
Monitoring Arithmetic Temporal Properties on Finite Traces

Paolo Felli,1 Marco Montali,2 Fabio Patrizi,3 Sarah Winkler2

1Università di Bologna – Bologna – Italy, paolo.felli@unibo.it
2Free University of Bozen-Bolzano – Bolzano – Italy, {montali,winkler}@inf.unibz.it

3Sapienza Università di Roma – Rome – Italy, patrizi@diag.uniroma1.it

Abstract

We study the monitoring of linear-time arithmetic properties
against finite traces generated by an unknown dynamic sys-
tem. The monitoring state is determined by considering at
once the trace prefix seen so far, and all its possible finite-
length, future continuations. This makes monitoring at least
as hard as satisfiability and validity. Traces consist of finite
sequences of assignments of a fixed set of variables to numer-
ical values. Properties are specified in a logic we call ALTLf ,
combining LTLf (LTL on finite traces) with linear arithmetic
constraints that may carry lookahead, i.e., variables may be
compared over multiple instants of the trace. While the mon-
itoring problem for this setting is undecidable in general, we
show decidability for (a) properties without lookahead, and
(b) properties with lookahead that satisfy the abstract, seman-
tic condition of finite summary, studied before in the context
of model checking. We then single out concrete, practically
relevant classes of constraints guaranteeing finite summary.
Feasibility is witnessed by a prototype implementation.

Introduction
Dynamic systems in AI are often constituted by autonomous
agents and heterogeneous components whose internal spec-
ification is either unknown or not accessible, so that well-
known techniques to ascertain their correctness at design-
time, such as model checking and testing, are not applica-
ble. This calls for approaches to check desired properties
at runtime, by monitoring the executions of the black-box
system under scrutiny. A widely known, solid approach to
monitoring is that of runtime verification (RV), where given
a logical property, the monitor emits a provably correct ver-
dict (Leucker and Schallhart 2009). Formalisms based on
LTL and its extensions have indeed been extensively applied
when monitoring multi-agent systems (Dastani, Torroni,
and Yorke-Smith 2018), software components (Leucker and
Schallhart 2009) and business processes (Ly et al. 2015).

Leucker and Schallhart (2009) highlight two essential se-
mantic desiderata of linear-time monitors. First, a monitored
trace has a finite length, which calls for a finite-trace seman-
tics. Second, a trace is the prefix of an unknown, full trace.
Thus, the verdict of the monitor should be anticipatory (Bar-
tocci et al. 2018), i.e., depend not only on the data seen so

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

far, but also on its (infinitely many) possible continuations.
In addition, runtime monitors need to do as little computa-
tion as possible during monitoring, and therefore all the re-
quired machinery and anticipatory test conditions need to be
pre-computed. Similarly, the monitor itself cannot depend
on the specific trace being monitored, but should allow for
monitoring multiple traces against the same property.

In this spectrum, we build on the widely studied logic
LTLf , or LTL over finite traces (De Giacomo and Vardi
2013), where both the monitored prefixes and their infinitely
many suffixes have a finite (yet unbounded) length. Specif-
ically, we focus on the more sophisticated setting of RV-
LTL by Bauer, Leucker, and Schallhart (2010), where the
verdict of the monitor of a property ψ at each point in time is
one of four possible values: currently satisfied (ψ is satisfied
now but may be violated in a future continuation), perma-
nently satisfied (ψ is satisfied now and will necessarily stay
so), and the two complementary values of permanent and
current violation. Thus, RV-LTL monitoring is at least as
hard as satisfiability and validity. For propositional LTLf , an
RV-LTL monitor can be constructed from the deterministic
finite-state automaton (DFA) corresponding to the property,
by labeling each DFA state by an RV-LTL value, depending
on whether it is final and can reach final and non-final states
(Maggi et al. 2011; De Giacomo et al. 2022).

Prior work on LTLf monitoring like the above has often
focused on propositional traces, where states are described
by propositional interpretations. This coarse-grained repre-
sentation creates a large abstraction gap w.r.t. dynamic sys-
tems, which often generate data-aware traces where states
contain richer objects from an infinite domain, e.g., strings
or numbers. On the other hand, for richer logics partial meth-
ods have been devised, but without guarantees that the mon-
itoring task can be solved, e.g. (Reger, Cruz, and Rydeheard
2015). Aiming to bridge this gap, we (i) introduce an ex-
tension of LTLf , called ALTLf , which combines linear-
time operators with linear arithmetic constraints over data
variables within and across states, (ii) study how to con-
struct automata-based RV-LTL monitors for such formulae
and (iii) identify decidable classes of properties, given that
ALTLf monitoring is in general undecidable. The next ex-
ample illustrates the challenge that we address.

Example 1. Consider the monitoring of suspicious bidding
patterns in an on-line auction. The process is supposed

(but not guaranteed) to execute according to the following
transition system:

init act term
set

b′ =0, t ′ =T , p′> 0

exp

t ≤ 0

dec : t ′< t

bid : p′> p, b′ ̸= b, t ′ =T

There are three variables: the current price p (i.e., the last
bid); the id of the last bidder b, and a timer t. In the edge
labels, a primed variable (e.g. p′) indicates the next value
of the respective variable that is written by the transition
(e.g. p). The transition set fixes p to some base price and
initializes the timer to the duration T of a round. Then,
either the timer is decreased by transition dec, or a bidder
increases the price, upon which the timer is reset to T .
Finally, exp terminates the auction when the timer expires.
(We assume that all variables not explicitly written in
transition labels keep their value.) By adding a variable s
for the state, the process can be encoded in ALTLf :

(s= init) ∧ G(ψset ∨ ψdec ∨ ψbid ∨ ψexp) (P)
where, e.g.,ψset = (s= init∧s′ = act∧t ′ =T∧p′> 0), and
other transitions are encoded similarly. A first task could
then be to monitor formula P to check whether the actual
execution deviates from this specification.

In addition, during an auction, it is desirable to identify
users that exhibit shilling behavior, i.e., they drive up the
auction price for the seller. Given a user u, consider the fol-
lowing behavior patterns (Xu and Cheng 2007): (OB) Over-
bidding: u places an overbid (i.e.,increasing the price by
at least 20%) right before the timer expires. This can be
expressed as OBu := F(b′ =u ∧ t ≤ ϵ ∧ p′≥p · 1.2), for
some small ϵ. (AU) Aggressive underbidding: underbidding
means that the price increase is less than 3$, and aggressive
that the time gap between two bids is small (for simplicity,
we assume here in the next state). This can be expressed as
AU u := G(b ̸=u ∧ b> 0→ p′≥ p+3 ∧ b=u). Both (OB)
and (AU) likely imply shilling. The following is an example
process execution (also called a trace) with T = 2.

s init act act act act act act act
t 0 2 2 2 1 2 2 2
p 0 10 30 32 32 36 40 50
b 0 0 1 2 2 3 1 2

OB2 CV CV CV CV CV CV CV PS
AU 2 CS CS CS CS CS CS PV PV
shill2 CS CS CS CS CS CS CV PS

The lower part of this table shows monitoring results for the
trace, namely the RV values obtained for observing (OB)
and (AU) for user 2, as well as for shill2 := OB2 ∨ AU 2.
Note that the trace above conforms with the specification
P . A further task could be to monitor combinations of such
properties, such as P∧OB2, which gives the ability of antic-
ipatorily detect violations that cannot be ascribed to single
properties, but only to the interplay of multiple properties
and the current trace (De Giacomo et al. 2022).

The techniques presented in this paper show how to con-
struct anticipatory monitors for full ALTLf , to tackle exam-
ples like the above. Anticipatory monitoring for plain LTL

has been recognized as highly relevant in business process
management (BPM) (Ly et al. 2015; Maggi et al. 2014),
but these works ignore the recent trend of modelling data
in processes; with the present work we want to mitigate
this shortcoming. However, monitoring is also highly rel-
evant in other areas, like program verification (Havelund,
Reger, and Rosu 2019) and verification of cyber-physical
systems (Geist, Rozier, and Schumann 2014).

Technically, we follow Demri and D’Souza (2007) and
consider traces consisting of assignments of a fixed set of
variables to numeric values. A starting point is the approach
in (Felli, Montali, and Winkler 2022b), where automata-
based techniques are used to model check dynamic systems
against an extension of LTLf with linear arithmetic con-
straints, e.g., “the value of sensor x differs from that of sen-
sor y by 5 units until it exceeds 25”. However, that approach
has two prohibitive technical limitations. The first one is op-
erational: their automata are too weak for monitoring as they
are faithful only for reachability of final, but not of non-
final states. The second shortcoming is semantical: arith-
metic conditions can only relate variables within the same
state, but not across instants in the trace. For this reason
Demri and D’Souza (2007) and, more recently, Geatti, Gi-
anola, and Gigante (2022), allow properties to compare vari-
ables across states. Our logic ALTLf follows this route, en-
abling variable lookahead to reference variable values in dif-
ferent instants within arbitrary linear arithmetic constraints,
(cf. e.g. p′>p in Ex. 1). Our approach is thus substantially
different from (Demri and D’Souza 2007), which restricts
to variable-to-variable/constant comparisons to ensure de-
cidability of satisfiability. Instead, we allow arbitrary linear
arithmetic constraints with lookahead, making satisfiability
(and monitoring) undecidable even for simple formulae.

Despite the rich research body on monitoring, there are
few approaches that are anticipatory, feature full LTLf , and
incorporate arithmetic with lookahead (Falcone et al. 2021).
The seminal LOLA approach (D’Angelo et al. 2005) sup-
ports arithmetic with lookahead and finite traces, but is
not anticipatory. Also Faymonville et al. (2019) and (Basin
et al. 2015) have only bounded anticipation. More related is
MarQ (Reger, Cruz, and Rydeheard 2015), a strong, antici-
patory RV tool for finite traces with relations and arithmetic,
but its approach has no decidability guarantees.

We overcome these limitations as follows: (1) we show
that ALTLf monitoring is decidable for linear arithmetic
constraints without lookahead, and provide techniques to
construct automata-based RV-LTL monitors. (2) we show,
for formulae with lookahead, undecidability of ALTLf sat-
isfiability/monitoring. (3) To mitigate this, we study how
the abstract property of finite summary, introduced in (Felli,
Montali, and Winkler 2022b), can be employed for ALTLf
formulae with lookahead that satisfy this property, proving
decidability of monitoring and providing a technique to con-
struct automata-based RV-LTL monitors. (4) We use this
general result to show decidability for different concrete
classes of formulae enjoying finite summary, obtained by re-
stricting either the language of constraints, or the way these
interact with each other via lookahead. (5) A prototype tool
witnesses feasibility of our approach.

The structure of the paper reflects Contributions (1)–(5) in
this order, after the introduction of ALTLf and the monitor-
ing problem and a section about the construction of automata
for ALTLf properties afterwards.

Preliminaries
We consider the sorts int and rat with domains d(int) =
Z and d(rat) = Q. For a set of variables V , let Vσ ⊆V be
those in V of sort σ. We first define arithmetic constraints:

Definition 2. Given a set of variables V , expressions eσ of
sort σ and constraints c are defined as follows:
eσ := vσ | kσ | eσ + eσ | kσ · eσ
c := eσ = eσ | eσ ̸= eσ | eσ < eσ | eσ ≤ eσ |

eint ≈n eint | eint ̸≈n eint
where kσ ∈ d(σ) is a constant, vσ ∈ Vσ a variable of appro-
priate sort, and ≈n denotes congruence modulo n ∈ N.

The set of all constraints over V is denoted by C(V). E.g.,
x<y+ z, and x− y ̸=2 are constraints independent of the
sort of x, y, z, but u ≈3 v+1 requires that u and v have sort
int . We also consider boolean formulas with constraints as
atoms; these are in the realm of SMT with linear arithmetic,
which is decidable and admits quantifier elimination (Pres-
burger 1929): if φ is a formula with free variables X ∪ {y}
and constraint atoms, there is some φ′ with free variables X
that is logically equivalent to ∃y.φ, i.e., φ′≡∃y.φ.

From now on, let V be a fixed, finite, non-empty set of
variables called state variables. An assignment α maps ev-
ery v ∈V to a value α(v) in the domain of its sort. The set
of variables with lookahead V consists of all v′···′ such that
v ∈ V is decorated with i prime symbols ′, for i ≥ 0, and
we say that v has lookahead i. Intuitively, v′···′ with i primes
refers to the value of v looking i instants into the future. For
instance, v′ refers to the value of v in the next step, while v′′
is the value of v two steps ahead.

Definition 3. Let L be the set of properties ψ defined by
the following grammar, where c ∈ C(V) is a constraint over
variables with lookahead:

ψ ::= c | ψ∧ψ | ¬ψ | Xsψ | ψ U ψ

Here Xs is the next operator (we use Xw for weak next)
and U is the until operator. When needed, we write L(V)
instead of L to make explicit the set of variables in con-
straints. The usual transformations apply, namely ψ1∨ψ2 ≡
¬(ψ1∧ψ2), Xwψ ≡ ¬(Xs¬ψ), Fψ ≡ ⊤ U ψ, Gψ ≡ ¬F¬ψ;
moreover ⊤ ≡ (v = v) for some v ∈V , and ⊥ ≡ ¬⊤.
A property ψ has lookahead m if the maximal lookahead
of a variable in ψ is m. E.g., all properties in Ex. 1 are in
L(V) for V = {p, t , b}. Properties p′> p and AU 2 have
lookahead 1, but t ≤ 0 has lookahead 0. Note that looka-
head strictly extends the expressiveness of the language: for
instance, the simple property p′> p cannot be expressed by
using Xs and Xw alone.

Properties are evaluated over traces: a trace τ of length
n≥ 1 is a finite sequence α0, α1, . . . , αn−1 of assignments
with domain V . We write τ(i) to denote αi, for 0≤ i<n. A
constraint c is well-defined at instant i of τ if 0 ≤ i < n and
all variables with lookahead j in c satisfy i+ j < n. The

upper part of the table in Ex. 1 is an example of a trace, and
e.g., p′ ≥ p is well-defined at all but the last instant.
Definition 4. If an expression e is well-defined at instant
i of a trace τ of length n, its evaluation [τ, i](e) at instant i is:

[τ, i](k)= k [τ, i](e+e2)= [τ, i](e1)+[τ, i](e2)
[τ, i](v′···′)= τ(i+j)(v) [τ, i](k · e)= k · [τ, i](e)
where v′···′ has lookahead j. Then, τ satisfies ψ ∈ L, de-
noted τ |= ψ, iff τ, 0 |= ψ holds, where, for 0 ≤ i:
τ, i |= e1 ⊙ e2 iff 0 ≤ i < n and either

– e1 ⊙ e2 is not well-defined for τ and i, or
– [τ, i](e1)⊙ [τ, i](e2) holds

τ, i |= ψ1 ∧ ψ2 iff τ, i |= ψ1 and τ, i |= ψ2

τ, i |= ¬ψ iff τ, i ̸|= ψ
τ, i |= Xsψ iff i < n− 1 and τ, i+1 |= ψ
τ, i |= ψ1 U ψ2 iff i < n and either τ, i |= ψ2, or

i<n−1, τ, i |= ψ1 and τ, i+1 |= ψ1 U ψ2

For instance, the trace in Ex. 1 satisfies OB2 but its proper
prefixes do not. Note that lookahead variables have a weak
semantics, as a constraint c holds if it contains a variable
v′···′ that refers to an instant beyond the end of the trace.
If instead a strict semantics is desired, one can replace c by
c∧Xs . . .Xs⊤, where the number of Xs operators equals the
lookahead of c.

We now define our main task, that is to monitor how the
satisfaction of a given property changes along a trace, that
is, by considering the trace (fragment) τ seen so far. As cus-
tomary (Bauer, Leucker, and Schallhart 2010), we consider
the set RV = {PS, CS, CV, PV} of four distinct monitoring
states: current satisfaction (CS), permanent satisfaction (PS),
current violation (CV) and permanent violation (PV).
Definition 5. A property ψ ∈ L is in monitoring state s ∈
RV after a trace τ , written τ |= Jψ = sK, if
• s = CS, τ |= ψ, and ττ ′ ̸|= ψ for some trace τ ′;
• s = PS, τ |= ψ, and ττ ′ |= ψ for every trace τ ′;
• s = CV, τ ̸|= ψ, and ττ ′ |= ψ for some trace τ ′;
• s = PV, τ ̸|= ψ, and ττ ′ ̸|= ψ for every trace τ ′.

E.g., τ |= Jψ = CSK means that ψ is currently true after τ
but there exists a possible continuation of τ (i.e., a trace ττ ′)
after which ψ is false. After a trace, a property ψ is in exactly
one possible monitoring state. For instance, the monitoring
states in the table in Ex. 1 reflect Def. 5 for the given trace
τ , e.g., τ |= JOB2 = PSK.

Given τ and ψ, the monitoring problem is to compute the
state s ∈ RV s.t. τ |= Jψ = sK. It is solvable if one can con-
struct a procedure for ψ that computes the monitoring state
for any given trace. Unfortunately, we have that in general:
Theorem 6. The monitoring problem is not solvable.

To see this, call a property ψ ∈ L satisfiable if τ |= ψ
for some (non-empty) trace τ . It can be shown that satisfia-
bility of L properties with lookahead 1 is undecidable, by a
reduction from reachability in 2-counter machines. Now, for
a formula of the form ψ = Xsψ

′ and a trace τ0 of length 1,
ψ′ is satisfiable iff τ0 |= Jψ = CVK, so satisfiability of ψ′

reduces to monitoring τ0 against ψ.
In this paper we study when monitoring is solvable. First,

we show that without loss of generality one can restrict to

properties with lookahead 1: Indeed, a property with looka-
headm>1 can be transformed into one withm=1 by adding
fresh variables and extending to these the assignments in the
trace in an appropriate way. In general, m−1 fresh book-
keeping variables are needed for each variable with looka-
headm>1. Intuitively, constraints are then rewritten to men-
tion only consecutive instants, using chains of next oper-
ators. E.g., ψ=G(x′′>x) is equivalent to ψ̂=G(u′>x ∧
Xw(u=x′)). The trace τ : {x=2}, {x=0}, {x=3} satis-
fies ψ and τ̂ : {x=2, u=0}, {x=0, u=3}, {x=3, u=0}
satisfies ψ̂, with τ̂ obtained from τ by assigning to u the sub-
sequent value of x, if it exists. A detailed proof of the next
result can be found in (Felli et al. 2022).

Lemma 7. Let ψ ∈ L(V) have lookaheadm. There is some
ψ1 ∈ L(V ∪X) with lookahead 1 for a set of fresh variables
X such that for every trace τ over V there is a trace τ̂ over
V ∪ X satisfying τ |= ψ iff τ̂ |= ψ1, where |τ̂ | = |τ | and
τ̂(i) agrees with τ(i) on V , for all i.

Automata for properties
In the sequel, we will develop first monitoring techniques
for L properties without lookahead, and then with looka-
head 1. Although the former case is simpler and could be
addressed by an ad-hoc approach resembling techniques for
propositional LTLf (Maggi et al. 2011), we adopt a uniform
approach for both cases. To this end, we first present the con-
struction of an automaton that represents a given property ψ;
this will be crucial in the later sections. As a preprocessing
step, two transformations are applied to the property:
(1) We assume ψ in negation normal form; so it may also
contain ∨, G, and Xw, so far considered syntactic sugar.
Note that for constraints with lookahead, negation cannot
be pushed to the constraint level, e.g., ¬(x′ =x) is not
equivalent to x′ ̸=x as the latter is satisfied by any trace
of length 1 but the former is not. In the construction, we
thus treat constraints with and without negation separately.
For clarity, we write neg(c) to flip the comparison opera-
tor in c: neg(t1 = t2) := t1 ̸= t2, neg(t1<t2) := t2≤ t1,
neg(t1≈n t2) := t2 ̸≈n t1, and vice versa, for all t1, t2.
(2) We want a monitor to return the monitoring state for the
trace (prefix) τ seen so far, without depending on future vari-
able assignments. However, the evaluation of a constraint
with lookahead depends on the next, not yet seen, assign-
ment (see Def. 4). To avoid this counterintuitive peculiar-
ity and make the monitoring task clearer, we transform con-
straints with lookahead 1 into constraints with lookback 1.
To this end, we consider variables vpre and vcur , for all
v ∈V . For a constraint c, let back(c) be defined as (a) if
c has no lookahead, back(c) is obtained from c by replacing
v with vcur , and (b) if c has lookahead, back(c) := Xw c̄,
with c̄ obtained from c by replacing v with vpre and v′

with vcur ; for all v ∈V . We denote the property where each
constraint c is replaced by back(c) by ψback , and we write
Vpre={vpre | v ∈ V } and the same for Vcur . Then ψ
and ψback are equivalent, in the sense that 1, τ |= ψ iff
1, τ |= ψback , where the evaluation in Def. 4 is extended to
variables Vpre and Vcur as follows: [τ, i](vcurr) = τ(i)(v)
0≤i≤n and [τ, i](vprev) = τ(i−1)(v) for 0<i≤n. The

proof is straightforward and it is omitted.

Example 8. Property ψ = G(x′>x) ∧ F(x=2) is equiv-
alent to ψback = G(Xw(xcur >xpre)) ∧ F(xcur =2), it de-
mands that x is increasing, and at some point has value 2.

Given ψback , we build an NFA Nψback
using an auxiliary

function δ, as in (De Giacomo and Vardi 2013). Let C be the
set of constraints in ψback , and C± = C∪{neg(c) | c∈C};
and λ be an auxiliary proposition used to mark the last ele-
ment of a trace. The alphabet of the NFA will be Σ = 2C

±
,

i.e., a symbol is a set of constraints. For the construction we
also use its extension Σλ = 2C

±∪{λ,¬λ}. Let ς ∈Σλ be sat-
isfiable if {λ,¬λ} ̸⊆ ς , and the conjunction of constraints
in ς is satisfiable. The input of δ is a (quoted) property
ϕ ∈ L∪{⊤,⊥} over Vpre ∪Vcur . The output of δ is a set of
pairs (�ϕ′�, ς) where ϕ′ ∈ L ∪ {⊤,⊥} is again a (quoted)
property over Vpre ∪ Vcur and ς ∈ Σλ. For two sets of
such pairs R1, R2, let R1 ? R2 = {(�ψ1 ∧ ψ2�, ς1 ∪ ς2) |
(�ψ1�, ς1)∈R1, (�ψ2�, ς2)∈R2 and ς1 ∪ ς2 is satisfiable},
where we simplify ψ1 ∧ ψ2 if possible; and let R1 > R2

be defined in the same way, replacing con- with disjunction.
Intuitively, (�ϕ′�, ς) ∈ δ(ϕ) expresses that when ϕ is the

property to evaluate, if ς is the current symbol of the word
w∈Σ+ that is read, then ϕ′ is the (sub)property yet to satisfy
to determine whether w satisfies ϕ.

Definition 9. For ψ ∈ L ∪ {⊤,⊥}, δ is as follows:
δ(�⊤�) = {(�⊤�, ∅)} and δ(�⊥�) = {(�⊥�, ∅)}
δ(�c�) = {(�⊤�, {c}), (�⊥�, {neg(c)})}

δ(�¬c�) = {(�⊥�, {c}), (�⊤�, {neg(c)})}
δ(�ψ1 ∧ ψ2�) = δ(�ψ1�) ? δ(�ψ2�)
δ(�ψ1 ∨ ψ2�) = δ(�ψ1�) > δ(�ψ2�)

δ(�Xsψ�) = {(�ψ�, {¬λ}), (�⊥�, {λ})}
δ(�Xwψ�) = {(�ψ�, {¬λ}), (�⊤�, {λ})}
δ(�Gψ�) = δ(�ψ�) ? δ(�XwGψ�)

δ(�ψ1 U ψ2�) = δ(�ψ2�) > (δ(�ψ1�) ? δ(�Xs(ψ1 U ψ2)�)).

While the symbol λ is needed for defining δ, we can omit
it from the NFA, and define Nψ as follows:

Definition 10. Given a property ψ ∈ L, we define the NFA
as Nψ =(Q,Σ, ϱ, q0, QF) where q0 = �ψback� is the initial
state, QF = {�⊤�, q+} is the subset of final states, q− is an
additional non-final state, andQ, ϱ are the smallest sets such
that q0, qF , q+, q− ∈ Q and whenever q ∈ Q\{q+, q−} and
(q′, ς) ∈ δ(q) then q′ ∈ Q and

(i) if λ ̸∈ ς then (q, ς \ {¬λ}, q′) ∈ ϱ, and
(ii) whenever λ ∈ ς , if q′ = �⊤� then (q, ς \ {λ}, q+) ∈ ϱ,

and if q′ = �⊥� then (q, ς \ {λ}, q−) ∈ ϱ.

The following example illustrates the construction.

Example 11. For ψback = GXw(xcur ≥xpre)∧F(xcur =2)
from Ex. 8, we get the following NFA Nψback

:

q0 q1 q+

⊥ q2

{xcur ̸= 2} {xcur = 2}

{xcur =2}{xcur ̸= 2}

{xcur ≥xpre ,
xcur =2}

{xcur =2, xcur ≥xpre}

{xcur <xpre}
{xcur ≥xpre , xcur ̸=2}

{xcur ≥xpre , xcur ̸=2}

{xcur ≥xpre}
{xcur ≥xpre}

{xcur <xpre}

A word w = ς0, ς1, . . . , ςn−1 ∈ Σ+ is well-formed if
there are no (negated) constraints in ς0 that mention Vpre . In
Ex. 11 one can see that all words accepted by the NFA are
well-formed (this is guaranteed by the translation to ψback).
We next define the notion of consistency to relate words
w∈Σ+ as above (where each ςi is a set of constraints) with
those traces τ = α0, α1, . . . , αn−1 s.t., at each step, the
assignment αi satisfies ςi, i.e., the traces fitting w. To that
end, for assignments α and α′ with domain V , define for all
v ∈ V the assignment [α⊛α′] with domain Vcur ∪ Vpre as
[α⊛α′](vpre) = α(v) and [α⊛α′](vcur) = α′(v).
Definition 12. A well-formed word ς0, ς1, . . . , ςn−1 ∈ Σ+

is consistent with a trace α0, α1, . . . , αn−1 if α0 |= ς0 and
[αi−1 ⊛αi] |= ςi for all 0 < i < n.

For instance, the word {xcur ̸= 2}{xcur=2, xcur≥xpre}
is consistent with trace {x=1}{x=2}, but not with
{x=3}{x=2}. The key property of Nψ is stated in the fol-
lowing theorem: a word w is accepted iff all the traces cap-
tured by w satisfy ψ.
Theorem 13. Given ψ ∈L, a trace τ and a well-formed
word w∈Σ+ consistent with τ ,Nψback

accepts w iff τ |= ψ.
However, Nψback

is not deterministic, which is inconve-
nient for monitoring. Thus, we next build an equivalent DFA
Dψback

(exponentially larger in the worst case), using a sub-
set construction, and a restricted alphabet: Let Ccur ⊆ C
be the subset of constraints in ψback that mention only Vcur
(but not Vpre). Let the alphabet Θ ⊆ Σ consist of all maxi-
mal satisfiable subsets of C±, and Θcur ⊆ Σ consist of all
maximal satisfiable subsets of C±

cur .
Definition 14. For Nψback

=(Q,Σ, ϱ, q0, QF), let Dψback
=

(Q,Θ∪Θcur ,∆, {q0},QF) whereQ = 2Q,QF consists of
all P ⊆Q such that P ∩QF ̸= ∅, and the transition function
is given by ∆({q0}, ς0) = {q′ | (q0, ς ′, q′)∈ ϱ and ς ′⊆ ς0}
for all ς0 ∈ Θcur , and ∆(P, ς) = {q′ | q ∈ P , (q, ς ′, q′) ∈
ϱ and ς ′ ⊆ ς} for all ς ∈ Θ and P ̸= {q0}.

Note that ∆ is defined either (i) for the initial state {q0}
and ς ∈ Θcur , i.e., a constraint set not mentioning Vpre , or
(ii) for a non-initial state and ς ∈ Θ. This distinction en-
sures thatDψback

accepts only well-formed words, andDψ is
deterministic in that for every w ∈ ΘcurΘ

∗ there is a unique
state P of Dψback

such that {q0} →∗
w P . Dψ is equivalent to

Nψ in the following sense:
Lemma 15. Given a trace τ , Dψ accepts a word consistent
with τ iff Nψ accepts a word consistent with τ .
Example 16. We build the DFA for the property ψback and
the respective NFA from Ex. 11. Below, Θcur consists of
{xcur =2} and {xcur ̸=2}, and Θ of all four combinations
of xcur =2 or xcur ̸=2 with xcur ≥xpre or xcur <xpre :

A B

C D

{xcur =2}

{xcur ̸=2}

{xcur ≥xpre , xcur=2}
{xcur ≥xpre , xcur ̸=2}

{xcur <xpre , xcur=2}
{xcur <xpre , xcur ̸=2}

{xcur ≥xpre ,
xcur ̸=2}

{xcur ≥xpre ,
xcur =2}

{xcur <xpre , xcur=2}

{xcur <xpre , xcur ̸=2}
Θ

Here A corresponds to {q0}, B to {q2, q+} (equivalent to
{q2, q+,⊥}), C to {q1,⊥}, and D to {⊥}.

Monitoring properties without lookahead
In this section we show that monitoring properties without
lookahead is solvable, and a monitoring structure is given
by the DFADψback

= (Q,Θ, δ, {q0},QF) (note that without
lookahead, Θcur and Θ as defined in the last section coin-
cide). We illustrate the construction on an example.

Example 17. Let ψ = (y≥ 0) U (x>y ∧ G(x>y)). Then
ψback is as ψ but where x is replaced by xcur and y by ycur .
As there is no lookahead, no confusion can arise, so we
write x for xcur and y for ycur . We get the following NFA
Nψback

with alphabet Σ = 2C
±

for C = {x>y, y≥ 0}:
q1 q2

{x>y}
{y≥ 0} {x>y}

The next DFA Dψback
is equivalent; its alphabet consists of

all maximal satisfiable subsets of C±, i.e., {y≥0, x>y},
{y≥0, x≤y}, {y<0, x>y}, and {y<0, x≤y}.

A B

C D

{y < 0, x> y}

{y≥ 0, x> y}
{y < 0, x≤ y}

{y≥ 0, x≤ y}

{y≥ 0, x> y}
{y≥ 0, x≤ y}

{y≥ 0, x> y}, {y < 0, x> y}

Θ

{y≥ 0, x≤ y}
{y < 0, x≤ y}

{y < 0, x≤ y}

{y < 0, x> y}

Here A = {q1}, B = {q2}, C = {q1, q2}, and D = ∅.
Next, we formalize how to use Dψback

as a monitor. We
call a state P ′ reachable from P if P →∗

w P
′ for some w.

Theorem 18. If a word w∈Θ+ is consistent with a trace τ
and P is the state in Dψback

such that {q0} →∗
w P ,

τ |= Jψ= PSK if only final states are reachable from P ,
τ |= Jψ= CSK if P ∈QF but P →∗ P ′ for some P ′ ̸∈ QF ,
τ |= Jψ= CVK if P ̸∈QF but P →∗ P ′ for some P ′ ∈ QF ,
τ |= Jψ= PVK if no final state is reachable from P .

Proof. By Lems. 15 and 13, τ |= ψ iff P is final. (Case
PS:) P has no path to a non-final state. Towards contradic-
tion, assume τ ′ exists s.t. ττ ′ ̸|= ψ. By Lems. 13 and 15,
Dψback

does not accept a word consistent with ττ ′. First, we
show that for every non-empty trace τ there is a unique word
w ∈ ΘcurΘ

∗ consistent with τ . Let τ = ⟨α0, . . . , αn−1⟩,
and C be the constraints in ψback . Since for every constraint
c ∈ Ccur , either α |= c or α |= neg(c), and Θcur con-
tains all maximal satisfiable subsets of Ccur ∪ C−

cur , there
must be exactly one subset ς0 ∈ Θcur s.t. α |=

∧
ς0. Sim-

ilarly, [αi⊛αi+1] must model either c or neg(c) for all
constraints in c, so there must be exactly one ςi ∈ Θ s.t.
[αi⊛αi+1] |=

∧
ςi, for all 0 < i ≤ n − 1. Thus, the word

w = ⟨ς0, . . . , ςn−1⟩ is unique and consistent with τ .
With this result at hand, by determinism, we can write

w̄ = ww′ s.t. {q0} →∗
w P →∗

w′ P ′, contradicting that only
final states are reached from P . (Case CS:) let P →∗

w′ P ′

for a non-final state P ′. Sets in Θ are satisfiable, so there is
a trace τ ′ s.t. w′ is consistent with τ ′, and ww′ with ττ ′. By
the result above, ww′ is the unique word in Θ∗ consistent
with ττ ′, and not accepted. By Lems. 15 and 13, ττ ′ ̸|= ψ,
so τ |= Jψ= CSK. The other cases are dual.

Thm. 18 implies that monitoring is solvable, and the moni-
toring state only depends on the DFA state matching a trace.

Example 19. Consider the property of Ex. 17. The follow-
ing example trace is interleaved with the state reached by
the corresponding word in Dψback

, and the monitoring state:

1 {
x=0
y=0

} 1
CV

{
x=0
y=3

} 1
CV

{
x=4
y=3

} 12
CS

{
x=0
y=3

} 1
CV

{
x=0
y=−1

} 2
CS

Each DFA state corresponds to a monitoring state, as indi-
cated by the colors in Ex. 17: non-final states are CV if a final
state is reachable (yellow), PV otherwise (red); final states
are CS if a non-final state is reachable (blue), PS otherwise.

Solvable cases for properties with lookahead
In this section we study the more involved case of properties
with lookahead 1. The next example shows that the approach
from the last section does not work for this case:
Example 20. Consider the property and DFA from Exa. 16
and the following trace, interleaved with the reached state
in Dψback

as well as the monitoring state for every prefix:

A {x = 0} C
CV
{x = 1} C

CV
{x = 3} C

PV
{x = 4} C

PV
The reached DFA state is the same for every prefix, even
though the monitoring state changes.

Note that while the state P reached by a trace τ in Dψback

can still tell whether τ satisfies ψ, reachability of (non)final
states from P is no longer sufficient to predict whether the
trace can be extended to satisfy ψ. We therefore develop an
enhanced monitoring structure. To simplify notation, we as-
sume that ψ is the result of the back(·) transformation, i.e.,
a property over variables Vpre ∪Vcur . Moreover, we assume
throughout this section that Dψ is a DFA for ψ of the form
Dψ = (Q,Θ∪Θcur ,∆, {q0},QF).

The idea is to abstract the variable configurations that are
relevant for verification by a set of formulas. This abstrac-
tion requires some additional notation: First, let V0 = {v0 |
v ∈V } be a copy of V , it will act as placeholders for the ini-
tial values of the variables V . We write φinit for the formula
φinit =

∧
v∈V v = v0. For a formula φ with free variables

V0∪V , let φ(U) denote the formula where V is replaced by
U , but V0 is not replaced (with denote by V a fixed ordering
of V as a vector). For a set of constraints C with free vari-
ables Vpre ∪ Vcur , let C(U, V) denote the constraints where
V pre is replaced by U and V cur is replaced by V .
Definition 21. For a formula φ with free variables V0 ∪ V
and a set of constraints C with free variables Vpre ∪Vcur , let
update(φ,C) = ∃U.φ(U) ∧

∧
C(U, V).

Both φ and update(φ,C) have free variables V0 ∪ V .
Although update introduces existential quantifiers, there is
an equivalent quantifier-free formula for update(φ,C): lin-
ear arithmetic has quantifier elimination. E.g., for φ =
(x=x0 ∧ x0 ̸=2) and C = {xcur ≥xpre , xcur =2}, we
have update(φ,C) = ∃u. u=x0 ∧ x0 ̸=2 ∧ x≥u ∧ x=2,
which is equivalent to x0 < 2 ∧ x = 2.

In order to design a monitoring structure, we build a con-
straint graph which, intuitively, connects in a graph all vari-
able dependencies (described by formulas) emerging from a
state P0 in the DFA, and where V0 acts as placeholder for the
initial variable values. The constraint graph is parameterized

C x=x0

C x ≥ x0 ∧ x ̸=2 B x0≤ 2 ∧ x=2 D x<x0

D ⊤D x0≤ 2B x0≤ 2 ∧ x ≥ 2

{xcur≥xpre ∧ xcur ̸=2}

{xcur≥xpre
∧ xcur=2}

{xcur<xpre}

{xcur<xpre}

{xcur≥xpre}{xcur<xpre}
{xcur≥xpre}{xcur≥xpre}

{xcur<xpre}

{xcur≥xpre ∧ xcur ̸=2}

{xcur≥xpre ∧ xcur=2}

Σ̂

Figure 1: Constraint graph CGψ(C).

by an equivalence relation ∼ on formulas used to reduce its
size. Our correctness proof will require further properties of
∼ but a default choice is the logical equivalence relation ≡.
Definition 22. A constraint graph CGψ(P0,∼) for Dψ and
a DFA state P0 ∈Q is a triple ⟨S, s0, γ, SF ⟩ where the node
set S consists of tuples (P,φ) of a state P ∈Q and a formula
φ with free variables V0 ∪ V , and γ ⊆ S × Σ× S. Then, S
and γ are inductively defined as follows:
(i) s0 = (P0, φinit) is the initial node and s0 ∈ S;
(ii) if s = (P,φ) ∈ S and P ς−→ P ′ in Dψ such that

update(φ, ς) is satisfiable, there is some s′ = (P ′, φ′) ∈
S with φ′ ∼ update(φ, ς), and s ς−→ s′ is in γ;

(iii) (P,φ) ∈ S is in the set of final nodes SF iff P ∈QF .
We simply write CGψ(P0) for CGψ(P0,≡). The con-

straint graph CGψ(C) for the DFA Dψback
from Ex. 16

is shown in Fig. 1. For readability, edge labels are
combined; e.g. the two edges from B to D labeled
{xcur <xpre , xcur =2} and {xcur <xpre , xcur ̸=2} are
combined to one edge labeled {xcur <xpre}. The construc-
tion in Def. 22 need not terminate as infinitely many for-
mulas may occur, but we will show in the next section that
termination is guaranteed for several relevant cases.
Definition 23. For ψ with DFA Dψ , a state P0 in Dψ , and
G := CGψ(P0,∼) with node set S, let

FSAT(G) =∃V .
∨
{φ | (P,φ) ∈ S is a final node}

FUNS(G) =∃V .
∨
{φ | (P,φ) ∈ S is a non-final node}

Intuitively, FSAT(G) expresses a condition on the vari-
able values when a final state in Dψ is reachable from P0;
dually, FUNS gives a condition for reachability of non-final
states. This leads to the following monitoring procedure:

1: procedure MONITOR(ψ, τ)
2: compute ψback and Dψback

▷ or take from cache
3: w ← word in ΘcurΘ

∗ consistent with τ
4: P ← state in Dψback

such that {q0} →∗
w P

5: G← CGψ(P,∼) ▷ or take from cache
6: αn ← last assignment in τ
7: if P accepting in Dψback

then
8: return (CS if αn |= FUNS(G) else PS)
9: else return (CV if αn |= FSAT(G) else PV)

Note that the monitoring structures (DFA, constraint
graphs for DFA states, FSAT, FUNS) can be computed once
and for all upfront. This is particularly useful when monitor-
ing multiple traces against the same property ψ. In this case,
the procedure above should be implemented in a lazy way,
where the structures are computed when needed and cached
for later use. At monitoring time, given trace τ , one thus only

needs to find the DFA state corresponding to τ , and evaluate
the pre-computed formula with the last assignment of τ .
Example 24. For ψback = GXw(xcur ≥xpre)∧F(xcur =2)
from Exa. 16, by the graph in Fig. 1 we have FSAT(C) =
∃x.(x0≤ 2∧x≥ 2)∨(x0≤ 2∧x=2), equivalent to x0 ≤ 2.
We show how the procedure distinguishes two prefixes of the
trace from Exa. 20 with different monitoring state:
• Trace τ1 = ⟨{x=0}⟩ corresponds to w = ⟨{xcur ̸=2}⟩,

leading to the non-accepting state C. As {x=0} |=
FSAT(GC)(V) = x ≤ 2, we have τ1 |= Jψ=CVK.

• Trace τ3 = ⟨{x=0}, {x=1}, {x=3}⟩ matches
⟨{xcur ̸=2}, {xcur ̸=2, xcur≥xpre}2⟩, leading again to
state C. However, {x=3} ̸|= x ≤ 2, so τ3 |= Jψ=PVK.

Correctness. To prove correctness, we need some addi-
tional notions. First, we define history constraints to capture
the formulas obtained from stacked update operations:
Definition 25. For w= ς0, . . . , ςn−1 in Θ∗, the history con-
straint h(w) is given by h(w) = φinit if n = 0, and if n> 0
then h(w) = update(h(⟨ς0, . . . , ςn−2⟩), ςn−1).

There is the correspondence between satisfying assign-
ments of h(w) and traces that satisfy the constraints in w:
Lemma 26. For w ∈ Θ∗ of length n, h(w) is satisfied by
assignment ν iff ⟨∅⟩ ·w is consistent with a trace α0, . . . , αn
such that ν(v0)=α0(v) and ν(v)=αn(v) for all v ∈ V .

Next, we define a history set to capture all variable con-
figurations that are relevant for monitoring. More precisely,
it collects pairs of history constraints for words and the state
that they lead to, but where equivalent pairs are eliminated:
Definition 27. A history set for Dψ is a minimal set Φ of
pairs (P,φ) of a state P ∈Q and a formula φ such that for
all P ′ and w ∈ ΘcurΘ

∗ with P →∗
w P ′ in Dψ , there is a

(P ′, φ) ∈ Φ s.t. h(w) ≡ φ.
If Φ is finite, it represents an abstract representation of

the relevant variable configurations and can be used to build
the states of the constraint graph. For succinctness, we pair
a history set with an equivalence relation.
Definition 28. A summary for Dψ is a pair (Φ,∼) of a his-
tory set Φ for Dψ and equivalence relation ∼ on Φ such that
(1) ∼ contains ≡ on formulas in Φ and is decidable,
(2) for all (q, φ), (q, ψ) ∈ Φ such that φ ∼ ψ, (a) if α |= φ,

there is some α′ such that α′ |= ψ and α(u) = α′(u)
for all u ∈ V0, and (b) for all transitions q ς−→ q′,
update(φ, ς) ∼ update(ψ, ς).

The summary (Φ,∼) is finite if∼ has finitely many equiv-
alence classes, and ψ has finite summary if a finite sum-
mary exists for Dψ . For a word w= ς1, . . . , ςn, we write
(P0, φinit) →∗

w (P,φ) if there is a path (P0, φinit)
ς1−→

. . . · · · ςn−→ (P,φ) in CGψ(P0,∼). The next lemma states
that a path in the CG emulates a path in Dψ and leads to a
state that is equivalent to a history constraint.
Lemma 29. Let (Φ,∼) be a summary for Dψ . (a) If
CGψ(P0,∼) has a path (P0, φinit)→∗

w (P,φ) then P0 →∗
w

P in Dψ and φ ∼ h(w) is satisfiable, and (b) if P0 →∗
w P

and h(w) is satisfiable then there is a path (P0, φinit) →∗
w

(P,φ) for some φ such that φ ∼ h(w).

At this point we are ready to prove our main theorem:

Theorem 30. Let (Φ,∼) be a summary for Dψ . Given a
DFA Dψ for ψ and a trace τ , let w ∈ ΘcurΘ

∗ be the word
consistent with τ and P the Dψ state s.t. {q0} →∗

w P . For
G := CGψ(P,∼) the constraint graph from P ,
• if P ∈PF then τ |= Jψ=CSK if αn |= FUNS(G)(V), and
τ |= Jψ=PSK otherwise,

• if P ̸∈PF then τ |= Jψ=CVK if αn |= FSAT(G)(V), and
τ |= Jψ=PVK otherwise.

Proof. Note that the word w that is consistent with τ is
unique (cf. proof of Thm. 18). Consider the case where
P ∈PF , so that τ |= ψ by Lem. 13 and 15. First, suppose
αn |= FUNS(G)(V), so αn |= (∃V . φ)(V) for some non-
final node (P ′, φ) of G. Let u be a word s.t. there is a path
(P,φinit) →∗

u (P ′, φ) in CGψ(P). By Lem. 29, P →∗
u P

′

in Dψ and φ ∼ h(u). By Def. 28, αn |= (∃V . h(u))(V), so
there is an assignment ν with domain V0 ∪ V s.t. ν(v0) =
αn(v) for all v ∈V and ν |= h(u). By Lem. 26, ⟨∅⟩ ·u is
consistent with some trace τ ′ = ⟨α′

0, . . . , α
′
k⟩ s.t. ν(v0) =

α′
0(v) for all v ∈ V . Thus, αn and α′

0 coincide, and wu is
consistent with the trace τ ′′ = ⟨α0, . . . , αn, α

′
1, . . . , α

′
k⟩ as

w is consistent with τ and u with τ ′. As {q0} →∗
wu P

′ is not
accepting, by Lem. 13, τ ′′ ̸|= ψ, hence τ |= Jψ=CSK.

Second, let αn ̸|= FUNS(G)(V). Towards a contradic-
tion, suppose there is a trace τ ′ = ⟨α′

1, . . . , α
′
k⟩ s.t. ττ ′ ̸|= ψ.

Again, there is a unique word u ∈ Θ∗ s.t. wu is consistent
with ττ ′; let P ′ the state s.t. {q0} →∗

wu P
′. By Lem. 13 and

15, the state P ′ is not final. As wu is consistent with ττ ′,
⟨∅⟩ · u is consistent with ⟨αn⟩τ ′, so by Lem. 26, the assign-
ment ν s.t. ν(v0) = αn(v) and ν(v) = α′

k(v) for all v ∈ V
satisfies h(u). Thus Lem. 29 implies that CGψ(P) has a path
(P,φinit) →∗

u (P ′, φ) s.t. φ ∼ h(u). As ν |= h(u), by
Def. 28, αn |= (∃. φ)(V) because ν(v0) = αn(v) for all
v ∈ V . As P ′ is non-final, it follows that αn |= FUNS(G),
a contradiction; so τ ′ cannot exist. Thus τ |= Jψ=PSK. The
case where τ ̸|= ψ is dual, using FSAT(G).

Finally, if ψ has a finite summary (Φ,∼), by Lem. 29 a
constraint graph CG(P,∼) computed from Dψ can take all
nodes from the finitely many equivalence classes of Φ, so
that the constraint graph can be finite. Therefore:

Corollary 31. Monitoring is solvable for ψ ∈ L if ψ has
finite summary.

Concrete criteria for solvability
We next apply Cor. 31 to show solvability of concrete prop-
erty classes, by restricting the constraint set or control flow.

Monotonicity constraints (MCs) over variables V and
domain D have the form p ⊙ q where p, q ∈ D∪V and
⊙ is one of =, ̸=,≤, or <. We call an LTLf property whose
constraint atoms are MCs over D an MCD property. Ex. 11
gives a simple example of an MC property. However, MC
properties are rich enough to capture practically important
settings: For instance, Geist, Rozier, and Schumann (2014)
model the specification of a fluxgate magnetometer of a

Swift UAS system operated by NASA, as linear-time prop-
erties with arithmetic comparisons of sensor values, which
are all MCs over Q (cf. their Table 2). We have that:
Theorem 32. Monitoring is solvable for MCQ properties.

Proof (sketch). This is shown as in (Felli, Montali, and Win-
kler 2022b, Thm. 5.2), exploiting that quantifier elimination
of MC formulas over Q produces MC formulas with the
same constants, so that a finite history set exists.

Integer periodicity constraints (IPCs) confine the con-
straint language in a similar way as MCs, but allow equality
modulo, and variable-to-variable comparisons are restricted.
IPCs are e.g. used in calendar formalisms (Demri 2006).
More precisely, IPC atoms have the form x = y, x ⊙ d for
⊙ ∈ {=, ̸=, <,>}, x ≡k y+d, or x ≡k d, for variables x, y
with domain Z and k, d ∈ N. An L property over IPC atoms
is called an IPC property. The next result is proven similarly
as Thm. 36, cf. (Felli, Montali, and Winkler 2022a, Thm. 4).
Theorem 33. Monitoring is solvable for IPC properties.

A simple example of an IPC property is (x ≡7 y + 1) U
(x= z). Also e.g. a parallel program as in (Havelund, Reger,
and Rosu 2019, Fig. 3) can be modeled as an IPC property,
where monitoring detect at runtime whether a trace may trig-
ger the race on variable x that the program exhibits.

Control flow restrictions can be used instead of confin-
ing the constraint language to obtain solvability. Computa-
tion graphs (Damaggio, Deutsch, and Vianu 2012) were in-
troduced to track dependencies between variable instances
at different trace events. A property ψ is said to have k-
bounded lookback (Felli, Montali, and Winkler 2022b) if
all paths in computation graphs of ψ have length at most
k, without counting equality edges. Intuitively, this corre-
sponds to forbid variable updates that depend on an un-
bounded history of values (of the same or of other variables),
but only on a k-bounded “moving window”. A property has
bounded lookback (BL) if its has k-bounded lookback for
some k ≥ 0. E.g., G(x′>x) does not have BL, because
there is an unbounded dependency chain between the values
of x, whereas F(x′> 2y)∧G(x+y > 0) has 1-bounded look-
back as variable comparisons span at most one time unit.
Also all properties with lookahead 0 have BL. Monitoring
of BL properties is solvable because, roughly, the quantifier
depth of history constraints is upper-bounded a priori. A for-
mal definition, proof and examples are in (Felli et al. 2022).
Theorem 34. Monitoring of BL properties is solvable.

Gap-order constraints (GCs) have the form x − y ≥ k
for x and y either variables with domain Z or integers, and
k∈N. Satisfiability of GC properties is decidable (Bozzelli
and Pinchinat 2014). However, validity is undecidable, be-
cause a GC property ψ is valid iff ¬ψ is unsatisfiable, where
¬ψ can be written as a property whose atoms are negated
GCs, i.e. of the form ¬c for c a GC. Negated GCs can model
counters (Bozzelli and Pinchinat 2014, Thm. 12), so that
state reachability of a 2-counter machine can be reduced to
satisfiability of a property over negated GCs. Consequently,
Remark 35. Monitoring of GC properties is not solvable.

MCs over Z can be written as GCs (Bozzelli and Pinchinat
2014), with the key difference that for an MC c also ¬c is an
MC, and hence a GC. Thus, we can assume that in a DFA
for an MCZ property ψ, all constraints are GCs.

In (Felli, Montali, and Winkler 2022b, Thm. 5.5) it was
shown that a transition system over GCs admits a finite sum-
mary (GCK ,∼K). Here, GCK is the finite set of quantifier-
free formulas with GC atoms over variables V and con-
stants≤ K, and∼K is the cutoff equivalence relation, where
equivalence of two formulas is checked after replacing con-
stants greater than K by K, for K the maximal difference
between constants in the input. Finite summary relies on the
initial assignment of V being fixed, whereas by Def. 25 his-
tory constraints start from φinit , i.e., a parametric assign-
ment V 7→ V 0. This can hamper finiteness of the sum-
mary. E.g., for ψ = Xw(xcur>xpre U xcur>5) there are
finitely many equivalence classes only if the initial value z
of x is known (after at most 5 − z steps ψ holds). Nonethe-
less, Cor. 31 can be used to show that monitoring is solvable,
although the procedure needs to be suitably refined.
Theorem 36. Monitoring is solvable for MCZ properties.

Proof (sketch). We modify our procedure as follows: (1) in
line 5, we compute the CG starting from

∧
v=αn(v) instead

of φinit . By (Felli, Montali, and Winkler 2022b, Thm. 5.5)
a finite summary exists, so the CG computation terminates.
(2) The checks in lines 8,9 are simplified: as the initial as-
signment is now integrated in the CG, at line 8 it suffices to
check whether the CG has a non-empty path to a non-final
state (resp. to a final state in line 9). It is not hard to adapt the
proof of Thm. 30 accordingly. However, the changed proce-
dure comes with the price of computing CGs not only for
every DFA state but also every assignment in the trace.

Conclusions
Implementation. We implemented our approach in a pro-
totype, whose source code and web interface are available
via https://bit.ly/3QFoJHA. The tool takes an ALTLf prop-
erty ψ and a trace as input, determines whether ψ is in one
of the decidable classes identified in the last section, con-
structs and visualizes a monitor, and computes the monitor-
ing state. The tool is implemented in Python, using Z3 (de
Moura and Bjørner 2008) and CVC5 (Deters et al. 2014) for
SMT checks and quantifier elimination.

Future work. We want to lift our automata-based ap-
proach to the case of traces of richer states, equipped with
full-fledged relations. Hence we plan to study how to inte-
grate our approach with (Decker, Leucker, and Thoma 2016)
and (Calvanese et al. 2022). The former considers states con-
sisting of first-order structures modulo theories, but does not
foresee any form of lookahead in the properties. In (Cal-
vanese et al. 2022), instead, states are labeled by first-order
interpretations and properties are expressed in a fragment
of first-order LTL with a controlled first-order quantification
across time; however arithmetic theories are not supported.

Acknowledgments This work was partially funded by the
Unibz project SMART-APP and the PRIN MIUR project
PINPOINT.

References
Bartocci, E.; Falcone, Y.; Francalanza, A.; and Reger, G.
2018. Introduction to Runtime Verification. In Bartocci,
E.; and Falcone, Y., eds., Lectures on Runtime Verification -
Introductory and Advanced Topics, volume 10457 of LNCS,
1–33. Springer.
Basin, D. A.; Klaedtke, F.; Müller, S.; and Zalinescu, E.
2015. Monitoring Metric First-Order Temporal Properties.
J. ACM, 62(2): 15:1–15:45.
Bauer, A.; Leucker, M.; and Schallhart, C. 2010. Compar-
ing LTL Semantics for Runtime Verification. J. Logic and
Comput., 20(3): 651–674.
Bozzelli, L.; and Pinchinat, S. 2014. Verification of gap-
order constraint abstractions of counter systems. Theor.
Comput. Sci., 523: 1–36.
Calvanese, D.; De Giacomo, G.; Montali, M.; and Patrizi,
F. 2022. Verification and Monitoring for First-Order LTL
with Persistence-Preserving Quantification over Finite and
Infinite Traces. In Proc. 31st IJCAI, 2553–2560.
Damaggio, E.; Deutsch, A.; and Vianu, V. 2012. Artifact
systems with data dependencies and arithmetic. ACM Trans.
Database Syst., 37(3): 22:1–22:36.
D’Angelo, B.; Sankaranarayanan, S.; Sánchez, C.; Robin-
son, W.; Finkbeiner, B.; Sipma, H. B.; Mehrotra, S.; and
Manna, Z. 2005. LOLA: Runtime Monitoring of Syn-
chronous Systems. In Proc. 12th TIME, 166–174.
Dastani, M.; Torroni, P.; and Yorke-Smith, N. 2018. Moni-
toring norms: a multi-disciplinary perspective. Knowl. Eng.
Rev., 33.
De Giacomo, G.; De Masellis, R.; Maggi, F. M.; and Mon-
tali, M. 2022. Monitoring Constraints and Metaconstraints
with Temporal Logics on Finite Traces. ACM Trans. Softw.
Eng. Methodol., 31(4).
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In Rossi,
F., ed., Proc. 23rd IJCAI, 854–860. IJCAI/AAAI.
de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In Proc. 14th TACAS, volume 4963 of LNCS, 337–
340.
Decker, N.; Leucker, M.; and Thoma, D. 2016. Monitoring
modulo theories. Int. J. Softw. Tools Technol. Transf., 18(2):
205–225.
Demri, S. 2006. LTL over integer periodicity constraints.
Theor. Comput. Sci., 360(1-3): 96–123.
Demri, S.; and D’Souza, D. 2007. An automata-theoretic
approach to constraint LTL. Inform. Comput., 205(3): 380–
415.
Deters, M.; Reynolds, A.; King, T.; Barrett, C. W.; and
Tinelli, C. 2014. A tour of CVC4: How it works, and how to
use it. In Proc. 14th FMCAD, 7.
Falcone, Y.; Krstic, S.; Reger, G.; and Traytel, D. 2021. A
taxonomy for classifying runtime verification tools. Int. J.
Softw. Tools Technol. Transf., 23(2): 255–284.
Faymonville, P.; Finkbeiner, B.; Schledjewski, M.;
Schwenger, M.; Stenger, M.; Tentrup, L.; and Torfah,

H. 2019. StreamLAB: Stream-based Monitoring of Cyber-
Physical Systems. In Proc. 31st CAV, volume 11561 of
LNCS, 421–431.
Felli, P.; Montali, M.; Patrizi, F.; and Winkler, S.
2022. Monitoring Arithmetic Temporal Properties on
Finite Traces (Extended Version). Available from
https://arxiv.org/abs/2211.17166.
Felli, P.; Montali, M.; and Winkler, S. 2022a. CTL* model
checking for data-aware dynamic systems with arithmetic.
In Proc. 11th IJCAR, volume 13385, 36–56.
Felli, P.; Montali, M.; and Winkler, S. 2022b. Linear-
Time Verification of Data-Aware Dynamic Sys-
tems with Arithmetic. In Proc. 36th AAAI, 5642–
5650. AAAI Press. Extended version available from
https://arxiv.org/abs/2203.07982.
Geatti, L.; Gianola, A.; and Gigante, N. 2022. Linear Tem-
poral Logic Modulo Theories Over Finite Traces. In Proc.
31st IJCAI, 2641–2647.
Geist, J.; Rozier, K. Y.; and Schumann, J. 2014. Runtime
Observer Pairs and Bayesian Network Reasoners On-board
FPGAs: Flight-Certifiable System Health Management for
Embedded Systems. In Proc. 5th Runtime Verification, vol-
ume 8734 of LNCS, 215–230.
Havelund, K.; Reger, G.; and Rosu, G. 2019. Runtime Verifi-
cation Past Experiences and Future Projections. In Comput-
ing and Software Science - State of the Art and Perspectives,
volume 10000 of LNCS, 532–562. Springer.
Leucker, M.; and Schallhart, C. 2009. A brief account of
runtime verification. J. Log. Algebraic Methods Program.,
78(5): 293–303.
Ly, L. T.; Maggi, F. M.; Montali, M.; Rinderle-Ma, S.; and
van der Aalst, W. M. P. 2015. Compliance monitoring in
business processes: Functionalities, application, and tool-
support. Inf. Syst., 54: 209–234.
Maggi, F. M.; Francescomarino, C. D.; Dumas, M.; and
Ghidini, C. 2014. Predictive Monitoring of Business Pro-
cesses. In Proc. 26th CAiSE, volume 8484 of LNCS, 457–
472. Springer.
Maggi, F. M.; Montali, M.; Westergaard, M.; and van der
Aalst, W. M. P. 2011. Monitoring Business Constraints
with Linear Temporal Logic: An Approach Based on Col-
ored Automata. In Proc. 9th BPM, volume 6896 of LNCS,
132–147. Springer.
Presburger, M. 1929. Über die Vollständigkeit eines gewis-
sen Systems der Arithmetik ganzer Zahlen, in welchem die
Addition als einzige Operation hervortritt. In Comptes Ren-
dus du I congres de Mathem. des Pays Slaves, 92–101.
Reger, G.; Cruz, H. C.; and Rydeheard, D. E. 2015. MarQ:
Monitoring at Runtime with QEA. In Proc. 21st TACAS,
volume 9035 of LNCS, 596–610. Springer.
Xu, H.; and Cheng, Y. 2007. Model checking bidding be-
haviors in internet concurrent auctions. Comput. Syst. Sci.
Eng., 22(4).

