hence for φ = (t> 0) ∧
(o=0) we then get update(φ, bid) = ∃o′ t′.(t′> 0)∧(o′ =0)∧
(o>o′) ∧ (t= t′), which is equivalent to (t> 0) ∧ (o> 0). In

fact, a logically equivalent quantifier-free formula can always
be obtained by quantifier elimination.

Given any assignment α, we denote by cα the formula∧
v∈V v = α(v) which serves to encode α as a formula.

Definition II.8. A constraint graph CGB(b0, α) for B, a state
b0 ∈B, and assignment α is a triple ⟨S, s0, γ⟩. The node set S
consisting of pairs (b, φ) for b∈B and a formula φ, and the
set of edges γ ⊆ S×A×S are inductively defined as follows:
(i) s0 = (b0, cα) ∈ S is the initial node; and
(ii) if (b, φ) ∈ S and b a−→ b′ such that update(φ, a) is satisfi-

able, there is some (b′, φ′) ∈ S with φ′ ≡ update(φ, a),
and (b, φ) a−→ (b′, φ′) is in γ.

Intuitively, the constraint graph symbolically describes all
states reachable in B: every node combines a DDSA state b
with a formula φ with free variables V , representing all states
(b, α) of the DDSA s.t. α satisfies φ. We denote by CGB the
constraint graph CGB(bI , αI ) starting at the initial state of B.

Example II.9. The CGB for the DDSA in Ex. II.2 is as follows:
{p0} o=0 ∧ t=0 {p1, p2} o=0 ∧ t> 0 {p1, p2} o=0

{p1, p2} o> 0 ∧ t> 0{p1, p2} o> 0{p3} o> 0 ∧ t⩾ 0

init timer

bid bid

timer

bid
timer

bid

hammer

For instance, the top-left node represents the initial state: the
marking is {p0} and both variables have value 0. The node
({p1, p2}, o=0) represents the infinite set of states where the
marking is {p1, p2}, o has value 0, and t is unconstrained.
Nodes with final control state are drawn with a double border.

The soundness checking procedure from [11] also needs
constraint graphs that start from an arbitrary control state
b ∈ B (rather than the initial control state of the DDSA)
and that, instead of assigning variables V their initial values
as in the example above, only impose that they have as values
some fresh placeholder variables V0. We denote such a graph
by CGB(b). Instead of giving the formal definition which is
similar to Def. II.8 (cf. [11, Def. 7]), we show an example.

Example II.10. The following is the constraint graph
CGB({p1, p2}) for the DDSA in Fig. 1 (right), starting at
{p1, p2} with a placeholder assignment o 7→ o0, t 7→ t0:

{p1, p2} o= o0 ∧ t= t0

{p1, p2} o>o0 ∧ t= t0 ∧ t> 0 {p1, p2} o= o0 ∧ t< t0 ∧ t0> 0

{p3} o= o0> 0 ∧ t= t0> 0

{p3} o= o0> 0 ∧ t< t0 ∧ t⩽ 0 ∧ t0> 0{p1, p2} o>o0 ∧ t0> 0 ∧ t0>t

{p1, p2} o>o0 ∧ t0>t> 0

{p3} o>o0 ∧ o> 0 ∧ t0>t ∧ t⩽ 0 ∧ t0> 0

bid timer

hammer

hammer
bid

timer

timer

bid

timer
bid timer

hammer

Again, every state can be seen as a representation of a set
of states, which are, however, parameterised by the initial
values o0 and t0 of the variables o and t.

The crucial property of a CG that it faithfully and com-
pletely represent the state space, as formally stated next by
relating paths in the CG to DDSA runs (cf. [11, Lem. 2]). Parts



(1) and (2) basically express the same property, but the former
is for the version of CGs that start at the initial state, while
the latter is for CGs starting with a parametric assignment.

Lemma II.11. (1) CGB has a path π : (bI , CαI
) ∗−→ (b, φ)

where φ is satisfiable by α, iff B has a run
(bI , αI )

∗−→ (b, α) whose abstraction is σ(π).
(2) CGB(b) has a path π : (b, Cα0

) ∗−→ (b′, φ) s.t. φ is
satisfiable by α, iff B has derivation (b, α0)

∗−→ (b′, αn)
abstracted by σ(π) with α0 =α|V0

and αn =α|V .

Here, for a path π in the CG, σ(π) is the DDSA transition
sequence along this path. The lemma thus states that for every
path in the CG ending in a node (b, φ) and every satisfying
assignment α of φ, there is a run of the DDSA with the same
transition sequence to a state (b, α), and vice versa.

CGs are infinite in general, but it has been shown that for
many classes of DDSAs relevant in practice, finite CGs can be
computed [11]. These include DDSAs where all constraints are
variable-to-variable/constant comparisons over Q like Ex. II.2,
and DDSAs that, intuitively, maintain only a bounded amount
of information (this holds e.g. for Ex. I.1).

Finally, we explain how CGs can be used for soundness
checking: from CGB(b), one can extract a condition on V0 to
reach a final state from b, as follows. For Φ the set of formulas
occurring in final nodes of CGB(b), the formula ∃V.

∨
φ∈Φ φ

expresses a condition on V0 to reach a final state from b. For
convenience, we consistently rename V0 to V in this formula:

reach final(b) := (∃V.
∨

φ∈Φ
φ)[V ]

For instance from the CG in Ex. II.10, we obtain
reach final({p1, p2}) = (t> 0). This means that from the
marking {p1, p2} a final state can be reached if and only if
the current value of t is positive.

Finally, from the proof of [11, Thm. 1], one can directly
derive the following procedure for detecting blocked states:

Proposition II.12. If there exists in CGB a path π to a node
(b, φ) such that φ∧¬reach final(b) is satisfied by α, then the
run that is abstracted by σ(π) and ends in (b, α) is blocked.

In such a situation we also call the node (b, φ) blocked.
Moroever, from Lemma II.6 and by construction (Def. II.8):

Proposition II.13. Given a DPN N and B = DPNtoDDS(N ),
if for a transition t ∈ T in N there is no (b, φ) a−→ (b′, φ′) in
CGB with a = ℓ(t), then t is a dead transition in N .

III. SOUNDNESS REPAIR

We now turn to address the task of repairing data-aware
unsoundness of a DPN N , though we will from now on work
on its corresponding DDSA B. As motivated in Section I, we
assume N is classically sound, i.e., ignoring data.This implies
that B must satisfy condition (P2) in Lem. II.6, but it can
violate conditions (P1) (no blocked states) and (P3) (no dead
transitions). As stated in the introduction, our goal is to modify
the behavior of the input DPN N as little as possible.

Algorithm 1 Soundness repair by restriction
1: procedure repairRestrict(B)
2: G ← CGB
3: while hasBlockedState(B,G) do
4: B ← restrictBlockedState(B,G)
5: G ← CGB
6: B ← elimDeadTransitions(B,G)
7: return B

8: procedure restrictBlockedState(B,G)
9: choose path π to (b, φ) in G such that φ ∧ ¬reach final(b)

is satisfiable
10: let a be the last action in π
11: ψ ← reach final(b)
12: B′ ← B with guard(a) := guard(a) ∧ tvarsa(ψ)
13: return B′

To handle dead transitions, several approaches are conceiv-
able: (i) one can remove them, (ii) one can relax their guards
to force them to become enabled at least by one run, or
(iii) one can modify other guards in the DPN. Although all
these options are viable in principle, (ii) has an impact on
the relation between these transitions and the data dimension,
potentially radically altering the process, whereas we regard
(iii) achievable only within a user-guided interactive proce-
dure, as it is not possible to establish a single principled way
of altering data conditions that would fit different scenarios.
Therefore, the algorithms we illustrate below follow option (i)
and eliminate all dead transitions.

To handle a blocked state, we consider two approaches:
either the behavior of the process can be restricted so that
a blocked run can no longer occur, or the behavior of the
process can be extended so that a blocked run is no longer
blocked. It depends on the context which modification is more
appropriate, and should be decided by a domain expert. Below,
we propose procedures for both approaches. A third approach
that freely interleaves these two types of repair actions is also
imaginable, but not discussed here explicitly.

In both cases, we suppose that the initial state (bI , αI ) of
the DDSA is not blocked, which follows from our assumption
that the DDSA has at least one run to a final state.

A. Repair by Restricting Behavior

The procedure repairRestrict in Alg. 1 describes our first
repair procedure, where the following subroutines are used:

• elimDeadTransitions first removes from B all dead tran-
sitions (detected on CGB – see Prop. II.13), then prunes
all states of B that becomes unreachable), and

• tvarsa(ψ) replaces a variable v in ψ by vw if v ∈
write(a), and vr otherwise, for all v ∈ V .

The procedure works as follows: it first computes the
constraint graph of B, and uses it to check whether B
has a blocked state (using Prop. II.12). If this is the case,
restrictBlockedState is called to resolve this blocked state.
In this subroutine, a node (b, φ) is selected from the CG to
witness the blocked state, and we can assume that it is reached
on a path with last transition a. The idea is now to “deactivate”



a whenever the run would get blocked in b, or to avoid
problematic variable updates in case a writes any variables.
In the DDSA returned by restrictBlockedState, blocked states
with state b are thus resolved. Procedure repairRestrict then
computes the new CG, removes dead transitions, and repeats
these steps until B has no more blocked states. Note that
restrictBlockedState is non-deterministic as the choice in line 9
need not be unique.

In general, constraint graph computations need not termi-
nate, though they do for a wide range of DDSAs that model
DPNs in practice. The next proposition shows that if constraint
graphs can be computed, repairRestrict terminates and the
resulting DDSA is data-aware sound; and by items (3) and (4)
the modifications are as conservative with respect to behaviour
as possible, in the sense that only blocked runs are removed.

Proposition III.1. (1) If constraint graph computations ter-
minate then repairRestrict terminates.

(2) If B′ = repairRestrict(B) then B′ is data-aware sound.
(3) All runs of B′ are runs of B.
(4) All runs of B that are not runs of B′ are blocked in B.

Proof. (1) Every call of restrictBlockedState modifies the
guard of some action a by adding ψ. To see that this
change can be applied at most once to every action, sup-
pose towards a contradiction that guard(a) |= tvarsa(ψ),
so guard(a) |= tvarsa(reach final(b)). We have:
φ ≡ update(φ′, a) ≡ ∃U.φ′[U/V ] ∧∆a[U/V

r
, V /V

w
]

for some φ′, so by reverting the renaming tvars this
means that φ |= reach final(b). This contradicts that
φ ∧ ¬reach final(b) is satisfiable.

(2) The loop is repeated as long as B has blocked states, and
in every loop iteration dead transitions are removed. Thus,
when repairRestrict returns, B must be data-aware sound.

(3) Clear, because B′ has more restrictive guards than B.
(4) We show that if Bi+1 = restrictBlockedState(Bi) for some

Bi and Bi+1, and ρ is a run of Bi but not of Bi+1, then ρ is
blocked in Bi, from which the claim follows by induction.
Let the node (b, φ) be the one chosen in line 9, and a the
action in line 10. Then ρ must use a, so be of the form
ρ : (b0, α0)

∗−→ (bi−1, αi−1)
ai−→ (bi, αi)

∗−→ (bn, αn)
for some i ⩾ 0 where ai = a is the first occurrence of a in
ρ such that αi ̸|= reach final(bi); such an occurrence must
exist because ρ is not a run of B′. We must have bi = b
since action labels are unique in DDSAs. By Lem. II.11
there is a path π to a node (b, φ′) in CGB such that σ(π)
is the abstraction of ρ|i and αi |= φ′. Thus αi |= φ′ ∧
¬reach final(b), so by Prop. II.12, ρ is blocked.

We illustrate the procedure on two examples.

Example III.2. The CG for Ex. II.2 shown in in Ex. II.9 has
a node ({p1, p2}, o=0), but reachability of a final state from
{p1, p2} is characterized by ψ := reach final({p1, p2}) =
(t> 0). Clearly, (o=0) ∧ ¬(t > 0) is satisfiable, e.g. by
an assignment α that assigns 0 to all variables, cf. the last
assignment in run (1). Following Alg. 1, we can add a con-
junct tvars timer(ψ) to guard(timer). We have tvars timer(ψ) =

Algorithm 2 Soundness repair by extension
1: procedure repairExtend(B)
2: G ← CGB
3: while hasBlockedState(B,G) do
4: B ← extendBlockedState(B,G)
5: G ← CGB
6: B ← elimDeadTransitions(B,G)
7: return B

8: procedure extendBlockedState(B,G)
9: choose a path π to some (b, φ) in G such that

φ ∧ ¬reach final(b) is satisfiable and there are a, b′, and
a non-blocked node (b′, φ′) in G such that b a−→ b′ in B

10: ψ ← ¬reach final(b)
11: keepa ←

∧
v∈write(a) v

r = vw

12: B′ ← B with guard(a) := guard(a) ∨ (rvars(ψ) ∧ keepa)
13: return B′

(tw > 0), so the new guard of timer is (tr > 0) ∧ (tw <tr) ∧
(tw > 0). Note that at this point run (1) is no longer possible.
The DDSA has no more blocked states, and after removing the
dead transition reset, the DDSA is data-aware sound.

Example III.3. The CG of the DDSA of Ex. I.1 contains
a node (p7, φ) where φ = (dp=0) ∧ (d⩾ 0) ∧ (p⩾ 0) ∧
(a⩾ 0)∧(t⩾ 0)∧(e⩾ 0)∧(0⩽ ds < 2160)∧(0⩽ dj < 1440).
However, the reachability of a final state from p7 is given by
reach final(p7) = (d=0)∨(d=2). Thus φ∧¬reach final(p7)
is satisfiable, which reflects the blocked run mentioned in
Ex. I.1, with last action a := send to prefecture. Ac-
cording to Alg. 1, this is repaired by adding a conjunct
tvarsa(reach final(p7)) to its guard. Since d is written by
this transition, we add the write guard dw =0 ∨ dw =2. In
a second loop iteration of repairRestrict, a similar blocked
state with p5 is detected, for d being different from 0 and 1.
We thus extend the guard of appeal to judge with conjunct
dw =0 ∨ dw =1, after which the DDSA is data-aware sound.

Note that in repairRestrict, constraint graphs must be re-
computed since the DDSA changes. Even if the constraint
graph for the DDSA of the input DPN is finite, it is in
general not clear whether this also holds for repaired DDSAs.
However, we point out one relevant case where this is guar-
anteed: MC-DDSAs are DDSAs where all guards are boolean
combinations of monotonicity constraints (MCs), i.e., variable-
to-variable and variable-to-constant comparisons, such DDSAs
have finite CGs [11]. For instance, Ex. II.2 is a MC-DDSA.
For MC-DDSAs, all formulas in CGs are also conjunctions of
MCs. Hence, also all guards in repaired DDSAs as returned by
repairRestrict are MCs, so that the repaired DDSA has again
a finite CG. We thus have:

Remark III.4. repairRestrict terminates on MC-DDSAs.

B. Repairing Deadlocks by Extending Behavior

We next consider the approach based on extending behavior
by executing the procedure repairExtend shown in Alg. 2. Here
the subroutine rvars(ψ) replaces all variables v in ψ by vr.
Note that this only adds tests on the current values of variables.



The procedure repairExtend works similarly to
repairRestrict, with the difference that once a blocked
state corresponding to node (b, φ) in the constraint graph is
found, we modify an outgoing transition from b by relaxing its
guard, namely this transition is allowed for all configurations
that were previously blocked, i.e., that satisfy ¬reach final(b).
We add two technical remarks: In line 9, a state b′ with
b a−→ b′ must exist because the underlying Petri net is sound.
The condition that there is a node (b′, φ′) that is not blocked
is needed for termination; such a choice is always possible,
intuitively by taking a maximal path to a blocked state. The
subformula keepa defined in line 11 is added to ensure that
the written variables in all disjuncts of guard(a) coincide.
We next show correctness of repairExtend, as well as that
the modifications are maximally conservative with respect to
behaviour, in the sense that only blocked runs are extended.

Proposition III.5. (1) If constraint graph computations ter-
minate then repairExtend terminates.

(2) If B′ = repairExtend(B) then B′ is data-aware sound.
(3) All runs of B are runs of B′.
(4) All runs of B′ that are not runs of B have as prefix a run

that is blocked in B.

Proof. (1) Every call of extendBlockedState adds to the guard
of an action a a disjunct rvars(reach final(b)) so that
a node (b, φ) is no longer blocked. If the DDSA and
its constraint graph are changed in later iterations of the
loop in repairExtend, guards become more relaxed, so that
(b, φ) remains unblocked. Thus, by the precondition in
line 9, every action is modified at most once.

(2) The loop in repairExtend is repeated as long as B has
blocked states and dead transitions are removed in the
end, so the returned DDSA must be data-aware sound.

(3) Clear, because B′ has more relaxed guards than B.
(4) We show that if Bi+1 = extendBlockedState(Bi) for some

Bi and Bi+1 and ρ is a run of Bi+1 but not of Bi, then ρ
has a prefix ρ′ that is blocked in Bi. Then the claim follows
by induction. Let (b, φ) be the node chosen in line 9,
and a the respective action. Then ρ must be of the form
ρ : (b0, α0)

∗−→ (bi−1, αi−1)
ai−→ (bi, αi)

∗−→ (bn, αn) for
some i ⩾ 0 where ai = a is the first occurrence of a in ρ
such that αi ̸|= reach final(bi); such an occurrence must
exist because ρ is not a run of B. Moreover, we must have
bi = b since action labels are unique. Given the run above,
by Lem. II.11 there is a path π to (b, φ′) in CGB s.t. σ(π)
abstracts of ρ|i and αi |= φ′. So αi|=φ′∧¬reach final(b),
hence by Prop. II.12, ρ|i is blocked.

As for the previous algorithm, repairExtend is not deter-
ministic: different repairs are possible by choosing different
nodes and actions a in line 9. We illustrate repairExtend on
two examples.

Example III.6. We consider again Ex. II.2, and resolve the
blocked state by adding behavior to the DDSA, We have
¬reach final({p1, p2}) = (t ⩽ 0), so we can e.g. set
guard(hammer) = (tr ⩽ 0 ∧ or > 0) ∨ (tr ⩽ 0) ≡ (tr ⩽ 0).

This resolves all blocked states; again the dead transition reset
must be removed afterwards.

Example III.7. Also Ex. I.1 can be repaired by extension
instead of restriction. Given the CG node (p7, φ) mentioned
in Ex. III.3, where reach final(p7) = (d=0)∨(d=2), we can
e.g. relax the guard of τ6 to d=2 ∨ ¬((d=0) ∨ (d=2)) ≡
(d=2)∨(d ̸=0). Subsequently, the guard of τ5 can be relaxed
to (d=0)∨(d ̸=1). At this point, the modified process is data-
aware sound.

Since for MC-DDSAs all formulas in constraint graphs are
conjunctions of MCs, also all guards in repaired DDSAs as
returned by repairExtend are MCs, for reasons as mentioned
before Rem. III.4, so computed CGs are again finite. Hence,

Remark III.8. repairExtend terminates on MC-DDSAs.

IV. IMPLEMENTATION AND EXPERIMENTS

In this section, we describe the implementation of our repair
approach, and its evaluation in preliminary experiments.

A. Implementation

We implemented our soundness repair procedure on top of
the open-source tool ada1 (arithmetic DDS analyzer), which
has already functionality to check soundness [11]. It is a
simple command line tool written in Python, but a web
interface is available as well.2 The tool takes as input a DPN
in pnml format, or a DDSA in a simple json format; the latter
is described in the tool documentation. Both repair procedures
repairRestrict and repairExtend are implemented as described
in Alg. 1 and 2. As output, ada reports dead transitions, dead
states, modified guards, and the modified DDSA.

B. Experiments

To assess the practicality of our approach, we performed (a)
an experiment where we applied the repair procedures to DPNs
from the literature to check feasibility, and (b) an experiment
to understand how repair influences conformance with a log.

Process repair experiment. We tested our repair procedure
on DPNs from the literature, as well as some synthetic
examples. Tab. I reports the results. DPNs (a)–(e) are all those
DPNs that were recognized as not data-aware sound in [11].
For both repairRestrict and repairExtend, we list the time
required by the repair procedure in seconds (time) and the
number of loop iterations (its), respectively. Example (d) has
zero loop iterations because it has dead transitions but no
blocked states. In general, we found that repairExtend requires
slightly more time than repairRestrict. This is likely because
the computation time is dominated by the time needed to
compute constraint graphs. The complexity of CGs depends
on the amount of allowed behavior, so that CGs for DDSAs
produced by repairExtend tend to be larger.

Further details about the experiments such as the repaired
processes, can be found on an accompanying website.3

1https://gitlab.inf.unibz.it/SarahMaria.Winkler/ada
2https://soundness.adatool.dev/
3https://soundness.adatool.dev/repair.html

https://gitlab.inf.unibz.it/SarahMaria.Winkler/ada
https://soundness.adatool.dev/
https://soundness.adatool.dev/repair.html


process repairRestrict repairExtend
time its time its

(a) road fines normative [16, Fig. 7] 50s 2 71s 2
(b) road fines mined [14, Fig. 12.7] 24s 1 22s 1
(c) dig. whiteboard/transfer [14, Fig. 14.3] 2.1s 1 3s 1
(d) package handling [8, Fig. 5] 6s 0 6s 0
(e) auction [10, Ex. 1.1] 8s 1 20s 1
(f) auction from Ex. II.2 2.5s 1 2.7s 1
(g) livelock example 2.1s 1 2.4s 1

TABLE I
REPAIR EXPERIMENTS

Conformance checking experiment. As already com-
mented, the main use case of our approach is within a process
discovery pipeline in which a model is discovered from an
event log and afterwards repaired in case it is not data-aware
sound. It is therefore desirable that the repaired model still
allows as many traces in the event log as possible, i.e., that
the conformance score is not affected, in the spirit of [5].

We thus performed a conformance checking experiment
with a DPN that is not data-aware sound and where an event
log is available: The DPN (a) from Tab. I was mined from
an event log of 150370 traces [16], exploiting both fully
automatic discovery techniques and expert domain knowledge.
To understand whether the repaired model still allows to
replay the behavior recorded in the event log, we checked
how conformance of the repaired processes compares to that
of the original DPN. For the experiment, the data-aware
conformance checker cocomot [6] was run on the above-
mentioned log with (1) the original DPN, (2) the DPN obtained
from repairRestrict, as described in Ex. III.3, and (3) the
DPN obtained from repairExtend, as described in Ex. III.7,
and we compared the average cost of an optimal alignment:
This was (1) 1.2009 for the original DPN, (2) 1.2009 for
the result of repairRestrict, and (3) 1.1305 for the result of
repairExtend. Thus, for the DPN repaired by repairRestrict,
conformance remains the same (in fact, not a single trace is
aligned differently), so the repair did not harm conformance.
Since repairRestrict restricts behaviour, it is impossible that
the average distance decreases, so this is the best possible
result that one can hope for. On the other hand, for the DPN
repaired by repairExtend, conformance effectively improves as
the average distance decreases. We see this as an experimental
confirmation of Props. III.1 and III.5 that our repair procedure
is maximally conservative with respect to behavior.

V. CONCLUSION

In this paper two procedures to repair violations of data-
aware soundness in DPNs were presented, which are im-
plemented on top of ada, and evaluated on some examples.
We provide proofs, as well as some experimental evidence,
that the modifications are minimal as far as behavior is
concerned. Our procedure is based on three design decisions
that we find reasonable, although they are surely not the only
possible ones. 1) The procedure is automatic in that no user
feedback is required. While this minimizes the requirements
on user expertise, it is conceivable that an interactive procedure

allowing expert user feedback could lead to better results for
some applications. 2) We follow the paradigm of behavioural
conservatism, and show that the set of accepted process runs
is unchanged as much as possible. Other approaches are
conceivable, e.g. one could aim at minimizing the number of
guard changes or their syntactic distance. 3) Our procedure is
conservative with respect to the control flow, motivated by the
common two-phase discovery approach. In some applications
it might be preferable to repair control flow and data in a more
integrated way. We leave a procedure that holistically repairs
violations on the data and control flow levels for future work.
This also connects to the development of integrated techniques
for data-aware process discovery, which instead of applying
a two-phase approach [12], [15], discover both dimensions
at once. We also aim to study how the ideas and techniques
presented here can be integrated with frameworks for control-
flow process repair based on event logs [5], towards log-driven,
data-aware process repair.
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