
Equivalence of Data Petri Nets with Arithmetic⋆

Marco Montali[0000−0002−8021−3430] and Sarah Winkler[0000−0001−8114−3107]

Free University of Bozen-Bolzano, Italy {montali,winkler}@inf.unibz.it

Abstract. Data Petri nets (DPNs) with arithmetic have gained pop-
ularity as a model for data-aware processes, thanks to their ability to
balance simplicity with expressiveness and because they can be auto-
matically discovered from event logs. While model checking techniques
for DPNs have been studied, there are analysis tasks highly relevant for
BPM that are beyond these methods. We focus here on process equiva-
lence and process re�nement with respect to language and con�guration
spaces; such comparisons are important in the context of process repair
and discovery. To solve these tasks, we propose an approach for bounded
DPNs based on constraint graphs, which are faithful abstractions of the
reachable state space. Though the considered veri�cation tasks are un-
decidable in general, we show that our method is a decision procedure
for large classes of DPNs relevant in practice.

Keywords: data-aware processes · data Petri nets · process equivalence
· process re�nement.

1 Introduction

Within the growing area of data-aware processes, Data Petri nets (DPNs) with
arithmetic data have recently gained increasing popularity thanks to their abil-
ity to balance simplicity with expressiveness. DPNs can also be mined automat-
ically [5,17], but automatic mining techniques typically come without any cor-
rectness guarantees. However, the complex interplay between the control struc-
ture and data makes it hard to check whether DPNs satisfy properties of inter-
est; indeed, all non-trivial veri�cation tasks are undecidable. While linear- and
branching-time model checking procedures for DPNs were developed [18,12,13,11],
many analysis tasks relevant in BPM go beyond these techniques. Here we focus
on checking equivalence and re�nement of processes, which is an important task
in many contexts [1,6]: to match an organization-speci�c model to a reference
model, to relate an automatically mined model to a normative one by domain
experts, or to compare a re�ned version of a process model with the original one.

Example 1. The DPN in Fig. 1 models a management process for road �nes by
the Italian police [20], where assignments with right-hand side ? indicate a non-
deterministic write operation. This normative process model was designed by

⋆ This work was partially funded by the UNIBZ project ADAPTERS, and the PRIN
MIUR project PINPOINT Prot. 2020FNEB27.

2 Marco Montali and Sarah Winkler

p1 p2

create �ne

aw, tw, dw, pw =?

payment

tw =?

send �ne

0⩽ dsw ⩽ 2160 ∧ ew =?

τ1
dr ̸=0 ∨ (pr =0 ∧ tr ⩾ ar)

payment

tw =?

insert noti�cation

τ2

tr ⩾ ar + er

payment

tw =?

add penalty

aw =?

appeal to judge

0⩽ djw ⩽ 1440 ∧ dw ⩾ 0

credit collection

tr <ar + er

τ3

tr ⩾ ar + er

τ5

dr =0

appeal to prefecture

0⩽ dpw ⩽ 1440

send to prefecture

dw =?

result prefecture

dr =0
τ6

dr =1 τ4

dr =2

notify

Fig. 1. Data Petri net for road �ne management process

domain experts, but other versions of this process were discovered by automatic
techniques [19]. This raises a number of questions that are important in the
context of process discovery and repair: Do the DPNs admit the same set of
con�gurations and data values? Are all process runs of one model also possible
in the other? Do the possible data values in a �nal state coincide?

To answer such questions, we consider in this paper di�erent notions of be-
havioural re�nement and equivalence for DPNs, comparing markings, con�gu-
rations, or language, and we propose techniques to check them. Since even state
reachability is undecidable for DPNs [12, Rem. 2.6], it does not come as a surpise
that these veri�cation tasks are in general undecidable as well.

In this paper, we thus impose two restrictions on DPNs to make veri�cation
decidable: (1) To tame the control �ow perspective, we assume that the Petri nets
underlying DPNs are bounded. (2) To tame the data perspective, we assume that
the DPNs have a �nite constraint graph. Constraint graphs (CGs) are symbolic
abstractions of the reachable state space that are used for data-aware soundness
and model checking of DPNs [10,13,12,11]. In general, CGs are in�nite. However,
it was shown that �nite constraint graphs can in fact be computed for a wide
range of DPNs from the literature. These include DPNs where all constraints
are variable-to-variable/constant comparisons, as produced by automatic guard
discovery techniques [5,17], or bounded lookback DPNs whose behavior depends
only on a bounded amount of information from the process run [12,4]. It was
shown that these classes comprise almost all DPNs in the literature [13], also
e.g. the process of Ex. 1. Notably, we do not assume that DPNs are acyclic.

The contributions of this paper can be summarized as follows: (1) We show
how natural notions of equivalence and re�nement of DPNs with respect to mark-
ings, con�gurations, and language can be checked based on constraint graphs.
(2) Our technique is a decision procedure for bounded DPNs where �nite con-
straint graphs exist, which proves decidability of process re�nement/equivalence

Equivalence of Data Petri Nets with Arithmetic 3

for such DPNs. These include DPNs where all guards are variable-to-variable/-
constant comparisons, and DPNs with bounded lookback. (3) If equivalence or
re�nement does not hold, counterexamples that distinguish the two processes
can be computed by our approach.

Related work. For process models without data, a variety of comparison tech-
niques were developed. An early �rst approach for process equivalence was pre-
sented in [1]. A basic taxonomy of similarity measures was proposed in [6], distin-
guishing similarity based on either element labels, structure, or behaviour. For the
�rst kind, schema and ontology matching techniques are used [8]. For structural
similarity measures, graph matching algorithms were studied [7]. Our approach
falls within the class of behavioural similarity, and to the best of our knowledge,
no respective approaches exist to compare data-aware processes. However, while
most works on process comparison are quantitative (i.e., they quantify process
similarity with respect to some measure [16,21], this paper is purely qualitative,
in the sense that our techniques check process equivalence or re�nement, but the
di�erence between models is not quanti�ed.

2 Background

In this section we summarize some background on constraints, DPNs and data-
aware dynamic systems as process models, as well as constraint graphs.

We assume a set of process variables V , each of which is associated with a
sort from the set Σ = {int, rat} with associated domains integers D(int) = Z
and rationals D(rat) = Q. For instance, in Ex. 1 the set of process variables is
V = {a, d, dj, dp, ds, p, t}, where a and t are of sort rat and the others of sort
int. For σ ∈Σ, Vσ denotes the subset of variables in V of type σ. To manipulate
variables, we consider linear arithmetic expressions c, called constraints:

c := n ⩾ n | n ̸= n | n = n | r ⩾ r | r > r | r ̸= r | r = r | c ∧ c

n := vi | k | n+ n | −n r := vr | q | r + r | −r

where vi ∈ Vint, vr ∈ Vrat, k ∈ Z, and q ∈ Q. These expressions will be used to
capture conditions on the values of variables that are read and written during
the execution of process activities. The set of constraints over a set of variables V
is denoted C(V). We will also consider �rst-order formulas that have constraints
as atoms. Given the de�nition of constraints, such formulas are in the theory
of linear arithmetic, which is decidable [2]. Moreover, quanti�er elimination can
produce a quanti�er-free, equivalent for any formula of the form ∃x.φ, cf. [2].
We denote logical equivalence by ≡, and logical entailment by |=.

Data Petri nets. We adopt the standard de�nition of Data Petri Nets (DPNs)
[19,20]. We consider two disjoint, marked copies of the set of process variables
V , denoted V r = {vr | v ∈V } and V w = {vw | v ∈V }, called the read and
write variables. They will refer to variable values before and after a transition,
respectively. We also write V for a vector that orders V in an arbitrary, �xed
way, and V

r
and V

w
for vectors ordering V r and V w in the same way.

4 Marco Montali and Sarah Winkler

De�nition 1. A data Petri net (DPN) is a tuple N = ⟨P, T, F, ℓ,A, V, guard⟩,
where (1) ⟨P, T, F, ℓ⟩ is a labelled Petri net with non-empty, disjoint sets of places
P and transitions T , a �ow relation F : (P × T) ∪ (T × P) 7→ N and a labelling
function ℓ : T 7→ A ∪ {τ}, where A is a �nite set of activity labels and τ is a
special symbol for silent transitions; (2) V is a set of process variables with a
sort in Σ; and (3) guard : T 7→ C(V r ∪ V w) is a guard mapping.

Example 2. The process in Fig. 2 (a) is a DPN modelling a simple auction pro-
cess. It maintains the set of variables V = {o, t} of sort rat, where o holds the
last o�er issued by a bidder, and t is a timer. The action init sets the timer t
to a positive value and the o�er o to 0; while the timer did not expire, it can
be decreased (action timer), or bids can be issued, increasing the current o�er
(bid); the item can be sold if the timer expired and the o�er is positive (hammer).
We denote this DPN, consisting of all actions drawn in black in Fig. 2, by N .
Moreover, we consider a variant of this DPN with an additional reset action that
restarts the process if the o�er is 0 (drawn in blue), and call this DPN Nreset.

(a)

init
tw > 0 ∧ ow =0

bid
tr> 0 ∧ ow>or

hammer
tr ⩽ 0 ∧ or > 0

timer
tr> 0 ∧ tw<tr

reset

or =0

p0

p1 p2

p3

(b)

{p0}

{p1, p2}

{p3}

init

bid timer

hammer

reset

(c)

{p0} o=0 ∧ t=0

{p1, p2} o=0 ∧ t> 0

{p1, p2} o=0

{p1, p2} o> 0 ∧ t> 0

{p1, p2} o> 0

{p3} o> 0 ∧ t⩾ 0

init

timer

bid

bid

bid

timer bid

hammer

Fig. 2. A DPN with its DDSA and constraint graph.

Also the process shown in Ex. 1 is a DPN.
The variables read and written by a transition t are denoted by read(t) = {v |

vr occurs in guard(t)} and write(t) = {v | vw occurs in guard(t)}. For instance,
for t the activity bid in Fig. 2, write(t) = {o} and read(t) = {o, t}. An assignment
with domain V is called a state variable assignment, to distinguish it from a
transition variable assignment β that assigns values to the set of variables V r ∪
V w. All assignments are supposed to map variables to elements of their domain.

A con�guration in a DPN N is a pair (M,α) given by a marking M : P 7→ N
for the underlying Petri net, together with a state variable assignment α. A
con�guration thus simultaneously accounts for the control �ow progress and
for the current values of all variables in V , as speci�ed by α. For instance,
({p0},

[
t=0
o=0

]
) is a con�guration of the DPNs of Ex. 2.

De�nition 2 (Transition �ring). A transition t ∈ T is enabled in (M,α) if
a transition variable assignment β exists such that:

Equivalence of Data Petri Nets with Arithmetic 5

(i) β(vr) = α(v) for every v ∈ read(t), i.e., β is as α for read variables;
(ii) β |= guard(t), i.e., β satis�es the guard; and
(iii) M(p) ⩾ F (p, t) for every p so that F (p, t) ⩾ 0.
An enabled transition may �re, producing a new con�guration (M ′, α′), s.t.
M ′(p) = M(p) − F (p, t) + F (t, p) for every p ∈ P , and α′(v)=β(vw) for every
v ∈ write(t), and α′(v)=α(v) for every v ̸∈ write(t). A pair (t, β) as above is
called (valid) transition �ring, and we denote its �ring by (M,α) (t,β)−−−→ (M ′, α′).

Thus, a guard simultaneously expresses a condition on read variables, and
an update on written ones: e.g., bid in Fig. 2 requires the current value of t to be
positive and non-deterministically sets o to a new value that exceeds the current.

Given N , we �x one con�guration (MI , α0) as initial, where MI is the initial
marking of the underlying Petri net and α0 is a state variable assignment that
speci�es the initial values of all variables in V . The �nal marking is denoted MF .
For instance,N in Ex. 2 admits a transition �ring ({p0},

[
t=0
o=0

]
) init−−→ ({p1, p2},

[
t=1
o=0

]
)

from its initial state; and {p3} is the �nal marking.
A state (M ′, α′) is reachable in a DPN if it is reached by a transition sequence

from the initial state (MI , α0)
(t1,β1)−−−−→ . . . (tn,βn)−−−−−→ (M ′, α′). Such a sequence is

also written as (MI , α0) →∗ (M ′, α′). We denote by Mark(N) the set of all
such M ′, and by Conf (N) the set of all such (M ′, α), i.e., the sets of reachable
markings and con�gurations. A transition sequence as above is a process run if
M ′ = MF . In this paper, we will assume that DPNs are bounded, i.e., that the
number of tokens in reachable markings is upper-bounded by some k ∈ N.

Data-aware Dynamic Systems with Arithmetic (DDSAs) are a simpler, equiva-
lent model [9,10] that we will use for analysis tasks.

De�nition 3. A DDSA B = ⟨B, bI ,A, T, BF , V, αI , guard⟩ is a labeled transi-
tion system where (1) B is a �nite set of control states, with bI ∈B the ini-
tial one; (2) A is a set of actions; (3) T ⊆ B×A×B is a transition relation;
(4) BF ⊆ B are �nal states; (5) V is the set of process variables; (6) αI the ini-
tial variable assignment; and (7) guard : A 7→ C(V r∪V w) speci�es executability
constraints for actions over variables V r ∪V w.

Every bounded DPN N can be equivalently expressed as a DDSA B over the
same set of process variables V , by unfolding all possible markings (see [13] for
details). The set of control states of B coincides thus with the set of markings of
N . Fig. 2 (b) shows a DDSA which corresponds to the DPN in Fig. 2 (a). The
action guards are the same as in the DPN, but have been omitted for readability.

If a control state b ∈ B admits a transition to b′ via action a, i.e., (b, a, b′) ∈ T ,
this is denoted by b a−→ b′. A con�guration of B is a pair (b, α) where b∈B and
α is a state variable assignment, and (bI , αI) is the initial one. As de�ned next,
an action a transforms a con�guration (b, α) into a new con�guration (b′, α′) by
updating the assignment α according to the action guard, exactly as in DPNs:

De�nition 4. A DDSA B= ⟨B, bI ,A, T, BF , V, αI , guard⟩ admits a step from
con�guration (b, α) to (b′, α′) via action a, denoted (b, α) a−→ (b′, α′), if b a−→ b′,

6 Marco Montali and Sarah Winkler

α′(v) = α(v) for all v ∈ V \ write(a), and the transition assignment β given by
β(vr) = α(v) and β(vw) = α′(v) for all v ∈ V , satis�es β |= guard(a).

A run ρ of a DDSA B is a sequence of steps ρ : (bI , αI) = (b0, α0)
a1−→

(b1, α1)
a2−→ · · · an−−→ (bn, αn), and it is �nal if bn ∈ BF . We call the abstraction of

a run the respective transition sequence b0
a1−→ b1

a2−→ · · · an−−→ bn. For instance,
for the DDSA in Fig. 2 (b), the following is a run ending in a �nal state (note
that each state corresponds to a marking of the DPN):

({p0},
[
t=0
o=0

]
) init−−→ ({p1, p2},

[
t=1
o=0

]
) bid−−→ ({p1, p2},

[
t=1
o=5

]
) timer−−−→ ({p1, p2},

[
t=0
o=5

]
) hammer−−−−→ ({p3},

[
t=0
o=5

]
)

The number of runs and con�gurations of a DPN or DDSA are typically
in�nite, due to the in�nite number of possible valuations. For analysis tasks, we
thus resort to the following abstraction:

Constraint graphs (CGs) are an abstraction of the reachable state space that
was introduced for soundness checking [10,13]. The key idea is that formulas are
used to represent sets of con�gurations.

Let B= ⟨B, bI ,A, ∆,BF , V, αI , guard⟩ be a DDSA. The transition formula
∆a of action a is given by ∆a(V

r
, V

w
) = guard(a) ∧

∧
v ̸∈write(a) v

w = vr. This
formula simply expresses conditions on variables before and after executing the
action: guard(a) must hold, and the values of all variables that are not written
are copied. E.g., for action bid in Fig. 2 (b), write(bid) = {o}, so ∆bid = (tr > 0)∧
(ow >or) ∧ (tw = tr). Next, we de�ne an update operation, to express how a set
of con�gurations, captured by formula φ, changes when executing an action.

De�nition 5. For a formula φ with free variables V and action a, update(φ, a) =
∃U.φ[U/V] ∧∆a[U/V

r
, V /V

w
], where U is a set of variables that has the same

cardinality as V and is disjoint from all variables in φ.

Here, φ[U/V] is the result of replacing variables V in φ by U , and similar for
∆a. For instance, if V = (o, t) we can take the renamed variables U = (o′, t′);
for φ = (t> 0) ∧ (o=0) we then get update(φ, bid) = ∃o′ t′. (t′ > 0) ∧ (o′ =0) ∧
(o>o′) ∧ (t= t′), which is equivalent to (t> 0) ∧ (o> 0). This re�ects that, if in
the process of Fig. 2, t > 0 and o = 0 hold, and bid is executed, then afterwards
we still have t > 0 but also o is positive. Below, let cαI

:=
∧

v∈V v=αI (v) .

De�nition 6. The constraint graph CGB of B is a quadruple ⟨S, s0, γ, SF ⟩
where the set of nodes S consists of tuples (b, φ) for b∈B and a formula φ
with free variables V , and γ ⊆ S ×A× S, inductively de�ned as follows:
(i) s0 := (b0, cαI) ∈ S is the initial node; and
(ii) if (b, φ) ∈ S and b a−→ b′ such that update(φ, a) is satis�able, there is some

(b′, φ′) ∈ S with φ′ ≡ update(φ, a), and (b, φ) a−→ (b′, φ′) is in γ, and
(iii) the set of �nal nodes SF consists of all (b, φ) such that b ∈ BF .

Intuitively, the constraint graph describes all con�gurations reachable in B: Ev-
ery node combines a control state b with a formula φ: it represents all con�g-
urations (b, α) such that α satis�es φ. Fig. 2 (c) shows the CG for the DDSA

Equivalence of Data Petri Nets with Arithmetic 7

obtained from N in Ex. 2, (�nal nodes are drawn with a double border). In fact,
Fig. 2 (c) is also the CG for the DDSA of Nreset (basically, because the transition
reset is not reachable). The crucial property of CGs is that they faithfully and
completely represent the con�guration space, in the following sense:

Lemma 1 ([13, Lem. 2]). CGB has a path π : (bI , cαI
) →∗ (b, φ) s.t. φ is

satis�ed by α i� B has a run (bI , αI) →∗ (b, α) whose abstraction is σ(π).

Here, for a path π in the CG, σ(π) is the DDSA transition sequence along
this path. Thus a path π in the CG captures all runs ρ with the same sequence of
control states and actions such that the last assignment in ρ satis�es the formula
in the last node of π. CGs are in�nite in general, but for many classes of DDSAs
occurring in practice, �nite CGs can be computed [10,13]. These include DDSAs
where all constraints are variable-to-variable/constant comparisons over Q like
Ex. 2, and bounded lookback DDSAs whose behaviour, intuitively, depends only
on a bounded number of past steps (this holds e.g. for Ex. 1).

3 Marking and Con�guration Equivalence

Two Petri nets aremarking equivalent if their sets of reachable markings coincide.
While marking equivalence is in general undecidable for Petri nets [14], it is easy
to decide for bounded Petri nets, by enumerating all markings. Here we consider
marking equivalence, as well as the related problem of marking inclusion, for
bounded DPNs. First, we note that if a DPN N was transformed into a DDSA
B as described in [13], then the set of possible markingsMark(N) coincides with
the set of reachable states in B. Two DPNs N1 and N2 with respective DDSAs B1

and B2 are thus marking equivalent i� B1 and B2 have the same sets of reachable
states. Since reachability of a single state in a DDSA is already undecidable (cf.
[12, Rem. 2.6]), also marking equivalence of DPNs is undecidable.

However, we show that for bounded DPNs with �nite CGs, marking equiva-
lence can be read o� the CGs: Suppose two DPNs were transformed into DDSAs
B1 = ⟨B, bI ,A, T, BF , V, αI , guard⟩ and B2 = ⟨B, b′I ,A, T ′, BF , V, α

′
I , guard⟩. We

assume that all components of the DDSAs coincide, except for initial states and
transitions, but this does not restrict generality as control states can be unreach-
able, For a DDSA B, let MReach(B) = {b | (b, φ) ∈ S} for S the set of nodes in
CGB, i.e., MReach(B) is the set of control states of B that occur in the CG of B.

Proposition 1. Two DPNs N1 and N2 that correspond to DDSAs B1 and B2

with �nite CGs satisfy Mark(N1) ⊆ Mark(N2) i� MReach(B1) ⊆ MReach(B2),
and are marking equivalent i� MReach(B1) = MReach(B2).

Proof. First, suppose Mark(N1) ⊆ Mark(N2), and let M ∈ MReach(B1). By
Lem. 1, there is a run of B1 ending in a con�guration (M,α). Thus M is a
reachable state of B1, i.e., a reachable marking of N1, and hence also of N2, so
there is a process run of N2 (and thus a run of B2) ending in a con�guration
(M,α′). By Lem. 1, the CG for B2 has a node (M,φ), i.e., M ∈ MReach(B2).

8 Marco Montali and Sarah Winkler

Second, if MReach(B1) ⊆ MReach(B2) and M ∈ Mark(N1), some process
run of N1 and run of B1 end in a con�guration (M,α). By Lem. 1, the CG for
B1 has a node (M,φ). Since MReach(B1) ⊆ MReach(B2), the CG for B2 has a
node (M,φ′). By Lem. 1, there is a run of B2 ending in a con�guration (M,α′).
This shows the inclusion statement, so the one for equivalence follows. ⊓⊔

Con�guration equivalence. For DPNs, the perhaps more relevant notion than
marking equivalence is equivalence of sets of con�gurations. Let two DPNs be
con�guration equivalent if their sets of reachable con�gurations coincide. First,
note that for a DPN N with associated DDSA B, the sets of con�gurations of N
and B coincide. Thus, we can again check the problem on the level of DDSAs.
For a DDSA B with constraint graph with node set S, and M a state of B,
consider φreach(B,M) =

∨
{φ | (M,φ) ∈ S} as a formula representation of the

con�gurations that can occur together with M .

Proposition 2. Let two DPNs N1 and N2 correspond to DDSAs B1 and B2.
(1) Conf (N1) ⊆ Conf (N2) i� Mark(N1) ⊆ Mark(N2) and φreach(B1,M) |=

φreach(B2,M) for all M ∈ Mark(N1).
(2) N1 and N2 are con�guration equivalent i� they are marking equivalent and

φreach(B1,M) ≡ φreach(B2,M) for all M ∈ Mark(N1).
(3) If M ∈ Mark(N1)∩Mark(N2) and there is some assignment α that satis�es

φreach(B1,M) ∧ ¬φreach(B2,M) then (M,α) ∈ Conf (N1) \ Conf (N2).

Proof. (1) First, assume Conf (N1) ⊆ Conf (N2), so Mark(N1) ⊆ Mark(N2).
Let α |= φreach(B1,M), so α |= φ for some (M,φ) in the CG of B1. By Lem. 1,
there is a run of B1 ending in a con�guration (M,α). So (M,α) is a con�guration
of N1, and hence of N2, so (M,α) is also reachable in B2. Again by Lem. 1, the
CG for B2 has a node (M,φ′) such that α |= φ′, so α |= φreach(B2,M).

Second, supposeMark(N1) ⊆ Mark(N2) and φreach(B1,M) |= φreach(B2,M)
for all M ∈ Mark(N1). Let (M,α) ∈ Conf (N1), so reachable in B1. By Lem. 1,
the CG for B1 has a node (M,φ) such that α |= φ, so α |= φreach(B1,M), hence
α |= φreach(B2,M). By Lem. 1, some run of B2 (hence of N2) ends in (M,α).
This shows (1), which implies (2); for (3) the reasoning is similar. ⊓⊔

Note that marking equivalence can also be decided by �nitely many reacha-
bility queries, but not con�guration equivalence if the state space is in�nite.

Example 3. Consider the DPNsN1 andN2 in Fig. 3 (a) over variables V = {x, y}
with sort rat, with αI (x) = αI (y) = 0 (the guards of actions in N2 coin-
cide with those in N1). The respective DDSAs B1 and B2 and their constraint
graphs are shown in Fig. 3 (b) and (c). The markings occurring in the CGs
coincide, so the two DPNs are marking equivalent. However, they are not con-
�guration equivalent: For instance, the formulas φreach(B1, {p3}) = (x>1∧y>x)
and φreach(B2, {p3}) = (x>1 ∧ y>x) ∨ (x>y+1 ∧ y>0) are not equivalent. This
is witnessed by any assignment that satis�es φreach(B2,M) ∧ ¬φreach(B1,M) ≡
(x>y+1 ∧ y>0), e.g., α(x) = 2 and α(y) = 1, so ({p3}, α) is a con�guration
of N2 but not of N1. However, φreach(B1,M) |= φreach(B2,M) for all M , so
Conf (N1) ⊆ Conf (N2).

Equivalence of Data Petri Nets with Arithmetic 9

(a)

(b)

(c)

setx sety τ

reset

xw >yr + 1 yw >xr ⊤

xw =0 ∧ yw =0

p0 p1 p2 p3 p0
p1

p2

p3
setx sety

sety setx

reset

setx sety τ

reset

{p0} {p1} {p2} {p3}
setx

sety setx

sety

reset

{p0} {p1}

{p2}

{p3}

{p0} x=0 ∧ y=0 {p1} x>1 ∧ y=0

{p2} x>1 ∧ y>x{p3} x>1 ∧ y>x

setx
setyreset

τ

{p0} x=0 ∧ y=0

{p1} x>1 ∧ y=0

{p2} x=0 ∧ y>0

{p3} x>1 ∧ y>x

{p3} x>y+1 ∧ y>0

setx

sety
setx

sety

reset

reset

Fig. 3. Two DPNs with their DDSAs and constraint graphs.

For another example, as the CGs of N and Nreset from Ex. 2 coincide, the
DPNs are marking and con�guration equivalent. One can also use Props. 1 and 2
to check that the DPN in Ex. 1, and the version in [19, Fig. 12.7] in which guards
were discovered automatically, are marking but not con�guration equivalent.

4 Language Equivalence

Language equivalence is undecidable for unbounded Petri nets [14], but decidable
for bounded nets, in which case it basically amounts to checking equivalence of
two regular languages [15]. Here we consider the respective problem for bounded
DPNs. Given a DPNN , let its language L(N) be the set of all ℓ(t′1), . . . ℓ(t

′
m) such

that there is a process run (MI , α0)
(t1,β1)−−−−→ . . . (tn,βn)−−−−−→ (M ′, α′) and t′1, . . . , t

′
m

is the maximal subsequence of t1, . . . , tn such that ℓ(t′i) ̸= τ . We assume that
silent transitions in DPNs do not write variables, and moreover, that there are
no cycles that consist of silent transitions only. Thus, after transforming a DPN
into a DDSA, we can eliminate silent transitions by replacing them with non-
silent transitions, similar as done in NFAs: if b t−→ b′ with t silent with guard
c, and b′ t1−→ b1, . . . , b

′ tm−−→ bm are all transitions starting from b′, we remove
b t−→ b′ and add transitions b t′1−→ b1, . . . , b

t′m−−→ bm with guard(t′i) = guard(ti) ∧ c.
This replacement can be repeated until there are no silent transitions left. Thus,
we can consider the language equivalence problem for DDSAs without silent
transitions. Let the language L(B) of a DDSA B be the set of all words a1, . . . , an
such that B has a run (bI , αI)

a1−→ (b1, α1)
a2−→ · · · an−−→ (bn, αn) and bn ∈ BF .

Then, for every bounded DPN N there is a DDSA B such that L(N) = L(B).
We now consider two DPNs N1 and N2 that correspond to DDSAs B1 =

⟨B1, bI ,A, T, BF , V, αI , guard⟩ and B2 = ⟨B2, b
′
I ,A, T2, B

′
F , V, α

′
I , guard⟩. Note

that the data variables, actions, and guards are supposed to coincide, but control
states, transitions and the initial assignment may be di�erent.

10 Marco Montali and Sarah Winkler

Algorithm 1 Checking language equivalence of node sets and DDSAs

1: procedure SetEquiv(X,Y,G,G′)
2: R := ∅, todo := {(X,Y)}
3: while todo ̸= ∅ do

4: extract (X,Y) from todo
5: if (X,Y) ∈ R then

6: continue
7: if finB(X) ̸= finB′(Y) then
8: return false
9: for each a ∈ A do

10: add (nextG(X, a),nextG′(Y, a)) to todo

11: add (X,Y) to R

12: return true

1: procedure Equiv(B,B′)
2: compute CGB and CGB′ , let s0 and s′0 be the initial states
3: return SetEquiv({s0}, {s′0},CGB,CGB′)

Language equivalence can be checked by an adaptation of an algorithm to
check language equivalence of NFAs [3, Fig. 4], see the procedure Equiv in Alg. 1.
We use the following shorthands: for a set of nodes X in a constraint graph G,
finB(X) is true i� X contains a node that is �nal in G. Moreover, nextG(X, a) is
the set of all CG nodes s′ such that G has an edge s a−→ s′ for some s ∈ X.

For a set of nodes X in a CG G, we now write LG(X) for the set of words
accepted starting from a state in X, i.e., the set of words a1, . . . , an such that
G has a path (b, φ0)

a1−→ (b1, φ1)
a2−→ · · · an−−→ (bn, φn) from some b ∈ X such that

(bn, φn) is �nal in G. Then, procedure SetEquiv can be used to check whether
two sets of states accept the same words. This is formally stated in the next
result, which follows directly from [3, Prop. 2], considering G and G′ as NFAs
and X and Y as sets of states therein.

Proposition 3. For sets of CG nodes X in G and Y in G′, SetEquiv(X,Y,G,G′)
is true i� LG(X) = LG′(Y).

Proposition 4. For two DPNs N1, N2 and DDSAs B1, B2 without silent tran-
sitions such that L(N1) = L(B1) and L(N1) = L(B1), Equiv(B1,B2) = true i�
N1 and N2 are language equivalent.

Proof (sketch). Let G1 and G2 be the CGs of B1 and B2. We haveEquiv(B1,B2) =
SetEquiv({s0}, {s′0},G1,G2), which is true i� LG1({s0}) = LG2({s′0}) by Prop. 3.
From Lem. 1 it follows that LG1

({s0}) coincides with L(B1) = L(N1), and simi-
lar for B2, so the claim follows. ⊓⊔

Language inclusion can be reduced to language equivalence since L(X) ⊆
L(Y) i� L(X)∪L(Y) ⊆ L(Y) i� L(X ∪ Y) ⊆ L(Y), cf. [3], so Alg. 1 also serves
to decide language inclusion.

For instance, since the constraint graphs of N and Nreset from Ex. 2 coincide,
the DPNs are language equivalent. On the other hand, Equiv can be used to

Equivalence of Data Petri Nets with Arithmetic 11

detect that the languages of the DPNs in Fig. 3 are not equal (e.g., sety, setx is
not accepted by the �rst CG). The next example shows that it does not su�ce
to execute Equiv on the DDSAs instead of the constraint graphs.

Example 4. Consider the following two DDSAs:

b0 b1 b2

b3

inc : xw>xr

inc : xw>xr

check : xr>7

zero : xr=0

check : xr>7
b′0 b′1

inc : xw>xr

check : xr>7

zero : xr=0

If both αI (x) = α′
I (x) = 0, their CGs coincide, so Equiv concludes language

equivalence (the language being inc+check+zero, in regular expression notation).

b0 x=0 b1 x>0 b2 x>7

b3 x=0

inc

inc

check

zero

b′0 x=0 b′0 x>0 b′1 x>7

b′1 x=0

inc

inc

check

zero

However, note that the procedure Equiv could not be run on the DDSAs directly,
since detection of dead transition requires a reasoning based on reachable con�g-
urations, as done in CGs. Moreover, note that with e.g. αI (x) = α′

I (x) = 10, the
DDSAs would not be language equivalent because the single-letter word check
would be in the language of the second, but not of the �rst DDSA.

Alg. 1 can be modi�ed to return a witness if equivalence does not hold. For
reasons of space, we cannot formalize this here, but the main idea is straightfor-
ward: every pair in todo can be associated with a word that led to this pair of
node sets, starting with the empty word ϵ for the initial nodes. When returning
false in line 9, SetEquiv can then also return the word accumulated up to this
point, which witnesses the di�erence.

It can also be noted that if N1 and N2 are language equivalent and αI = α′
I ,

then the DPNs are also con�guration equivalent, because actions have the same
guards in both DPNs. However, the converse does not hold: if N1 is a copy of
N2 where actions are renamed but have the same guards, then the two DPNs
are con�guration equivalent but not language equivalent.

Conclusion. We proposed techniques to check marking, con�guration, and lan-
guage equivalence for bounded DPNs with �nite constraint graphs. Our correct-
ness results thus imply that these notions are decidable for bounded DPNs with
�nite CGs, which captures many DPNs from practice [13]. To the best of our
knowledge, these are the �rst results to compare DPNs based on behaviour. In
future work, it would be interesting to study other notions of equivalence, e.g.
language equivalence taking data into account. Also the study of quantitative
similarity measures would be of interest, to e.g. express how large the intersec-
tion/di�erence of con�guration spaces/language is. Our approach could also be
implemented on top of the tool ada [13,11], which already computes CGs.

12 Marco Montali and Sarah Winkler

References

1. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equiv-
alence: Comparing two process models based on observed behavior. In: Proc. 4th
BPM. LNCS, vol. 4102, pp. 129�144 (2006)

2. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satis�ability modulo theories.
In: Handbook of Satis�ability, 2. Ed., vol. 336, pp. 1267�1329. IOS Press (2021)

3. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Proc. 13th POPL. pp. 457�468. ACM (2013)

4. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies
and arithmetic. ACM Trans. Database Syst. 37(3), 22:1�22:36 (2012)

5. de Leoni, M., Mannhardt, F.: Decision discovery in business processes. In: Ency-
clopedia of Big Data Technologies, pp. 1�12. Springer (2018)

6. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Inf. Syst. 36(2), 498�516 (2011)

7. Dijkman, R.M., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: Proc. 7th BPM. LNCS, vol. 5701, pp.
48�63 (2009)

8. Euzenat, J., Shvaiko, P.: Ontology Matching, 2. Ed. Springer (2013)
9. Felli, P., de Leoni, M., Montali, M.: Soundness veri�cation of decision-aware process

models with variable-to-variable conditions. In: Proc. 19th ACSD. pp. 82�91. IEEE
(2019)

10. Felli, P., de Leoni, M., Montali, M.: Soundness veri�cation of data-aware process
models with variable-to-variable conditions. Fundamenta Informaticae 182(1), 1�
29 (2021)

11. Felli, P., Montali, M., Winkler, S.: CTL* model checking for data-aware dynamic
systems with arithmetic. In: Proc. 11th IJCAR. vol. 13385, pp. 36�56 (2022)

12. Felli, P., Montali, M., Winkler, S.: Linear-time veri�cation of data-aware dynamic
systems with arithmetic. In: Proc. 36th AAAI. pp. 5642�5650 (2022)

13. Felli, P., Montali, M., Winkler, S.: Soundness of data-aware processes with arith-
metic conditions. In: Proc. 34th CAiSE. LNCS, vol. 13295, pp. 389�406 (2022)

14. Hack, M.: Decidability questions for Petri Nets. Ph.D. thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA (1976)

15. Jancar, P., Moller, F.: Checking regular properties of petri nets. In: Proc. 6th
CONCUR. LNCS, vol. 962, pp. 348�362 (1995)

16. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity - A proper metric. In:
Proc. 9th BPM. LNCS, vol. 6896, pp. 166�181 (2011)

17. de Leoni, M., Dumas, M., García-Bañuelos, L.: Discovering branching conditions
from business process execution logs. In: Proc. 16th FASE. LNCS, vol. 7793, pp.
114�129 (2013)

18. de Leoni, M., Felli, P., Montali, M.: A holistic approach for soundness veri�cation of
decision-aware process models. In: Proc. 37th ER. LNCS, vol. 11157, pp. 219�235
(2018)

19. Mannhardt, F.: Multi-perspective Process Mining. Ph.D. thesis, Technical Univer-
sity of Eindhoven (2018)

20. Mannhardt, F., de Leoni, M., Reijers, H., van der Aalst, W.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407�437 (2016)

21. Schoknecht, A., Thaler, T., Fettke, P., Oberweis, A., Laue, R.: Similarity of business
process models - A state-of-the-art analysis. ACM Comput. Surv. 50(4), 52:1�52:33
(2017)

	Equivalence of Data Petri Nets with Arithmetic

