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Abstract
Completion is one of the first and most studied techniques in term rewriting and fundamental
to automated reasoning with equalities. In an earlier paper we presented a new and formalized
correctness proof of abstract completion for finite runs. In this paper we extend our analysis
and our formalization to infinite runs, resulting in a new proof that fair infinite runs produce
complete presentations of the initial equations. We further consider ordered completion—an
important extension of completion that aims to produce ground-complete presentations of the
initial equations. Moreover, we revisit and extend results of Métivier concerning canonicity of
rewrite systems. All proofs presented in the paper have been formalized in Isabelle/HOL.
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1 Introduction

Reasoning with equalities is pervasive in computer science and mathematics, and has
consequently been one of the main research areas of automated deduction. Indeed completion
as introduced by Knuth and Bendix [12] has evolved into a fundamental technique whose
ideas appear throughout automated deduction whenever equalities are present. Many variants
of the original calculus have since been proposed.

On a given set of input equalities, Knuth-Bendix completion can behave in three different
ways: it may (1) succeed to compute a complete system in finitely many steps, (2) fail due
to unorientable equalities, or (3) continuously compute approximations of a complete system
without ever terminating.

As a remedy to problem (2), ordered completion was developed by Bachmair, Dershowitz,
and Plaisted [5]. Ordered completion never fails, though the price to be paid is that the
resulting system is in general only complete on ground terms. This is actually sufficient for
many applications in theorem proving. However, it is still possible that a ground-complete
system is only produced in the limit.
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19:2 Infinite Runs in Abstract Completion

I Example 1. Consider the equational system E = {aba ≈ bab} of the three-strand positive
braid monoid. Kapur and Narendran [10] proved that E admits no finite complete presentation.
However, taking the Knuth-Bendix order [12] with a and b of weight 1 and a > b in the
precedence, completion produces in the limit the following infinite complete presentation of E

{aba→ bab} ∪ {abnab→ babban−1 | n > 2}

which can be used to decide the validity problem for E .1

Bachmair, Dershowitz, and Hsiang [4] recast completion procedures in inference systems.
This style of presentation, abstract completion, has become the standard to describe completion
procedures and proof orders the accompanying way to establish correctness [2,4,5]. In earlier
work [8] we presented a new correctness proof for Knuth-Bendix completion which does not
rely on proof orders and was entirely formalized in Isabelle/HOL [15] as part of the formal
IsaFoR2 library. However, our results were limited to finite runs.

In the present paper we adapt our proof techniques to show correctness of both Knuth-
Bendix and ordered completion for potentially infinite runs. Though we emphasize the infinite
case, all results are valid for finite runs, too, and thus also apply to completion procedures in
practice. We believe that our proof techniques are better suited to formalization as they are
more local than the original approach in multiple respects. We will point out differences in
Sections 3 and 4.

Completion procedures raise the question whether their result is uniquely determined.
Métivier [14] showed that indeed canonical rewrite systems are unique up to renaming, once
a reduction order is fixed. We provide a new proof for a generalization of this result.

Contribution. We present new and comparatively short correctness proofs of Knuth-Bendix
completion and ordered completion, as well as some results about canonicity, one of which
generalizes the uniqueness result for complete systems due to Métivier [14]. All the proofs
that are presented in the following, have been formalized as part of IsaFoR (version 2.30).
With the exception of Knuth-Bendix completion for finite runs, to the best of our knowledge
none of these techniques has been formalized in a proof assistant before. Also note that in
the PDF version of this paper all corollary/lemma/theorem statements are active hyperlinks
to HTML versions of our formalized proofs.

Overview. The remainder of this paper is organized as follows. In Section 2 we present
required preliminaries followed by some mostly known results. Then, in Section 3, we recall
the inference rules for (abstract) Knuth-Bendix completion and present our new correctness
proof for infinite runs. Afterwards, in Section 4, we deal with ordered completion. Finally,
we give some canonicity results that are related to normalization equivalence in Section 5,
before we conclude in Section 6 with related and future work.

2 Preliminaries

We assume familiarity with the basic notions of abstract rewrite systems (ARSs), term rewrite
systems (TRSs), and completion [1, 2], but shortly recapitulate terminology and notation

1 Burckel [6] constructed a complete rewrite system consisting of four rules with an additional symbol,
which is no longer a presentation of E but can be also used to decide the validity problem for E .

2 The Isabelle Formalization of Rewriting: http://cl-informatik.uibk.ac.at/isafor/

http://cl-informatik.uibk.ac.at/isafor/
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that we use in the remainder. For an arbitrary binary relation →α, we write α←, ←→
α
, →=

α ,
→+
α , and →∗α to denote its inverse, its symmetric closure, its reflexive closure, its transitive

closure, and its reflexive transitive closure, respectively. We further use ↓α as abbreviation
for the relation →∗α · ∗α←, where from here on · denotes relation composition. If a→α b for
no b then we say that a is a normal form of →α and write a ∈ NF(→α). By a →!

α b we
abbreviate a→∗α b ∧ b ∈ NF(→α). Such an element b is called a normal form of a. Given
two binary relations →α and →β , we use →α / →β as shorthand for →∗β · →α · →∗β . A
renaming is a bijective variable substitution from V to V. A term s is a variant of a term
t if s = tσ for some renaming σ. If ` → r is a rewrite rule and σ is a renaming then the
rewrite rule `σ → rσ is a variant of `→ r. A TRS is said to be variant-free if it does not
contain rewrite rules that are variants of each other. Given terms s and t, we write s .= t if
sσ = t and s = tτ for some substitutions σ and τ . We say that s encompasses t, written
s ·� t, whenever s = C[tσ] for some context C and substitution σ. Proper encompassment is
defined by �· = ·� \ ·� and known to be well-founded. Two variable-disjoint variants `1 → r1
and `2 → r2 of rules in R such that `1µ = `2|pµ with p ∈ PosF (`2) and most general unifier
(mgu) µ, constitute an overlap. An overlap that does not result from overlapping two variants
of the same rule at the root, gives rise to a critical pair `2[r1]pµ ≈ r2µ. A critical pair is
called prime if all proper subterms of `1µ are R-normal forms. The set of (prime) critical
pairs of a TRS R is denoted by (PCP(R)) CP(R). For a well-founded order >, we write >mul
to denote its multiset extension and >lex to denote its lexicographic extension as defined by
Baader and Nipkow [1].

We make use of the following result due to Bachmair and Dershowitz [3]. Here quasi-
commutation of R over S means that the inclusion S ·R ⊆ R · (R ∪ S)∗ holds.

I Lemma 2. Let R and S be binary relations.
1. If R quasi-commutes over S and R is well-founded then R / S is well-founded.
2. If R / S and S are well-founded then R ∪ S is well-founded. J

I Lemma 3. If R is a well-founded rewrite relation then (R ∪�· ) / ·� is well-founded.

Proof. First we show the inclusion ·� · R ⊆ R · ·�. Suppose s ·� t R u. So s = C[tσ] for
some context C and substitution σ. Because R is closed under contexts and substitutions,
s R C[uσ]. Moreover, C[uσ] ·� u. This establishes the inclusion, and we conclude that R
(quasi-)commutes over ·�. Because R is well-founded, it follows from Lemma 2(1) that the
relation R / ·� is well-founded too. Then R / �· is well-founded since it is contained in
R / ·�. As �· is well-founded, it follows from Lemma 2(2) that R ∪ �· is well-founded. We
have ·� ·�· ⊆ �· and thus R ∪�· quasi-commutes over ·�. Another application of Lemma 2(1)
yields the well-foundedness of (R ∪�· ) / ·�. J

We use the following simple confluence criterion for ARSs. Let A = 〈A,→〉 be an ARS
equipped with a well-founded relation > on A, and let b a−→ c if and only if b→ c and a = b.
We say that A is source decreasing if the inclusion

← a→ ⊆ ∨a←−→∗

holds for all a ∈ A. Here ∨a←−→∗ denotes a conversion in which all steps are labeled with an
element smaller than a. Source decreasingness is the specialization of peak-decreasingness [8]
to source labeling [18, Example 6].

I Lemma 4. Every source decreasing ARS is confluent. J
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Source-decreasingness is closely related to the connectedness-below criterion of Winkler
and Buchberger [19]. Unlike the latter, it does not entail termination. For instance, for a > b
and a > c the non-terminating ARS

b a c

is source decreasing but the connectedness-below criterion does not apply.
The following definition and corresponding lemma [8] are key to the correctness results

for both Knuth-Bendix completion and ordered completion.

I Definition 5. Given a TRS R and terms s, t, and u, we write t Os u if s→+
R t, s→+

R u,
and t ↓R u or t←→PCP(R) u.

I Lemma 6. Let R be a TRS. If t R← s→R u then t O2
s u. J

3 Knuth-Bendix Completion

The original completion procedure by Knuth and Bendix [12] was presented as a concrete
algorithm. Later on, Bachmair, Dershowitz, and Hsiang [4] presented an inference system
for completion and showed that all fair implementations thereof (in particular the original
procedure) are correct. Abstracting from a concrete strategy, their approach thus has the
advantage to cover a variety of implementations. Below, we recall the inference system,
which constitutes the basis of the results presented in this section.

I Definition 7. The inference system KB of abstract (Knuth-Bendix) completion operates
on pairs (E ,R) of equations E and rules R over a common signature F . It consists of the
following inference rules:

deduce E ,R
E ∪ {s ≈ t},R if s R← · →R t compose E ,R] {s→ t}

E ,R∪ {s→ u} if t→R u

E ] {s ≈ t},R
E ,R∪ {s→ t} if s > t

E ] {s ≈ t},R
E ∪ {u ≈ t},R if s→R u

orient simplify
E ] {s ≈ t},R
E ,R∪ {t→ s} if t > s

E ] {s ≈ t},R
E ∪ {s ≈ u},R if t→R u

delete E ] {s ≈ s},R
E ,R collapse E ,R] {t→ s}

E ∪ {u ≈ s},R if t
·�−→R u

Here > is a fixed reduction order on T (F ,V) and the relation t ·�−→
R

u is defined as t −−−→
`→r

u

for some `→ r ∈ R such that t �· `.

Sternagel and Thiemann [16] showed that the strict encompassment condition in the
collapse inference rule is not necessary for finite runs. For infinite runs however, it is
indispensable: when omitted, the result need not be confluent [1, Example 7.2.9].

We write (E ,R) ` (E ′,R′) if (E ′,R′) can be obtained from (E ,R) by applying one of the
inference rules of Definition 7. A run of Knuth-Bendix completion is an infinite sequence of
the form

Γ: (E0,R0) ` (E1,R1) ` (E2,R2) ` · · ·

with R0 = ∅. We define

E∞ =
⋃
i>0
Ei R∞ =

⋃
i>0
Ri Eω =

⋃
i>0

⋂
j>i

Ej Rω =
⋃
i>0

⋂
j>i

Rj

http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Prime_Critical_Pairs.html#cpeaks_imp_nabla2
http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Abstract_Completion.html#KB
http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Abstract_Completion.html#KB
http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Abstract_Completion.html#KB
http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Abstract_Completion.html#KB
http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Abstract_Completion.html#KB
http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Abstract_Completion.html#KB
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Equations in Eω and rules in Rω are called persistent. Note that any finite run with final
state (En,Rn) can be extended to an infinite run (e.g., by deduce steps followed by delete
steps) such that (Eω,Rω) = (En,Rn). Hence the following results, even though stated for
infinite derivations, also capture the finite deductions of practical completion tools. The run
Γ is called non-failing if Eω = ∅, and fair if the inclusion

PCP(Rω) ⊆
⋃
i>0
←→
Ei

holds. Bachmair et al. [4] proved that for every non-failing fair run, the TRS Rω constitutes
a complete presentation of E0. The remainder of this section is dedicated to establish the
same result, but on a different route without encountering proof orders.

We start by showing a few properties of inference steps of completion. In the following
proofs, they allow us to keep track of how equations and rules are modified during the
completion process without caring about which inference rule was actually applied.

I Lemma 8. Suppose (E ,R) ` (E ′,R′). Then the following inclusions hold:
1. E ′ ∪R′ ⊆ ↔∗E ∪R
2. E \ E ′ ⊆ (→R′ · E ′) ∪ (E ′ · R′←) ∪ R′ ∪ R′−1 ∪ =

3. R \R′ ⊆ ( �·−→R′ · E ′) ∪ (R′ · R′←) J

Together these properties reveal that inference steps do not change the conversion relation:

I Corollary 9. If (E ,R) ` (E ′,R′) then the relations ∗←−−→
E∪R

and ∗←−−−→
E′∪R′

coincide. J

Below, we consider the infinite non-failing run Γ: (E0,R0) ` (E1,R1) ` (E2,R2) ` · · · .
First we show that all rewrite rules are compatible with the reduction order >.

I Lemma 10. The inclusions Rω ⊆ R∞ ⊆ > hold. J

Next, we verify that every equality in Ei can be turned into a valley in R∞. Note that
in contrast to the proof order approach [4] and to our previous correctness proof for finite
runs [8] we reason separately about equations and rules. This more local rationale simplifies
the analysis as we can use different well-founded induction arguments for the two cases,
rather than synthesizing an order that covers both.

I Lemma 11. The inclusion Ei ⊆ ↓R∞
holds for all i > 0.

Proof. Let s ≈ t ∈ Ei. By induction on {s, t} with respect to >mul we show s ↓R∞
t. Because

Eω = ∅, s ≈ t ∈ Ej−1 \ Ej for some j > i. Following Lemma 8(2), we distinguish three cases.
If s ≈ t ∈ Rj ∪R−1

j ∪= then the claim trivially holds.
If s→Rj

u and u ≈ t ∈ Ej for some term u then {s, t} >mul {u, t} and thus u ↓R∞
t by

the induction hypothesis. Hence also s ↓R∞
t.

Similarly, if s ≈ u ∈ Ej and u Rj
← t for some term u then {s, t} >mul {s, u} and we

obtain s ↓R∞
t as in the preceding case. J

I Corollary 12. The inclusion −→
Ei

⊆ ∗←−→
R∞

holds for all i > 0. J

In order to show confluence of Rω we use source labeling to label steps in R∞. The next
lemma allows us to transform every non-persistent rule `→ r into an Rω-conversion below `.
In the proof we employ the following extension of the reduction order > used in completion.

I Definition 13. We define � = ((> ∪�· ) / ·�)+.
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According to Lemma 3, � is a well-founded order.

I Lemma 14. The inclusion s−−→
R∞

⊆ 0 s←−→
Rω

∗ holds for all terms s.

Proof. Let s s−→R∞ t by employing the rewrite rule `→ r. We prove s 0 s←→∗Rω
t by induction

on (`, r) with respect to �lex. If ` → r ∈ Rω then the claim trivially holds. Otherwise,
`→ r ∈ Ri−1 \ Ri for some i > 0. Using Lemma 8(3), we distinguish two cases.

Suppose ` ·�−→`′→r′ u and u ≈ r ∈ Ei for some term u and rule `′ → r′ ∈ Ri. We obtain
` ·�−→`′→r′ u ↓R∞

r from Lemma 11. We have ` �· `′ and both ` > u and ` > r. It
follows that all rewrite rules `′′ → r′′ employed in ` ·�−→ u ↓R∞

r satisfy (`, r) �lex (`′′, r′′).
Moreover, all steps in ` ↓R∞

r are labeled with a term 6 `. Hence we obtain ` 0 `←→∗Rω
r

from the induction hypothesis.
Suppose `→ u ∈ Ri and u←`′→r′ r for some term u and rewrite rule `′ → r′ ∈ Ri. We
have (`, r) �lex (`, u) and (`, r) �lex (`′, r′). Moreover, both steps are labeled with a term
6 ` and thus we obtain ` 0 `←→∗Rω

r from the induction hypothesis.
So in both cases we have ` 0 `←→∗Rω

r and thus also s 0 s←→∗Rω
t. J

I Corollary 15. The relations ∗←−→
R∞

and ∗←−→
Rω

coincide. J

We arrive at the main theorem of this section. Note that Bachmair’s correctness proof [2]
uses induction with respect to a well-founded order on conversions to directly show that any
conversion of E∞ ∪R∞ can be transformed into a joining sequence of Rω. In contrast, we
prove confluence via source decreasingness. This allows us to concentrate on local peaks.

I Theorem 16. If Γ is fair then Rω is a complete presentation of E0.

Proof. We have Eω = ∅ because Γ is non-failing. The TRS Rω is terminating by Lemma 10.
We show source decreasingness of labeled Rω reduction with respect to the reduction order
>. So let t Rω

s←− s
s−→Rω u. From Lemma 6 we obtain t O2

s u. Let v Os w appear in this
sequence (so t = v or w = u). We have s > v, s > w, and

(v, w) ∈ ↓Rω
∪

⋃
i>0
←→Ei

by the definition of Os and fairness of Γ.
If v ↓Rω

w then v 0 v−−→∗Rω
· ∗
Rω

0 w←−− w and thus v ∨s←→∗Rω
w.

If v ←→Ei
w for some i > 0 then v ↓R∞

w by Lemma 11. We obtain v ∨s←→∗R∞
w as in the

previous case and thus v ∨s←→∗Rω
w by Lemma 14.

Hence t ∨s←→∗Rω
u. Confluence of Rω now follows from Lemma 4. It remains to show

←→∗E0
=←→∗Rω

. Using Corollary 9 we obtain →Ei ∪Ri
⊆ ←→∗E0

by a straightforward induction
on i. This in turn yields ←→∗E0

=←→∗E∞ ∪R∞
. From Corollary 12 we infer ←→∗E∞ ∪R∞

=←→∗R∞

and we conclude by an appeal to Corollary 15. J

I Example 17. Consider the equational system E and the KBO > from Example 1. Let Pn
denote the TRS {abi+1ab→ babbai | 1 6 i 6 n}. One possible infinite completion run is the
following:

(E ,∅) `orient (∅, {aba→ bab}) `deduce ({abbab ≈ babba}, {aba→ bab})
`orient (∅, {aba→ bab} ∪ P1) `deduce ({abbbab ≈ babbaa}, {aba→ bab} ∪ P1)
`orient (∅, {aba→ bab} ∪ P2) ` · · ·

http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Abstract_Completion.html#slab_R_inf_subset
http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Abstract_Completion.html#rstep_R_inf_conv_iff
http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Completion_Fairness.html#infinite_fair_run
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If this run is continued in a fair way we subsequently construct the TRSs Pn and can in the
limit obtain the result Rω = {aba→ bab} ∪ {abi+1ab→ babbai | 1 6 i}, which is complete
according to Theorem 16.

4 Ordered Completion

In this section > is a fixed ground-total reduction order, i.e., for all ground terms s, t ∈ T (F)
either s > t, t > s, or s = t holds. Given a binary relation R, we write R± for the symmetric
closure R ∪R−1. For a set E of equations, an ordered rewrite step is a rewrite step using a
rule from E>, which is the set of rewrite rules `σ → rσ such that ` ≈ r ∈ E± and `σ > rσ.

An extended overlap is given by two variable-disjoint variants `1 ≈ r1 and `2 ≈ r2 of
equations in E± such that `1µ = `2|pµ with p ∈ PosF (`2) and mgu µ. An extended overlap
which satisfies r1µ 6> `1µ and r2µ 6> `2µ gives rise to the extended critical pair `2[r1]pµ ≈ r2µ.
An extended critical pair is called prime if all proper subterms of `1µ are E>-normal forms.
The set of extended prime critical pairs among equations in E is denoted PCP>(E).

The following inference rules for ordered completion are due to Bachmair, Dershowitz,
and Plaisted [5]. In order to simplify the notation, we abbreviate R∪ E> to S, and use the
following shorthands. We write t ·�−→E> u if there exist an equation ` ≈ r ∈ E±, a context C,
and a substitution σ such that t = C[`σ], u = C[rσ], `σ > rσ, and t �· `. The union of −→R
and ·�−→E> is denoted by ·�1−−→S and we write ·�2−−→S for the union of ·�−→R and ·�−→E> .

I Definition 18. The inference system oKB of ordered completion operates on pairs (E ,R)
of equations E and rules R over a common signature F . It consists of the following inference
rules:

deduce E ,R
E ∪ {s ≈ t},R if s←−−−

R∪E
· −−−→

R∪E
t compose E ,R] {s→ t}

E ,R∪ {s→ u} if t −→S u

E ] {s ≈ t},R
E ,R∪ {s→ t} if s > t

E ] {s ≈ t},R
E ∪ {u ≈ t},R if s

·�1−−→S u

orient simplify
E ] {s ≈ t},R
E ,R∪ {t→ s} if t > s

E ] {s ≈ t},R
E ∪ {s ≈ u},R if t

·�1−−→S u

delete E ] {s ≈ s},R
E ,R collapse E ,R] {t→ s}

E ∪ {u ≈ s},R if t
·�2−−→S u

The deduce rule may be applied to any peak, though in practice it is typically limited to
the addition of extended critical pairs. We write (E ,R) `o (E ′,R′) if (E ′,R′) can be reached
from (E ,R) by employing one of the inference rules of Definition 18. We start by stating the
equivalents of Lemma 8 and Corollary 9 for ordered completion.

I Lemma 19. Suppose (E ,R) `o (E ′,R′). Then the following inclusions hold:
1. E ′ ∪R′ ⊆ ∗←−−→

E ∪R

2. E \ E ′ ⊆ ( ·�1−−→
S′
· E ′±)± ∪ R′± ∪ =

3. R \R′ ⊆ ( ·�2−−→
S′
· E ′) ∪ (R′ · ←−

S′
) J

I Corollary 20. If (E ,R) `o (E ′,R′) then the relations ∗←−−→
E∪R

and ∗←−−−→
E′∪R′

coincide. J

Below, we consider the infinite run Γ: (E0,R0) `o (E1,R1) `o (E2,R2) `o · · · .
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I Lemma 21. The inclusions Rω ⊆ R∞ ⊆ > and Eω ⊆ E∞ hold. J

Unlike for Knuth-Bendix completion we do not assume Γ to be non-failing, and in general
Ei ⊆ ↓R∞

does not hold. So we take a different route. Given a rewrite relation → and
a set S of terms, we write t S−→ u if t → u, s > t, and s′ > u for some terms s, s′ ∈ S.
Since both → and > are closed under contexts and substitutions, we have C[tσ] S′

−→ C[uσ]
whenever t S−→ u and S′ = {C[sσ] | s ∈ S}, for all contexts C and substitutions σ. We use
this relation to show that any equation step below a term set S eventually turns into a
conversion over R∞ ∪ Eω that is still below S. Note that just like in Section 3 we avoid the
use of a synthesized termination argument by handling equations and rules separately.

I Lemma 22. The inclusion S−−→
E∞

⊆ S←−−−−→
R∞ ∪Eω

∗ holds for all sets S of terms.

Proof. Let t ≈ u ∈ E∞. We prove

S−−−→
t≈u

⊆ S←−−−−→
R∞ ∪Eω

∗

by induction on {t, u} with respect to the well-founded order �mul. If t ≈ u ∈ E±ω then the
claim follows trivially. Otherwise, t ≈ u ∈ (Ei−1 \ Ei)± for some i > 0. Using Lemma 19(2),
we distinguish two subcases.

Suppose t ≈ u ∈ ( ·�1−−→Si
· E±i )±. There exist a term t′ and an equation v′ ≈ u′ ∈ E±i such

that {t, u} = {t′, u′} and t′ ·�1−−→Si v
′. It is sufficient to show

t′
{t′,u′}←−−−−→
R∞ ∪Eω

∗ v′ and v′
{t′,u′}←−−−−→
R∞ ∪Eω

∗ u′

The second conversion follows from t′ > v′ and the induction hypothesis for v′ ≈ u′ ∈ E±i ,
which is applicable as {t, u} = {t′, u′} �mul {v′, u′}. The first conversion is obtained as
follows. Because of t′ ·�1−−→Si

v′, we have t′ →Ri
v′ or t′ ·�−→E>

i
v′. If t′ →Ri

v′ then this
step can be labeled with {t′, u′} as t′ > v′. Otherwise, there exist an equation ` ≈ r ∈ E±i ,
a context C, and a substitution σ such that t′ = C[`σ], v′ = C[rσ], `σ > rσ, and t′ �· `.
We have t′ � ` and t′ � r as t′ ·� `σ > rσ ·� r. Therefore {t′, u′} �mul {`, r} holds, so

`
{`,r}←−−−−→
R∞ ∪Eω

∗ r

follows from the induction hypothesis. Closure under contexts and substitutions now
yields t {t,u}←−−→∗R∞∪Eω

u.
If t ≈ u ∈ R±i ∪= then t {t,u}←−−→

R∞

= u.
In both cases t {t,u}←−−→∗R∞∪Eω

u holds. Since S contains upper bounds of t and u with respect
to >, the desired inclusion follows from the closure under contexts and substitutions of
→R∞∪Eω and >. J

Next, we show that a rewrite step that uses a rule in R∞ and is below a term set S
eventually turns into a conversion over persistent rules and equations that is still below S.
We write gt for the set {u ∈ T (F ,V) | t � u}.

I Lemma 23. The inclusion S−−→
R∞

⊆ S←−−−−→
Rω ∪Eω

∗ holds for all sets S of terms.

Proof. Let ` ≈ r ∈ R∞. We prove
S−−−→
`→r

⊆ S←−−−−→
Rω ∪Eω

∗
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by induction on (`, r) with respect to the well-founded order �lex. If `→ r ∈ Rω then the
claim trivially holds. Otherwise, there is some i > 0 such that ` → r ∈ Ri−1 \ Ri. From
Lemma 22 and the induction hypothesis the inclusions

T−−−−−−→
R∞ ∪E∞

⊆ T←−−−−→
R∞ ∪Eω

∗ ⊆ T←−−−−→
Rω ∪Eω

∗ (1)

are obtained for every set T ⊆ g`. Using Lemma 19, we distinguish two cases.
Suppose ` ·�2−−→Si u and u ≈ r ∈ Ei for some term u. There exist an equation `′ ≈ r′ ∈
R∞ ∪ E±∞, a context C and a substitution σ such that ` = C[`′σ], u = C[r′σ], `σ > rσ,
and ` �· `′. We have ` � `′, r′ as ` �· `′ and ` ·� `′σ > r′σ ·� r′ and thus `′ {`

′}←−→R∞∪E∞ r′.
Since {`′, r′} ⊆ g` we obtain `′

{`′,r′}←−−−→∗Rω∪Eω
r′ from (1). Therefore, ` {`}←−→∗Rω∪Eω

u

follows from closure under contexts and substitutions and ` > u. Again from ` > u, r we
obtain u g`←→R∞∪E∞ r and thus u g`←→Rω∪Eω

r follows from (1).
Suppose `→ u ∈ Ri and u Si

← r for some term u. We have r > u and thus (`, r) �lex
(`, u). Hence we can apply the induction hypothesis to ` {`}−−−→

`→u
u, yielding ` {`}←−→∗Rω∪Eω

u.
From ` > r > u we obtain u g`←→R∞∪E∞ r and thus u g`←→∗Rω∪Eω

r follows by (1).
In both cases ` {`}←−→∗Rω∪Eω

r holds. Since →Rω∪Eω and > are closed under contexts and
substitutions, the desired inclusion on steps using `→ r follows. J

We can combine the previous two lemmas to obtain an inclusion in conversions over
persistent equations and rules.

I Corollary 24. The inclusion S−−−−−−→
R∞ ∪E∞

⊆ S←−−−→
Rω∪Eω

∗ holds for all sets S of terms. J

Below, we specialize this result to ground terms.

I Corollary 25. If s←−→
E∞

t for ground terms s and t then s {s,t}←−−→
Sω

∗ t.

Proof. We obtain s {s,t}←−−→∗Rω ∪Eω
t from Corollary 24. Since > is ground-total, all Eω steps

in this conversion are (E>ω )± steps or identities. Hence s {s,t}←−−→
Sω

∗ t as desired. J

The run Γ is called fair if the inclusion

PCP>(Rω ∪ Eω) ⊆
⋃
i>0
←→
Ei

holds. The following lemma links extended prime critical pairs to standard critical pairs and
hence allows us to use results from Section 3 for our main correctness result (Theorem 27
below).

I Lemma 26. For a TRS R and a set of equations E the inclusion←−−−→
PCP(S)

⊆ ←−−−−−−→
PCP>(R∪E)

∪ ↓S
holds on ground terms.

Proof. Suppose s←→e t for ground terms s and t and a prime critical pair e : `2σ[r1σ]p ≈ r2σ

generated from the overlap 〈`1 → r1, p, `2 → r2〉 in S. Let ui ≈ vi be the equation `i ≈ ri if
`i → ri ∈ R and the equation in E± such that `i = uiτi and ri = viτi for some substitution τi
if `i → ri ∈ E>. In the former case we let τi be the empty substitution. Since the equations
u1 ≈ v1 and u2 ≈ v2 are assumed to be variable-disjoint, the substitution τ = τ1 ∪ τ2 is
well-defined. We distinguish two cases.

If p /∈ PosF (u2) then 〈u1 ≈ v1, p, u2 ≈ v2〉 is not an overlap and hence s ↓S t by the
(extended) Critical Pair Lemma [5].
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Suppose p ∈ PosF (u2). Since u2|pτσ = `2|pσ = `1σ = u1τσ there exist an mgu µ of
u2|p and u1, and a substitution ρ such that µρ = τσ. Because uiµρ = `iσ > riσ = viµρ,
viµ > uiµ is impossible. Hence e′ : u2µ[v1µ]p ≈ v2µ ∈ CP>(R∪ E) and

`2σ[r1σ]p = u2µρ[v1µρ]p = u2µ[v1µ]pρ←−→
e′

v2µρ = r2σ

Since e is prime, proper subterms of `2σ|p = u2µρ|p are irreducible with respect to S,
and hence the same holds for proper subterms of u2µ. It follows that e′ ∈ PCP>(R∪ E)
and thus `2σ[r1σ]p ←−−−−−−→

PCP>(R∪E)
r2σ. Hence also s←−−−−−−→

PCP>(R∪E)
t. J

This relationship between extended critical pairs among R∪ E and critical pairs among
S is the final ingredient for the main result of this section. As in the proof for Knuth-Bendix
completion, we establish correctness of ordered completion via source decreasingness.

I Theorem 27. If Γ is fair then Sω is ground-complete and ∗←−→
E0

= ∗←−−−→
Rω∪Eω

.

Proof. Termination of Sω is a consequence of Lemma 21 and the definition of E>ω . Next we
show that Sω is ground-confluent. To this end, we show that labeled Sω reduction is source
decreasing on ground terms. So let s, t, and u be ground terms such that t Sω

s←− s s−→Sω u.
From Lemma 6 we obtain t O2

s u (where Sω takes the place of R in the definition of Os). Let
v Os w appear in this sequence (so t = v or w = u and both terms are ground). We have
s > v, s > w, and

(v, w) ∈ ↓Sω
∪

⋃
i>0
←→
Ei

by the definition of Os, Lemma 26, and fairness of Γ.
If v ↓Sω

w then v 0 v−−→∗Sω
· ∗Sω

0 w←−− w and thus v ∨s←→∗Sω
w.

If v ←→Ei
w for some i > 0 then v ∨s←→∗Sω

w by Corollary 25.
Hence t ∨s←→∗Sω

u. Confluence of the ARS that is obtained by restricting Sω to ground terms
now follows from Lemma 4. It remains to show ←→∗E0

= ←→∗Rω∪Eω
. Using Corollary 20 we

obtain →Ei∪Ri
⊆ ←→∗E0

for all i by a straightforward induction argument. This in turn yields
←→∗E∞∪R∞

⊆ ←→∗E0
and in particular ←→∗Eω∪Rω

⊆ ←→∗E0
. The reverse inclusion follows from

Corollary 24 and the inclusion ←→∗E0
⊆ ←→∗E∞∪R∞

. J

5 Canonicity

In this section we revisit Métivier work [14], aiming at generalizing his uniqueness result for
canonical TRSs and at establishing a transformation to simplify ground-complete TRSs. A
key notion is normalization equivalence.

I Definition 28. Two ARSs A and B are said to be (conversion) equivalent if ←→∗A =←→∗B
and normalization equivalent if →!

A =→!
B.

The following example shows that the two equivalence notions defined above are different.

I Example 29. Consider the following ARSs:

A1 : a b B1 : a b

A2 : a b B2 : a b
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While A1 and B1 are conversion equivalent but not normalization equivalent, the ARSs A2
and B2 are normalization equivalent but not conversion equivalent.

The easy proof (by induction on the length of conversions) of the following result is
omitted.

I Lemma 30. Normalization equivalent terminating ARSs are equivalent. J

Note that the termination assumption can be weakened to weak normalization. However,
the present version suffices to prove the following lemma that we employ in our proof of
Métivier’s transformation result [14] (Theorem 37 below).

I Lemma 31. Let A and B be ARSs such that NF(B) ⊆ NF(A) and either
1. →B ⊆ →+

A or
2. →B ⊆ ←→∗A and B is terminating.
If A is complete then B is complete and normalization equivalent to A.

Proof. We first show →!
B ⊆ →!

A. In case (a), from the inclusion →B ⊆ →+
A we infer that B

is terminating. Moreover, →∗B ⊆ →∗A and, since NF(B) ⊆ NF(A), also →!
B ⊆ →!

A. For case
(b), →!

B ⊆ →!
A holds because →!

B ⊆ ←→∗A, so by confluence of A and NF(B) ⊆ NF(A) we
obtain →!

B ⊆ →!
A. Next we show that the reverse inclusion →!

A ⊆ →!
B holds in both cases.

Let a →!
A b. Because B is terminating, a →!

B c for some c ∈ NF(B). So a →!
A c and thus

b = c from the confluence of A. It follows that A and B are normalization equivalent. It
remains to show that B is locally confluent. This follows from the sequence of inclusions

B← · →B ⊆ ←→∗A ⊆ →!
A · !
A← ⊆ →!

B · !
B←

where we obtain the inclusions from →B ⊆ ←→∗A, confluence of A, termination of A, and
normalization equivalence of A and B, respectively. J

In the above lemma, completeness can be weakened to semi-completeness (i.e., the
combination of confluence and weak normalization), which is not true for Theorem 37 as
shown by Gramlich [7]. Again, the present version suffices for our purposes.

I Definition 32. A TRS R is left-reduced if ` ∈ NF(R \ {` → r}) for every rewrite rule
`→ r in R. We say that R is right-reduced if r ∈ NF(R) for every rewrite rule `→ r in R.
A reduced TRS is left- and right-reduced. A reduced complete TRS is called canonical.

Theorem 37 below states that we can always eliminate redundancy in a complete TRS.
This is achieved by the two-stage transformation defined below.

I Definition 33. Two TRSs R1 and R2 over the same signature F are called literally similar,
denoted by R1

.= R2, if every rewrite rule in R1 has a variant in R2 and vice-versa.

Given a TRS R, we write R/ .= for a set of representatives of the equivalence classes of
rules in R with respect to .=. In other words, R/ .= is a variant-free version of R.

I Definition 34. Given a terminating TRS R, the TRSs Ṙ and R̈ are defined as follows:

Ṙ = {`→ r↓R | `→ r ∈ R}/ .=
R̈ = {`→ r ∈ Ṙ | ` ∈ NF(Ṙ \ {`→ r})}

Here t↓R stands for an arbitrary but fixed normal form of t.
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The TRS Ṙ is obtained from R by first normalizing the right-hand sides and then taking
representatives of variants of the resulting rules, thereby making sure that the result does
not contain several variants of the same rule. To obtain R̈ we remove the rules of Ṙ whose
left-hand sides are reducible with another rule of Ṙ.

The following example shows why the result of Ṙ has to be variant-free.

I Example 35. Consider the TRS R1 consisting of the four rules

f(x)→ a f(y)→ b a→ c b→ c

Then the first transformation without taking representatives of rules would yield Ṙ1

f(x)→ c f(y)→ c a→ c b→ c

and the second one R̈1

a→ c b→ c

Note that R̈1 is not equivalent to R1. This is caused by the fact that the result of the first
transformation was no longer variant-free.

The following result is folklore; the proof has been formalized [8].

I Lemma 36. Two terms s and t are variants if and only if s .= t. J

I Theorem 37. If R is a complete TRS then R̈ is a normalization and conversion equivalent
canonical TRS.

The proof by Métivier [14, Theorem 7] is hard to reconstruct. The proof in [17, Exer-
cise 7.4.7] involves 13 steps with lots of redundancy. Our proof below proceeds by induction
on the well-founded encompassment order �· .

Proof. Let R be a complete TRS. The inclusions R̈ ⊆ Ṙ ⊆ →+
R are obvious from the

definitions. Since R and Ṙ have the same left-hand sides, their normal forms coincide. We
show that NF(R̈) ⊆ NF(Ṙ). To this end we show that ` /∈ NF(R̈) whenever `→ r ∈ Ṙ by
induction on ` with respect to the well-founded order �· . If `→ r ∈ R̈ then ` /∈ NF(R̈) holds.
So suppose `→ r /∈ R̈. By definition of R̈, ` /∈ NF(Ṙ \ {`→ r}). So there exists a rewrite
rule `′ → r′ ∈ Ṙ different from `→ r such that ` ·� `′. We distinguish two cases.

If ` �· `′ then we obtain `′ /∈ NF(R̈) from the induction hypothesis and hence ` /∈ NF(R̈)
as desired.
If ` .= `′ then by Lemma 36 there exists a renaming σ such that ` = `′σ. Since Ṙ is
right-reduced by construction, r and r′ are normal forms of Ṙ. The same holds for r′σ
because normal forms are closed under renaming. We have r Ṙ← ` = `′σ →Ṙ r′σ. Since
Ṙ is confluent as a consequence of Lemma 31(1), r = r′σ. Hence `′ → r′ is a variant of
`→ r, contradicting the assumption that TRSs are variant-free.

From Lemma 31(1) we infer that the TRSs Ṙ and R̈ are complete and normalization
equivalent to R. The TRS R̈ is right-reduced because R̈ ⊆ Ṙ and Ṙ is right-reduced. From
NF(R̈) = NF(Ṙ) we easily infer that R̈ is left-reduced. It follows that R̈ is canonical. It
remains to show that R̈ is not only normalization equivalent but also (conversion) equivalent
to R. This is an immediate consequence of Lemma 30. J

For our next result we need the following technical lemma.
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I Lemma 38. Let R be a right-reduced TRS and let s be a reducible term which is minimal
with respect to �· . If s→+

R t then s→ t is a variant of a rule in R.

Proof. Let ` → r be the rewrite rule that is used in the first step from s to t. So s ·� `.
By assumption, s �· ` does not hold and thus s .= `. According to Lemma 36 there exists
a renaming σ such that s = `σ. We have s →R rσ →∗R t. Because R is right-reduced,
r ∈ NF(R). Since normal forms are closed under renaming, also rσ ∈ NF(R) and thus rσ = t.
It follows that s→ t is a variant of `→ r. J

In our formalization, the above proof is the first spot where we actually need that R
satisfies the variable condition (more precisely, right-hand sides of rules do not introduce
fresh variables). The next result is the main result of this section.

I Theorem 39. Normalization equivalent reduced TRSs are unique up to literal similarity.

Proof. Let R and S be normalization equivalent reduced TRSs. Suppose ` → r ∈ R.
Because R is right-reduced, r ∈ NF(R) and thus ` 6= r. Hence ` →+

S r by normalization
equivalence. Because R is left-reduced, ` is a minimal (with respect to �· ) R-reducible term.
Another application of normalization equivalence yields that ` is minimal S-reducible. Hence
`→ r is a variant of a rule in S by Lemma 38. J

I Example 40. Consider the rewrite system R of combinatory logic with equality test,
studied by Klop [11]:

Sxyz → xz(yz) Kxy → x Ix→ x Dxx→ E

The rewrite system R is reduced, but neither terminating nor confluent. One might ask
whether there is another reduced rewrite system that computes the same normal forms for
every starting term. Theorem 39 shows that R is unique up to variable renaming.

We show that the corresponding result of Métivier [14, Theorem 8] is an easy consequence
of Theorem 39. Here a TRS R is said to be compatible with a reduction order > if ` > r for
every rewrite rule `→ r of R.

I Theorem 41. Let R and S be equivalent canonical TRSs. If R and S are compatible with
the same reduction order then R .= S.

Proof. Suppose R and S are compatible with the reduction order >. We show that →!
R ⊆

→!
S . Let s →!

R t. We show that t ∈ NF(S). Let u be the unique S-normal form of t. We
have t→!

S u and thus t←→∗R u because R and S are equivalent. Since t ∈ NF(R), we have
u→!

R t. If t 6= u then both t > u (as t→!
S u) and u > t (as u→!

R t), which is impossible.
Hence t = u and thus t ∈ NF(S). Together with s←→∗S t, which follows from the equivalence
of R and S, we conclude that s→!

S t. We obtain →!
S ⊆ →!

R by symmetry. Hence R and S
are normalization equivalent and the result follows from Theorem 39. J

The final result in this section is in the spirit of Theorem 37 but for ordered completion,
showing that a ground-complete system can be interreduced to some extent. Let > again be
a ground-total reduction order.

I Definition 42. Given a ground-complete system S = R∪ E>, we define

R′ = {`→ r | `→ r ∈ Q̇ and ` ∈ NF( ·�−→S)}
E ′ = {s↓R′ ≈ t↓R′ | s ≈ t ∈ E} \=

where Q = R∪ (E± ∩>).
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Here we write t ·�−→S u if there are a rule ` → r ∈ S, a context C, and a substitution
σ such that t = C[`σ], u = C[rσ], and t �· `. For example, if E is empty and R consists
of the single rule f(x, y) → g(x) we have f(y, z) ∈ NF( ·�−→S), but f(g(x), y) /∈ NF( ·�−→S) and
f(x, x) /∈ NF( ·�−→S).

I Theorem 43. If S = R∪ E> is ground-complete then S ′ = R′ ∪ E ′> is ground-complete
and normalization and conversion equivalent on ground terms.

Proof. We first show NF(S ′) ⊆ NF(S). For a rule ` → r ∈ S, let b`→r be ⊥ if ` → r ∈ Q
and > otherwise. We prove ` /∈ NF(S ′) for every rule `→ r ∈ S, by induction on (`, b`→r)
with respect to the lexicographic combination of �· and the order where > > ⊥.

If ` → r ∈ Q two cases can be distinguished. If ` /∈ NF( ·�−→S) then ` �· `′ for some rule
`′ → r′ ∈ S and thus `′ /∈ NF(S ′) by the induction hypothesis. Hence also ` /∈ NF(S ′).
If ` ∈ NF( ·�−→S) then, by construction of R′, there is some rule ` → r′ ∈ R′ (modulo
renaming), so ` /∈ NF(S ′).
If ` → r /∈ Q then ` = uσ and r = vσ for some equation u ≈ v ∈ E± and substitution
σ such that ` > r. We distinguish two cases. First, if u ∈ NF(R′) then u = u↓R′ . We
have ` > r > v↓R′σ because R′ ⊆ > and hence u 6= v↓R′ . It follows that u ≈ v↓R′ ∈ E ′±
and thus ` → v↓R′σ ∈ E ′�. Hence ` /∈ NF(S ′). Second, if u /∈ NF(R′) then u /∈ NF(Q̇)
since R′ ⊆ Q̇. So there exists a rule `′ → r′ ∈ Q such that u ·� `′. Clearly ` ·� `′. Since
`→ r /∈ Q, the induction hypothesis yields `′ /∈ NF(S ′). Hence also ` /∈ NF(S ′).

We next establish the inclusion →S′ ⊆ ←→∗S on ground terms. We have R′ ∪ E ′ ⊆ ←→∗R∪E
by construction. For ground terms s and t, a step s →S′ t implies s ←→R′∪E′ t and hence
existence of a conversion s ←→∗R∪E t. We can also obtain such a conversion where all
intermediate terms are ground by replacing every variable with some ground term. Since the
reduction order > is ground-total, →R∪E ⊆ ←→=

S holds on ground terms. Hence there is a
conversion s←→∗S t.

Moreover, the system S ′ is clearly terminating as it is included in >. Thus the result
follows from Lemma 31(2), viewing S and S ′ as ARSs on ground terms. J

We illustrate the transformation of Definition 42 on a concrete example.

I Example 44. Consider the following system with R consisting of one rule and E consisting
of three equations:

s(s(x)) + s(x)→ s(x) + s(s(x)) x+ s(y) ≈ s(x+ y) x+ y ≈ y + x

s(x) + y ≈ s(x+ y)

It is ground-complete for the lexicographic path order [9] with + > s as precedence. We
have Q = R ∪ {x + s(y) → s(x + y), s(x) + y → s(x + y)}. Since the term s(s(x)) + s(x)
is reducible by the rule s(x) + x→ x+ s(x) ∈ S and s(s(x)) + s(x) ·� s(x) + x, the rule of
R does not remain in R′. Hence, R′ = {x + s(y) → s(x + y), s(x) + y → s(x + y)} and
E ′ = {x+ y ≈ y + x}.

One may wonder whether R′ can simply be defined as Q̈ instead of imposing a strict
encompassment condition. The following example shows that this destroys reducibility.

I Example 45. Consider the following system where R consists of two rules and E consists
of one equation:

f(x, y)→ g(x) f(x, y)→ g(y) g(x) ≈ g(y)

http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Ordered_Completion.html#reduced_ground_complete
http://cl-informatik.uibk.ac.at/isafor/v2.30/FSCD2017/Ordered_Completion.html#reduced_ground_complete
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Then R∪E> is ground-complete if > is the lexicographic path order with f > g as precedence.
We have R′ = Q̇ = Q = R and E ′ = E but Q̈ = ∅.

Note that we obtain an equivalent ground-complete system if we add, for instance, an
equation g(g(x)) ≈ g(y). This shows that even systems which are simplified with respect to
the procedure suggested by Theorem 43 are not unique.

6 Conclusion

We gave new and concise correctness proofs of Knuth-Bendix and ordered completion. These
results specifically apply to infinite runs, a case in which the reasoning becomes more tedious
as the encompassment condition for the collapse rule is essential. We also contributed new
results about canonicity, related to normalization and conversion equivalence. In particular
we generalized the distinguished theorem by Métivier on uniqueness of canonical rewrite
systems. All our results are formalized in IsaFoR.

As future work, we want to extend our proofs and formalization to cover completeness
results for both Knuth-Bendix and ordered completion [2, 5]. Furthermore, we will apply our
techniques to AC completion and the decidable case of ground completion.
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