
Engineering Applications of Artificial Intelligence 126 (2023) 106895

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Multi-perspective conformance checking of uncertain process traces: An
SMT-based approach
Paolo Felli a,∗, Alessandro Gianola b, Marco Montali b, Andrey Rivkin b, Sarah Winkler b

a University of Bologna, Bologna, BO, Italy
b Free University of Bozen-Bolzano, Bolzano, BZ, Italy

A R T I C L E I N F O

Keywords:
Stochastic process mining
Conformance checking
Data quality
Uncertainty
SMT

A B S T R A C T

Conformance checking, one of the central tasks in process mining, compares the expected behavior described
by a reference process model to the actual behavior recorded in an event log, with the goal of detecting
deviations. Traditionally, it is assumed that the log provides a faithful and complete digital footprint of
reality. However, assuming perfect logs is often unrealistic: real-life logs typically suffer from data quality
issues, exposing uncertainty in their events, timestamps, and data attributes. We attack this problem by
introducing a comprehensive framework for multi-perspective conformance checking dealing with uncertainty
along three perspectives: control-flow, time, and data. From the modeling point of view, we consider process
models formalized as Petri nets operating over data variables, and event logs presenting uncertainty at the
event- and attribute-level. We cast conformance checking as an alignment problem, extending the traditional
notions of alignment and cost function to deal with uncertainty along the three aforementioned perspectives.
From the operational point of view, we show how (optimal) alignments can be computed through well-
established automated reasoning techniques from Satisfiability Modulo Theories (SMT). Specifically, we show
how previous results on data-aware SMT-based conformance checking can be lifted to this more sophisticated
setting, obtaining a flexible framework that can seamlessly handle different variants of the problem. We
formally prove correctness of our approach and implement it in the conformance checker cocomot. Finally,
we perform a thorough experimental evaluation on synthetic and real-life logs, demonstrating the overall
promising performance of our framework.
1. Introduction

Process mining is a family of approaches that combine data sci-
ence and process management to support companies in evidence-based
continuous improvement of their processes. Process mining techniques
provide detailed insights into operational and administrative processes,
as well as a variety of data-driven recommendations on how to optimize
performance and reduce costs.

The core data used in process mining are event data that record
the execution of several instances (also called cases) of the process of
interest. Cases are, for example, patients in a healthcare process and
orders in an order-to-delivery scenario. It is usually assumed that each
event comes with the identifier of the case it belongs to, a timestamp,
the indication of the activity in the process it refers to, plus additional
attributes (van der Aalst Wil et al., 2011). This allows one to reconstruct
the full trace of events for each enacted process instance, forming an
event log of the process.

One of the central tasks in process mining, which we consider in this
article, is conformance checking (Carmona et al., 2018). Conformance

∗ Corresponding author.
E-mail address: paolo.felli@unibo.it (P. Felli).

compares the expected behavior described by a reference process model
and the actual behavior recorded in an event log, with the goal of
detecting deviations. There are multiple techniques of detecting devia-
tions (Carmona et al., 2018), but in this work we are interested in the
one that describes such deviations in terms of alignments (Adriansyah
et al., 2011a,b, 2012) – special structures relating log events to execu-
tion steps of the model, and providing a fine-grained feedback on the
nature and extent of deviations.

Process mining tasks typically assume that the event log containing
such data provides an accurate and complete representation of reality.
However, this rather unrealistic assumption often falls short, due to two
main reasons. First and foremost, the execution of process instances
may inherently be traced with imprecision. Events may be missing
or totally/partially wrongly recorded, due to various factors such as
human errors, faulty loggers, and errors experienced during the event
acquisition (e.g., through sensors). This regularly happens when the
process contains parts that are under the responsibility of human actors,
vailable online 28 August 2023
952-1976/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.engappai.2023.106895
Received 12 February 2023; Received in revised form 3 July 2023; Accepted 29 Ju
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ly 2023

https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
mailto:paolo.felli@unibo.it
https://doi.org/10.1016/j.engappai.2023.106895
https://doi.org/10.1016/j.engappai.2023.106895
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.106895&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

t
w
p
i
e
b
e

f

d

n
q
c
t
a
g
t
o
k
o
i

b

m
e
t
(
s
r

and that are executed in the real world without the direct support of
an information system. Think, for example, at treatments in a hospital
and activities executed at home by the patient in the context of a
healthcare process, or activities happening in the warehouse or during
transportation in an order-to-delivery scenario. Such activities may not
at all be logged, or logged a posteriori with uncertainty.

A second crucial factor is the fact that event logs are only rarely
directly produced at runtime in a way that can be directly digested
by process mining techniques. Often, instead, event logs are extracted
from multiple, possibly heterogeneous information systems, through
complex data integration and transformation pipelines, which may on
their own introduce additional errors.

In the process mining literature, there are two lines of research
used to mitigate this issue. The first line predominantly focuses on
the data quality aspect and offers methodologies and techniques that
can be used to handle various types of uncertainty during data prepa-
ration (see, e.g., Wynn and Sadiq (2019)). The second line, instead,
embraces the idea that event data are uncertain, and handles uncer-
tainty directly inside the process mining task. This has led to two
major families of ‘‘uncertainty-aware’’ process mining techniques. In
the first family, usually known under the name of stochastic process
mining, uncertainty is incorporated at the model level, while assuming
that the log is accurate and complete (Leemans et al., 2021; Polyvyanyy
and Kalenkova, 2022; Bergami et al., 2021; Alman et al., 2022). In the
second family, instead, the event log itself is considered uncertain, and
is consequently augmented with additional metadata indicating where
uncertainty is located, and with which degree (Pegoraro et al., 2021b;
Chesani et al., 2018).

In this work, we concentrate on this latter family of techniques,
studying conformance checking of uncertain process traces where uncer-
ainty can manifest itself at the event- and attribute-levels. Dealing
ith uncertainty in data attributes calls for considering data-aware
rocess models. Our formalism of choice for reference process models
s consequently that of data Petri net (Mannhardt et al., 2016; de Leoni
t al., 2018) (DPN for short), which provides an interesting trade-off
etween expressiveness and tractability, and that naturally matches
vent logs with data attributes.

We attack this problem by introducing a comprehensive framework
or multi-perspective conformance checking, which lifts data-aware con-

formance checking (Mannhardt, 2018) to the relevant setting where
event logs present uncertainty in the control-flow, time, and data. Our
approach then belongs to the single, deterministically known process and
stochastically known log configuration in the classification framework
recently introduced in Cohen and Gal (2021).

To deal with stochastically known logs, we build on the taxonomy of
uncertainty types of event data proposed in Pegoraro and van der Aalst
(2019), Pegoraro et al. (2021b), and handle in particular the following
four types.

• Uncertain events (called indeterminate events in Pegoraro and
van der Aalst (2019)) are associated in a log trace with a con-
fidence value that captures the degree of (un)certainty about
whether the recorded event actually occurred during the pro-
cess execution. This confidence value provides a measure for
the degree of trust associated to the logging of the event, and
should hence not be confused with a probability estimating the
likelihood/frequency of the corresponding behavior.

• Uncertain timestamps associate a recorded event with a time range
when the event happened, instead of a single timestamp. This
reflects that, due to coarse-grained and ambiguous logging, events
in a trace are in general not totally ordered, and/or may be
associated to multiple possible orderings. Consequently, a log
trace must be considered as a set of occurred events, without
pre-imposing a specific sequencing over those.

• Uncertain activities pertain events whose associated activity is un-
clear. This is realized by assigning to a recorded event a candidate
2

set of possible activities (each with its own confidence value).
• Uncertain data values: event data attributes in data-aware pro-
cesses often come with both ambiguity and coarseness, for ex-
ample because sensors lack precision. Concretely, only a set of
possible values or an interval may be associated with a data
attribute of an event, so that the entire value range must be
considered.

Using the notation in Pegoraro et al. (2021b), this corresponds to
logs of type [ead]𝑊 [t]𝑆 or [eac]𝑊 [t]𝑆 , as data attributes can be either
iscrete or continuous.

In this work, we consider event logs where events can carry an-
otations concerning these four types of uncertainty, as well as a
uantification of the respective lack of confidence. These annotations
an be extracted from operational characteristics of the information sys-
em recording the event data, e.g. from information about the precision
nd reliability of the registration; or they can be directly attached to the
enerated events. For example, a log can be augmented with data about
he precision or coarseness of logging devices in a sensor network. In
ther settings, uncertainty-related annotations may stem from domain
nowledge on the precision and frequency of a specific human activity,
r may be explicitly recorded by the logging infrastructure of the
nformation system.

On top of these uncertain event data, we provide a twofold contri-
ution:

1. From the modeling point of view, we formalize multi-pers
pective alignments under uncertainty, extending the traditional
notions of alignment and cost function to deal with uncertainty
along control-flow, time, and data.

2. From the operational point of view, we show how (optimal)
alignments can be computed through well-established auto-
mated reasoning techniques from Satisfiability (and Optimiza-
tion) Modulo Theories (SMT) (Barrett and Tinelli, 2018).

More specifically, in the case of traces with uncertain data, align-
ents must take into consideration the possible values that uncertain

vents and attributes might take. To this end, we borrow and adapt
o our setting the idea of trace realization proposed in Pegoraro et al.
2021b), which resembles, in spirit, the well-known possible worlds
emantics used in probabilistic databases (Abiteboul et al., 1987). Each
ealization of a log trace with uncertainty is an ordered sequence of

events in which all the four types of uncertainty described above
are resolved; however, due to uncertainty over timestamps and data
attributes, infinitely many possible realizations may exist for a given
uncertain trace.

Our task is then concretely substantiated as follows. Given a ref-
erence process model represented as data Petri net (Mannhardt et al.,
2016; de Leoni et al., 2018) (DPN) and a log trace ue annotated with
uncertainty, exhibit (𝑖) a realization e of ue, (𝑖𝑖) a model run f of the
DPN, and (𝑖𝑖𝑖) an alignment between e and f such that this alignment
is optimal with respect to all possible realizations and model runs, that
is, the alignment has minimal cost among all choices for e and f. In
contrast to Pegoraro et al. (2021b), the confidence values of the trace
with uncertainty are employed as an essential component for measuring
the cost when selecting realizations. In fact, all four uncertainty types
described above are supported when constructing trace realizations,
and the computation of best alignments is driven by a generic cost
function whose components can be flexibly instantiated by domain
experts so as to homogeneously account for a variety of domain-specific
measures. To substantiate this technique, we formally prove that our
approach is indeed capable of producing trace realizations and, given
a concrete cost function instantiation, compute corresponding optimal
alignments.

Instead of operationalizing our technique using ad-hoc algorithms,

we build on previous work (Felli et al., 2021) that cast the prob-

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

s

i
u
2
t
o
p
f
a
s
p
t
t
t
o
t
g
o

u
p
P
2
e
w
o
w
t
f
p
e
c
b
c
p
o
w
a
t
u

u
d
v
e
a
a
m
l
m
o

c
(

lem of computing data-aware alignments for DPNs as an automated
reasoning problem that can be solved by well-established SMT tech-
nologies dealing with Satisfiability and Optimization Modulo Theories,
such as Yices (Dutertre, 2014) and Z3 (de Moura and Bjørner, 2008).
Specifically, we show how this previous SMT encoding can be lifted
to the more sophisticated setting of this paper, compactly handling
trace realizations in a symbolic way, and ultimately obtaining a flexible
framework that can seamlessly handle different variants of the problem.
The encoding is implemented as an extension of CoCoMoT – the SMT-
based conformance checking framework first presented in Felli et al.
(2021). To the best of our knowledge, this is the first implementation
of the conformance checking problem over logs with uncertain data
using techniques coming from the domain of automated reasoning. To
witness the practical feasibility of our approach, we subject this proof-
of-concept implementation to a thorough experimental evaluation on
publicly available and synthetically generated event logs and DPN
models. As part of this evaluation, we compare our tool against the one
proposed in Pegoraro et al. (2021b), using the benchmarks reported
therein and focusing on how both tools scale when different shares
of event data are affected by uncertainty. In addition, we include
experiments demonstrating (1) how various SMT solvers perform on
solving the conformance checking problem over uncertain data, and (2)
the advantage of our direct encoding of uncertain trace realizations, by
comparing the runtime of our tool against that of original cocomot
executed over pre-computed realizations.

This contribution is a revised and extended version of the con-
ference paper (Felli et al., 2022), where we proposed a modeling
framework and SMT encoding for data-aware conformance checking
under uncertainty.

We complement the work in Felli et al. (2022) by:

• providing a formal proof of correctness of our approach in dealing
with uncertain traces and computing (optimal) alignments of their
trace realizations. This includes showing the existence of an upper
bound on the length of optimal alignments;

• illustrating in greater detail the implementation of the approach
(based on the one in Felli et al. (2022)), which extends cocomot
to handle uncertainty;

• presenting a thorough experimental evaluation.

The paper is structured in the following way. The next section dis-
cusses approaches related to the one studied in this paper. In Section 3
we summarize preliminaries on DPNs and SMT. Section 4 describes the
representation of log traces with uncertainty, as well as the notion of
alignments. In Section 5 we examine components of the cost model
that arise in the setting with uncertain event data. Specifically, we fix
a concrete data-aware cost function that is used in the sequel (Sec-
tion 5.2). Section 6 details the ingredients of our SMT-based encoding
and provides theoretical results on the correctness of our approach.
In Section 7 we outline the tool implementation, and in Section 8
we report on extensive experimental evaluation results. Finally, in
Section 9 we conclude with directions for future work.

2. Related work

In the last decades, many advanced techniques for collecting and
managing data have been proposed (Aggarwal, 2009; Li et al., 2020).
In practice, it is often the case that the collected data are incomplete,
contain errors, or simply vaguely specified. Notably, whereas for in-
complete or faulty data it is hard to understand the level of imprecision,
in the last case one usually talks about uncertain data for which the level
of uncertainty can be quantified in some way (Aggarwal, 2009).

To characterize problems with data quality in event logs, Chandra
et al. (2013) identify four categories of insufficiency: missing, incorrect,
3

imprecise, and irrelevant data. In this work, we focus on imprecise data t
where a loss of precision occurs due to too coarse-grained logging,
so that later process analysis tasks may lead to wrong results. For
this reason, as discussed in the previous section, we assume that such
imprecision is either quantified or that the set of alternatives is known,
hence departing from existing techniques for handling missing data.
For instance, in van der Aa et al. (2020) the authors address the
task of computing realizations from partially ordered event logs when
timestamp information is absent, whereas here we support uncertain
timestamps.

To address problems with imprecise data in logs, two lines of re-
earch recently emerged.

The first one is concerned with methodologies and techniques to
mprove the data quality in the data preparation phase, thus handling
ncertainty in a preprocessing step (Wynn and Sadiq, 2019; Goel et al.,
022). Both Wynn and Sadiq (2019) and Goel et al. (2022) emphasized
he importance of data quality for responsible process mining, and focus
n enhancing the data quality of event logs in the data preparation
hase. Specifically, in Goel et al. (2022) the authors proposed measures
or data quality that retain the precision, accuracy, and reliability of
ctivity labels and timestamps. These data quality characteristics are
upposed to be assessed in the preprocessing phase. The authors then
ropose a conformance checking approach with a dedicated cost func-
ion that takes data quality into account. However, activity labels and
imestamps of trace events are already considered fixed at this point, so
hat different realizations of the trace are not taken into account. While
ur SMT-based technique could be used for this conformance checking
ask (by implementing the designated cost function), it is in fact more
eneral because we do not consider a single realization, but select the
ne that allows for a minimal-cost alignment.

The second line of research aims to incorporate the handling of
ncertainty into the process mining tasks themselves, leading to novel
rocess mining techniques where process models (Leemans et al., 2021;
olyvyanyy and Kalenkova, 2022; Bergami et al., 2021; Alman et al.,
022) and/or event logs (Lu et al., 2014; Chesani et al., 2018; Pegoraro
t al., 2021b) explicitly reflect different kinds of uncertainty. In this
ork we are focusing on event logs with uncertainties. Perhaps, one
f the most well known issues concerns the quality of timestamps:
hile traditional conformance checking approaches rely on traces being

otally ordered, in reality time recordings are too coarse, or may deviate
rom the real times at which activities took place. To mitigate this
roblem, partially ordered traces are used (Leemans et al., 2022). In Lu
t al. (2014), the authors used this concept and design a conformance
hecking approach that produces partially ordered alignments. It works
y first transforming the partially ordered trace to an event net, then
omputing a product net to achieve conformance checking. The ap-
roach is also applied to data annotated logs. We note that a partially
rdered trace can be represented by an uncertain trace in our sense,
here timestamp intervals are chosen appropriately. In van der Aalst
nd Santos (2021), the authors propose a pre-processing technique
hat adds partial order to event logs so as to account for possible
ncertainties that may arise due to coarse timestamps.

Our work is similar to the conformance checking approach over
ncertain logs studied in Pegoraro et al. (2021b). There, the authors
efined two types of uncertainty. Strong uncertainty considers attribute
alues in the log with unknown probability distribution values (for
xample, it is unknown whether an event was produced by executing
ctivity 𝑎 or 𝑏). Instead, weak uncertainty assumes that probabilities
re known for such attribute values. However, the proposed confor-
ance checking technique relies on transforming a weakly uncertain

og into one containing only strong uncertainties. In our work, this is
itigated by providing an SMT encoding that accounts for both types

f uncertainties.
In Bogdanov et al. (2022), the authors proposed an alignment-based

onformance checking technique for logs with weakly uncertain data
that is, data for which probability values are known). Specifically,

he authors considered only weakly uncertain activities and, instead

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

Q

b
𝑤
t

s
𝓁
i
c
l

A
F
o
t
d
v
s
D
s
F

f
t

of transforming logs into strongly uncertain ones as it is done in Pe-
goraro et al. (2021b), proposed a notion of a stochastic trace model
(represented as a stochastic Petri net), in which all probabilistic activity
alternatives are taken into account at once. To compute alignments,
the authors then defined the stochastic synchronous product between
the reference process and trace models. Using such product, alignments
can be computed using a shortest path algorithm on the product’s
reachability graph (Carmona et al., 2018). Although the reference
process model considered in our approach is not stochastic, weakly
uncertain activities are managed by fully accounting for their respective
probabilities which are then also reflected in the general cost model
used for computing optimal alignments.

A similar distinction holds with respect to the work in Pegoraro
et al. (2021a). There, a technique for computing probability estimations
of individual realizations is presented, and although the main task is not
conformance checking, it is discussed how conformance scores of un-
certain traces can be computed by aggregating the scores of individual
realizations, weighted by their individual probability estimate. Instead,
our SMT-based approach does not need to compute realizations and
their probabilities explicitly, as the encoding accounts for of them at
once. Also, realizations are infinite in general (when data variables are
present).

Recent works showed also the feasibility of SAT-based techniques to
solve various process mining problems. For instance, the authors in Solé
and Carmona (2018) proposed an SMT encoding of the discovery task
for classical Petri nets from event logs. In Boltenhagen et al. (2019,
2021) the authors propose to encode various conformance checking
artifacts in SAT so that each artifact is computed using one single
SAT instance. To obtain optimality of the result, the authors employ
MaxSAT, using as objective function an encoding of the edit distance
between a process run and a given log trace. Similar to this approach,
we encoded the multi-perspective conformance checking problem in
SMT in our previous work (Felli et al., 2021). The approach presented
in this work builds on top of the encoding from Felli et al. (2021) and
adds to it additional clauses allowing for the management of uncertain
event data in a given trace.

3. Preliminaries

This section provides the required preliminaries on data Petri nets
(DPNs) (de Leoni and van der Aalst, 2013) and their execution se-
mantics, as well as the main notions of Satisfiability Modulo Theories
(SMT) (Barrett and Tinelli, 2018).

3.1. Data Petri nets

We rely on Data Petri nets (DPNs) to model multi-perspective
processes, borrowing concepts and notations from Felli et al. (2021),
Mannhardt (2018). We consider the set of (process variable) types 𝛴 =
{bool,int,rat,string} to capture the data types of variables that
a process operates on. These types have the following associated do-
mains: (bool) = B, the booleans; (int) = Z, the integers; (rat) =

, the rational numbers; and (string) = S, the strings over some
fixed alphabet. A set of process variables is denoted by 𝑉 , and we assume
that it is typed in the sense that there is a function 𝑡𝑦𝑝𝑒∶ 𝑉 → 𝛴
assigning a type to each variable in 𝑉 . In order to refer to the variables
that are read and written by activities in a process, we use two sets
of annotated variables 𝑉 𝑟 = {𝑣𝑟 ∣ 𝑣∈𝑉 } (for read variables) and
𝑉 𝑤 = {𝑣𝑤 ∣ 𝑣∈𝑉 } (for written variables). We suppose that these sets
are disjoint, and that 𝑡𝑦𝑝𝑒(𝑣𝑟) = 𝑡𝑦𝑝𝑒(𝑣𝑤) = 𝑡𝑦𝑝𝑒(𝑣) for every 𝑣 ∈ 𝑉 .
Given 𝑉 and a type 𝜎 ∈ 𝛴, 𝑉𝜎 denotes the subset of annotated variables
in 𝑉 𝑟 ∪ 𝑉 𝑤 of type 𝜎. To manipulate typed variables, we consider the
4

following expressions: m
Definition 3.1. For a set of variables 𝑉 , constraints 𝑐 and expressions
𝑠, 𝑛, and 𝑟 of types string, int, and rat are defined by the following
grammar:

𝑐 ∶∶= 𝑣𝑏 ∣ 𝑏 ∣ 𝑛 ≥ 𝑛 ∣ 𝑟 ≥ 𝑟 ∣ 𝑟 > 𝑟 ∣ 𝑠 = 𝑠 ∣ 𝑐 ∧ 𝑐 ∣ ¬𝑐 𝑠 ∶∶= 𝑣𝑠 ∣ 𝑡

𝑛 ∶∶= 𝑣𝑧 ∣ 𝑧 ∣ 𝑛 + 𝑛 ∣ −𝑛 𝑟 ∶∶= 𝑣𝑟 ∣ 𝑞 ∣ 𝑟 + 𝑟 ∣ −𝑟

where 𝑣𝑏 ∈ 𝑉bool, 𝑏 ∈ B, 𝑣𝑠 ∈ 𝑉string, 𝑡 ∈ S, 𝑣𝑧 ∈ 𝑉int, 𝑧 ∈ Z,
𝑣𝑟 ∈ 𝑉rat, and 𝑞 ∈ Q.

The set of constraints that can be constructed from a set of variables
𝑉 is denoted by (𝑉), and the set of variables that appear in a constraint
𝑐 by 𝑎𝑟(𝑐), hence 𝑎𝑟(𝑐) ⊆ 𝑉 𝑤 ∪ 𝑉 𝑟. Standard equivalences apply, so
disjunction (i.e., ∨) of constraints can be used, as well as comparisons
≠, <, ≤ on integer and rational expressions, though expressions of types
bool and string only support (in)equality comparisons. Constraints
as defined in Definition 3.1 serve to express on the one hand require-
ments on the values of variables that are read (𝑉 𝑟), and on the other
hand conditions on values that are assigned (i.e., written) to variables
(𝑉 𝑤) when executing an activity. Thus, given a constraint 𝑐 as above,
we refer to the annotated variables in 𝑉 𝑟 and 𝑉 𝑤 that appear in 𝑐
as the read and written variables, respectively. Constraints attached to
activities are called guards. For instance, a guard (𝑥𝑟 > 𝑦𝑟) of an activity
𝑎 demands that the value of variable 𝑥 is greater than the value of 𝑦
whenever 𝑎 is executed. Similarly, a guard (𝑥𝑤 > 𝑦𝑟 + 1) ∧ (𝑥𝑤 < 𝑧𝑟) of
an activity 𝑎′ states that the new value assigned to 𝑥 when executing 𝑎′

is strictly greater than the current value of 𝑦 plus 1, and strictly smaller
than 𝑧.

Definition 3.2 (DPN). A Petri net with data (DPN) is given by a tuple
 = (𝑃 , 𝑇 , 𝐹 ,𝓁, 𝐴, 𝑉 , 𝑔𝑢𝑎𝑟𝑑) such that:

∙ (𝑃 , 𝑇 , 𝐹 ,𝓁) is a Petri net where 𝑃 is a non-empty set of places, 𝑇
is a non-empty disjoint set of transitions, 𝐹 ∶ (𝑃 ×𝑇)∪(𝑇 ×𝑃) → N
is a flow relation, and 𝓁∶ 𝑇 → 𝐴 ∪ {𝜏} is a labeling function,
where 𝐴 is a finite set of activity labels and 𝜏 is a special symbol
for silent transitions;

∙ 𝑉 is a typed set of process variables; and
∙ 𝑔𝑢𝑎𝑟𝑑 ∶ 𝑇 → (𝑉) assigns executability constraints.

Following conventional notation, for 𝑥 ∈ 𝑃 ∪ 𝑇 , the preset of 𝑥 is
denoted by ∙𝑥 ∶= {𝑦 ∣ 𝐹 (𝑦, 𝑥) > 0}, the postset of 𝑥 is denoted by
and 𝑥∙ ∶= {𝑦 ∣ 𝐹 (𝑥, 𝑦) > 0}. The sets of variables read and written
y a transition 𝑡 are denoted by 𝑟𝑒𝑎𝑑(𝑡) = {𝑣 ∣ 𝑣𝑟 ∈ 𝑎𝑟(𝑔𝑢𝑎𝑟𝑑(𝑡))} and
𝑟𝑖𝑡𝑒(𝑡) = {𝑣 ∣ 𝑣𝑤 ∈ 𝑎𝑟(𝑔𝑢𝑎𝑟𝑑(𝑡))}, respectively. We write 𝐺 to refer

o the set of transition guards occurring in  .
Hereinafter, we adopt the important assumption that silent tran-

itions never modify process variables. Formally, for every 𝑡 ∈ 𝑇 s.t.
(𝑡) = 𝜏, it holds that write(𝑡) = ∅. This assumption is very natural as

t prohibits process models to perform any adversarial, unobservable
hanges on the process data that can also not be aligned with events in
ogs.

In the sequel, 𝑉 is assumed to be a fixed set of process variables.
s customary, we use assignments to associate variables with values.
irst, we define state variable assignments to specify the current values
f process variables: a state variable assignment is a function 𝛼 such
hat dom(𝛼) = 𝑉 and 𝛼(𝑣) ∈ (𝑡𝑦𝑝𝑒(𝑣)) for all 𝑣 ∈ 𝑉 ; where dom
enotes the domain of a function. Correspondingly, we use transition
ariable assignments to assign values to annotated variables, and thus
pecify how variables change as the result of activity executions (cf.
efinition 3.3): a transition variable assignment is a partial function 𝛽

uch that dom(𝛽) ⊆ 𝑉 𝑟 ∪ 𝑉 𝑤 and 𝛽(𝑥) ∈ (𝑡𝑦𝑝𝑒(𝑥)) for all 𝑥 ∈ dom(𝛽).
or a transition variable assignment 𝛽 and a constraint 𝑐 such that
𝑎𝑟(𝑐) ⊆ dom(𝛽), 𝛽 satisfies 𝑐, denoted 𝛽 ⊧ 𝑐, if the expression obtained

rom 𝑐 by substituting variables with values according to 𝛽 is valid in
he respective domain theory.

A state of a DPN  is a tuple (𝑀,𝛼) where 𝑀 ∶ 𝑃 → N is a

arking of the underlying Petri net (𝑃 , 𝑇 , 𝐹 ,𝓁), and 𝛼 is a state variable

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

D
D

A
s

assignment. Thus, a state of a DPN describes at the same time the
control flow progress and the current values of the process variables 𝑉 .
To simplify notation, we denote by [𝑝𝑖11 ,… , 𝑝𝑖𝑛𝑛] a multiset representing
a marking in which each place 𝑝𝑘 contains 𝑖𝑘 tokens.

We next define when a state allows to fire a transition of the DPN.

efinition 3.3 (Transition Firing). A transition 𝑡 ∈ 𝑇 is enabled in a
PN state (𝑀,𝛼) with respect to a transition variable assignment 𝛽 if:

• 𝑎𝑟(𝑔𝑢𝑎𝑟𝑑(𝑡)) ⊆ dom(𝛽), i.e., 𝛽 is defined for all variables in the
guard;

• 𝛽(𝑣𝑟) = 𝛼(𝑣) for all 𝑣 ∈ 𝑟𝑒𝑎𝑑(𝑡), i.e., 𝛽 corresponds to 𝛼 for read
variables;

• 𝛽 ⊧ 𝑔𝑢𝑎𝑟𝑑(𝑡), i.e., 𝛽 satisfies the guard; and
• 𝑀(𝑝) ≥ 𝐹 (𝑝, 𝑡) for all 𝑝 ∈ ∙𝑡.

n enabled transition can fire and create a new state (𝑀 ′, 𝛼′), that
atisfies 𝑀 ′(𝑝) = 𝑀(𝑝) −𝐹 (𝑝, 𝑡) +𝐹 (𝑡, 𝑝) for all 𝑝 ∈ 𝑃 , 𝛼′(𝑣) = 𝛽(𝑣𝑤)

for all variables 𝑣 ∈ 𝑤𝑟𝑖𝑡𝑒(𝑡), and 𝛼′(𝑣) = 𝛼(𝑣) for every 𝑣 ∉ 𝑤𝑟𝑖𝑡𝑒(𝑡). If 𝑡
is enabled with respect to 𝛽, the pair (𝑡, 𝛽) is called a (valid) transition
firing, and its execution is denoted by (𝑀,𝛼)

(𝑡,𝛽)
←←←←←←←←←←←←←←←←→ (𝑀 ′, 𝛼′).

We assume that every DPN  has a fixed initial state (𝑀𝐼 , 𝛼0),
where 𝑀𝐼 is the initial marking of the underlying Petri net and 𝛼0 is a
designated initial assignment, used to determine the initial values of the
process variables 𝑉 . The final marking of  is denoted 𝑀𝐹 , and any
state of the form (𝑀𝐹 , 𝛼𝐹) is called final, for 𝛼𝐹 an arbitrary assignment.

A state (𝑀,𝛼) is called reachable in a given DPN iff there exists a
sequence of valid transition firings f = ⟨𝑓1,… , 𝑓𝑛⟩ = ⟨(𝑡1, 𝛽1),… , (𝑡𝑛, 𝛽𝑛)⟩

such that (𝑀𝐼 , 𝛼0)
(𝑡1 ,𝛽1)
←←←←←←←←←←←←←←←←←←←←←←←←→ (𝑀1, 𝛼1)

(𝑡2 ,𝛽2)
←←←←←←←←←←←←←←←←←←←←←←←←→ …

(𝑡𝑛 ,𝛽𝑛)
←←←←←←←←←←←←←←←←←←←←←←←←→ (𝑀𝑛, 𝛼𝑛) = (𝑀,𝛼). For

short, this is denoted by (𝑀𝐼 , 𝛼0)
f
←←←←←→ (𝑀,𝛼). Furthermore, f is termed a

(valid) process run of  if (𝑀𝐼 , 𝛼0)
f
←←←←←→ (𝑀𝐹 , 𝛼𝐹) for some 𝛼𝐹 , so that the

sequence of transition firings f leads from the initial to some final state.
As conventional in conformance checking (Mannhardt et al., 2016), we
restrict ourselves to DPNs that are relaxed data sound, so that some final
state is reachable.

In the sequel, given a DPN  , the set of valid transition firings is
denoted by  (), and the set of process runs by 𝑅𝑢𝑛𝑠().

Example 3.1. Let  be the following DPN, with initial marking
[𝑝10], final marking [𝑝13], and where the initial assignment is fixed as
𝛼0 = {𝑥, 𝑦 ↦ 0}:

𝑝0
a

𝑥𝑤 ≥ 0 𝑝1
b

𝑦𝑤 > 0 𝑝2 c

𝑥𝑟 ≠ 𝑦𝑟

𝑝3
e

𝑦𝑤 = 𝑦𝑟 + 1

d

𝑥𝑟 = 𝑦𝑟

Due to infinitely many possible assignments, the set 𝑅𝑢𝑛𝑠() is infinite,
but it contains for instance the following runs:

⟨(a, {𝑥𝑤 ↦ 2}), (b, {𝑦𝑤 ↦ 1}), (c, {𝑥𝑟 ↦ 2, 𝑦𝑟 ↦ 1})⟩

⟨(a, {𝑥𝑤 ↦ 1}), (b, {𝑦𝑤 ↦ 1}), (d, {𝑦𝑟 ↦ 1, 𝑥𝑟 ↦ 1})⟩

3.2. Satisfiability and Optimization Modulo Theories (SMT)

In this section we summarize the main technical machinery ex-
ploited by the approach presented in this paper, namely SMT solving.
For the sake of a formal description, we assume common syntactic
(e.g., signature, variable, term, atom, literal, and formula) and semantic
(e.g., structure, truth, satisfiability, and validity) concepts of first-order
logic.

Following a convention in the SMT literature (Barrett et al., 2018;
Barrett and Tinelli, 2018), a theory  is a pair (𝛴,𝑍), of a signature
𝛴 and a class of 𝛴-structures 𝑍, where the structures in 𝑍 represent
the models of the theory  . Given  = (𝛴,𝑍), a 𝛴-formula 𝜙 is  -
satisfiable if 𝑍 contains a 𝛴-structure  such that 𝜙 is true in 
under some assignment 𝜈 that assigns values from the carrier of  to
5

the free variables of 𝜙. This is denoted as (, 𝜈) ⊧ 𝜙. The problem
of (quantifier-free) satisfiability modulo the theory  (𝑆𝑀𝑇 ()) asks to
decide the  -satisfiability of quantifier-free 𝛴-formulae.

Intuitively, the Satisfiability Modulo Theories (SMT) problem (Bar-
rett and Tinelli, 2018) is a generalization of the problem of proposi-
tional satisfiability (SAT). The SAT problem requires to decide whether
a given propositional formula 𝜑 is satisfiable, and if this is the case,
to find a satisfying assignment 𝜈 under which 𝜑 evaluates to true. For
example, the formula (𝑝 ∨ 𝑞) ∧ (¬𝑝 ∨ 𝑟) ∧ (¬𝑟 ∨ ¬𝑞) is satisfied by the
assignment that sets 𝜈(𝑞) = ⊥ and 𝜈(𝑝) = 𝜈(𝑟) = ⊤. The SMT problem
generalizes SAT by extending the language of propositional formulas
with constants and operators from one or more first-order theories  ,
and asking to decide satisfiability of a respective formula 𝜑. In the
last two decades, a plethora of powerful SMT solvers (de Moura and
Bjørner, 2008; Dutertre, 2014; Sebastiani and Trentin, 2018) have been
developed that can solve the SMT problem for many common theories:
they combine SAT solvers with designated decision procedures for the
theories involved. SMT solvers have been proven useful for computer-
aided verification, to prove correctness of software programs against
some property of interest, and for program synthesis. Examples of well-
established, decidable SMT theories are the theory of uninterpreted
functions  , the theory of bitvectors  and the theory of arrays
 , as well as the theories of linear arithmetic over the integers
() and the rationals (). For this paper, only the latter two are
relevant. For instance, the SMT formula 𝜑 ∶= 𝑎 > 1 ∧ 𝑏 ≥ 𝑎 ∧ (𝑎 + 𝑏 =
10 ∨ 𝑎 − 𝑏 = 20) ∧ 𝑝, where 𝑎, 𝑏 are integer and 𝑝 is a propositional
variable, is satisfiable by the assignment 𝜈 such that 𝜈(𝑎) = 𝜈(𝑏) = 5 and
𝜈(𝑝) = ⊤.

An important generalization of the SMT problem that is relevant to
this paper is the problem of Optimization Modulo Theories (OMT) (Se-
bastiani and Tomasi, 2015). The OMT problem requires to determine
a satisfying assignment for a given formula 𝜑 that moreover minimizes
or maximizes a given objective function. For instance, the satisfy-
ing assignment 𝜈 for the formula 𝜑 above is also a solution to the
OMT problem that minimizes the objective 𝑏. Finally, we mention
SMT-LIB (Barrett et al., 2018) as an international initiative that de-
fines common language standards and interfaces for SMT solvers, and
provides an extensive on-line library of benchmarks.

4. Event logs with uncertainty and alignments

We start by introducing the notion of an event with uncertainty that is
used to represent an event recorded in the log, to which a certain kind
and degree of uncertainty is explicitly associated. This uncertainty can
be an annotation expressing the confidence that an event actually oc-
curred, as well as uncertainty about an event’s timestamp, its reference
activity, or its data values. We assume that the present uncertainty is
explicit in the sense that a fixed set of possible alternatives is known,
possibly with their associated confidence values. Note that, in the case
of data variables, the set of considered possibilities may be infinite.

We assume a finite set of event identifiers ID, a finite set of activity
labels 𝐴, and a totally ordered set of possible timestamps TS. In the
sequel, we assume that TS is N for the sake of simplicity.

Definition 4.1. An event with uncertainty is given by a quintuple
ue = ⟨id, conf , la, ts, 𝛼⟩ such that the following are satisfied:

• id ∈ ID specifies an event identifier;
• conf accounts for the confidence that the event actually happened

and satisfies 0 < conf ≤ 1. The event is called uncertain if conf < 1;
• la = {𝑏1 ∶ 𝑝1,… , 𝑏𝑛 ∶ 𝑝𝑛} is a set of activity labels 𝑏𝑖 ∈𝐴 for all
1≤ 𝑖≤ 𝑛, each with a respective confidence value 0<𝑝𝑖 ≤ 1 s.t.
∑𝑛

𝑖=1 𝑝𝑖 = 1;
• ts is an interval over TS or a finite subset of TS;
• 𝛼 is a (possibly partial) function mapping variables 𝑣 ∈ 𝑉 to a

finite set of values in (𝑡𝑦𝑝𝑒(𝑣)), or an interval over this domain
if 𝑡𝑦𝑝𝑒(𝑣) is int or rat.

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

E
1
o

Though this use of 𝛼 constitutes an abuse of notation, we adopt it for
the sake of simplicity. The components of an event ue=⟨id, conf , la, ts, 𝛼⟩
are denoted by id(ue), conf (ue), la(ue), ts(ue) and 𝛼(ue), respectively.
In line with (Pegoraro et al., 2021b), we do not associate confidence
values with timestamps.

Definition 4.2. A log trace with uncertainty ue is given by a finite set
of events with uncertainty with unique event identifiers.

Note that by defining a trace as a set, the order among its events
need not be fixed (though it is constrained by the possible range of
timestamps of events). A multiset of log traces with uncertainty 𝐿 is
called an event log.

For the sake of simplicity, we assume that event logs do not contain
lifecycle information, i.e., the events recorded in the log do not keep
track of the information about their start and end states, or other
intermediate states of the executed activities. However, it is not difficult
to extend our framework so as to incorporate also lifecycle information,
although the setting becomes more complex to represent: we will
comment on this point when we will present our SMT-based encoding
of the event logs.

Example 4.1. The following three sets are examples for traces
with uncertainty, that we will later on relate to the DPN  from
Example 3.1.

ue1 ={⟨#1, .25, {a ∶ 1}, [0-5], {𝑥↦ {2, 3}}⟩,

⟨#2, .9, {b ∶ .8, c ∶ .2}, {2}, {𝑦↦ {1}}⟩

ue2 ={⟨#3, 1, {a ∶ 1}, {0}, {𝑥↦ [1, 6.5]}⟩, ⟨#4, 1, {b ∶ 1}, {2}, {𝑦↦ {1}}⟩,

{⟨#5, 1, {c ∶ 1}, {3}, ∅⟩}

ue3 ={⟨#6, 1, {a ∶ 1}, {2}, {𝑥↦ {6}}⟩, ⟨#7, 1, {b ∶ 1}, {2}, {𝑦↦ {1}⟩}}

For example, ue1 consists of two events with uncertainty, having ids #1
and #2. The first one is uncertain as it happened with confidence 0.25;
its associated activity a is fixed (as it has confidence 1); it occurred in
the time interval [0, 5]; and the associated variable assignment assigns
𝑥 to 2 or 3. Also the second event #2 is uncertain as it has confidence
0.9; its activity label may be b or c (with associated confidences 0.8
and 0.2, respectively); its timestamp is 2; and the associated variable
assignment sets 𝑦 to 1. The possibility of a variable being assigned a
value from an interval is illustrated by #3 in ue2, where 𝑥 can take any
value in [1, 6.5].

An activity label 𝑏∈𝐴 is said to be admissible for an event with
uncertainty ue if there is some 𝑝 > 0 such that (𝑏, 𝑝) ∈ la(ue). In a similar
way, timestamp and variable values are called admissible if they are
possible according to the respective components in ue.

Next, we define realizations of a given log trace with uncertainty ue.
Intuitively, a realization of ue is a sequence e = ⟨𝑒1,… , 𝑒𝑛⟩ of events
without uncertainty that represents a possible sequentialization of a
subset of ue, such that every event in e is an admissible concretization
of an event with uncertainty in ue. Note that in this way, there may
be events with uncertainty in ue that have no correspondent in e,
and thus get discarded. Accounting for the likelihood of realizations,
that is, the cost associated with preferring one realization over another
when judging which realization fits better a trace with uncertainty, is
discussed and formalized in Section 5.

An event without uncertainty, also called event for short, is a triple
(id, 𝑏, 𝛼̂) such that id ∈ ID is an event identifier, 𝑏 ∈ 𝐴 is an activity label,
and the variable assignment 𝛼̂ assigns to each variable 𝑣 ∈ 𝑉 a fixed
value of appropriate type. The components of an event 𝑒 = (id, 𝑏, 𝛼̂)
are denoted by id(𝑒), lab(𝑒) and 𝛼̂(𝑒), respectively. Events without un-
certainty correspond to the usual notion of events in the conformance
checking literature, augmented with variable assignments as in Felli
et al. (2021) to reflect the data dimension as well as identifiers. The
latter will be used to relate them uniquely to an event with uncertainty,
as explained below. We will write  to refer to the set of all events
6

without uncertainty.
Definition 4.3 (Realization). A sequence e = ⟨𝑒1,… , 𝑒𝑛⟩ of events
without uncertainty is a realization of a log trace with uncertainty ue
if there exists a subset {ue1,… , ue𝑛} ⊆ ue and a timestamp sequence
𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛 such that for each 1 ≤ 𝑖 ≤ 𝑛:

(i) 𝑡𝑖 is admissible for ue𝑖;
(ii) id(𝑒𝑖) = id(ue𝑖), so that every event in e corresponds to an event

with uncertainty in ue via their identifiers;
(iii) lab(𝑒𝑖) = 𝑏 for some activity label 𝑏 admissible for ue𝑖;
(iv) dom(𝛼̂(𝑒𝑖)) = dom(𝛼(ue𝑖)) and 𝛼̂(𝑒𝑖)(𝑣) ∈ 𝛼(ue𝑖)(𝑣) for all 𝑣 such that

𝛼(ue𝑖)(𝑣) is defined, i.e., for all 𝑣 ∈ dom(𝛼(ue𝑖)).

In addition, for every ue ∈ ue with conf (ue) = 1 there must be an event
𝑒 ∈ e such that id(𝑒𝑖) = id(ue𝑖), i.e., a realization can only discard events
in the log that are uncertain.

Thus, a realization of a trace with uncertainty ue is a possible
selection of events in ue where a single activity label and a single
value for each variable are selected from the corresponding event
with uncertainty ue ∈ ue, and this subset of events is ordered in an
admissible way. The notation e ∈ (ue) expresses that e is a realization
of ue. Confidence values are dropped from the events in a realization
e since these values can be obtained from ue, using event identifiers to
trace back matching events.

Note that the set of realizations (ue) is never empty: one can
always select {𝑡1,… , 𝑡𝑛} as in Definition 4.3 since even if two events
have the same unique timestamp, both orderings are allowed in real-
izations. However, (ue) may be infinite if the set of possible values
of a variable specified in ue is an interval over a dense domain.

Example 4.2. Let ue1 be as in Example 4.1. This trace with un-
certainty has 13 realizations: #1 allows two variable assignments, #2
two possible admissible labels, the events may be ordered in two ways
and since both events are uncertain, each one can be discarded. The
following two are example realizations of ue1 with distinct event order,
activity labels, and variable assignments:

e′ = ⟨⟨#1,a, {𝑥 ↦ 2}⟩, ⟨#2,b, {𝑦 ↦ 1}⟩⟩

e′′ = ⟨⟨#2, c, {𝑦 ↦ 1}⟩, ⟨#1,a, {𝑥 ↦ 3}⟩⟩

We aim to develop a conformance checking procedure that con-
structs an alignment between a log trace e that is a realization of
a log trace with uncertainty ue, and a process run of the DPN  ,
by pairing event labels in the trace with activity labels of the model
 . Typically, when constructing an alignment, it is not possible to
establish a one-to-one correspondence between events in the log trace
and DPN transitions. Hence, we employ a dedicated ‘‘skip’’ symbol ≫
and consider the extended set of events ≫ =  ∪ {≫}, as well as the
extended set of transition firings ≫ =  () ∪ {≫} for a DPN  .

Given a DPN  and a set  of events (without uncertainty) as
above, a move is a pair (𝑒, 𝑓) ∈ ≫ × ≫ ⧵ {(≫,≫)} which we call: (i)
log move if 𝑒 ∈  and 𝑓 = ≫; (ii) model move if 𝑒 = ≫ and 𝑓 ∈  ();
(iii) synchronous move if (𝑒, 𝑓) ∈  ×  (). We denote by Moves the
set of all moves.

A sequence of moves 𝛾 = ⟨(𝑒1, 𝑓1),… , (𝑒𝑛, 𝑓𝑛)⟩, induces on the one
hand a log projection 𝛾|𝐿, which is the maximal subsequence ⟨𝑒′1,… , 𝑒′𝑖⟩
of ⟨𝑒1,… , 𝑒𝑛⟩ that is in ∗, i.e., the subsequence of 𝛾 obtained by
discarding all ≫ elements; and on the other hand a model projection
𝛾|𝑀 which is the maximal subsequence ⟨𝑓 ′

1,… , 𝑓 ′
𝑗 ⟩ of ⟨𝑓1,… , 𝑓𝑛⟩ for

which ⟨𝑓 ′
1,… , 𝑓 ′

𝑗 ⟩ ∈  ()∗.

Definition 4.4 (Alignment). A sequence of moves 𝛾 is a complete align-
ment of a realization e with respect to a DPN  if 𝛾|𝐿 = e and
𝛾|𝑀 ∈ 𝑅𝑢𝑛𝑠().

xample 4.3. Let the realization e′ = ⟨⟨#1,a, {𝑥 ↦ 2}⟩, ⟨#2,b, {𝑦 ↦
}⟩⟩ be as in Example 4.2. We show three possible complete alignments
f e′ with respect to the DPN from Example 3.1:

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

g

𝛾

𝑏
i
o
i

Fig. 1. Cost structure for an alignment 𝛾e = ⟨(𝑒1 , 𝑓1),… , (𝑒𝑛 , 𝑓𝑛)⟩ selecting a realization e of a trace with uncertainty ue. Intuitively, the cost associated to the selection of e is
iven by 𝜅𝑅(e,ue) in addition to, at each step, the confidence cost 𝜃(𝑒𝑖 ,ue).
p

i
o
i

F
t
m
r
S
a
i
w
𝜃
c
t
p

i
r
𝜅
𝜅
t
c

𝜅

F
a
u
t
d

𝜅

H

e
c
𝑒
t

t

1
e′

#1

a 𝑥𝑤 ↦ 2
#2

b 𝑦𝑤 ↦ 1
≫

c
𝛾2e′

#1

a 𝑥𝑤 ↦ 5
#2

b 𝑦𝑤 ↦ 1
≫

c
𝛾3e′

#1

a 𝑥𝑤 ↦ 2
≫

b 𝑦𝑤 ↦ 2
#2

d

In the remainder of this paper we only consider alignments that are
complete, and we use the notation 𝐴𝑙𝑖𝑔𝑛( , e) to denote the set of all
complete alignments for a log trace e with respect to  .

As Example 4.3 demonstrates, alignments differ in how closely the
process run matches the log trace: synchronous moves can have mis-
matching variable assignments (cf. the first move of 𝛾2e′) and different
activity labels (cf. the third move of 𝛾3e′). This comparison of different
alignments is captured by a cost function as discussed next.

5. Cost functions and optimal alignments

This section addresses the problem of comparing different possible
alignments of possible realizations of the same trace with uncertainty,
by extending to event logs with uncertainty the established approach
in the literature based on the notion of cost of alignments. We do so
by introducing the cost of an alignment 𝛾e of a realization e of a trace
with uncertainty ue, which we denote by K(𝛾e,ue).

5.1. General structure of the cost model

In this section, we present our cost model. We do not limit ourselves
to one specific cost function; instead, we fix only the general structure
for K(𝛾e,ue), as shown in Fig. 1, leaving some of its elements arbitrary.
Nevertheless, we illustrate and justify the cost components of said
structure and focus on one of its possible instantiations, which we use
in the encoding in Section 6 and in the implementation illustrated in
Section 7. We call this instantiation likelihood cost (as it relies first and
foremost on confidence values recorded in the log) and we denote it by
K𝑙ℎ(𝛾e,ue).

We first give the intuition on the structure of K(𝛾e,ue). Importantly,
we do not simply aim to find an optimal alignment for an arbitrary
realization of a log trace with uncertainty ue as it was done in Pe-
goraro et al. (2021b). Instead, we want to take the confidence values
associated with different realizations into account, by imposing a cost
on the selection of a realization in addition to the cost of aligning it,
as illustrated by the cost structure in Fig. 1. Consequently, the cost
K(𝛾e,ue) of an alignment 𝛾e with respect to an uncertain trace ue is
obtained as the sum of two costs:

(1) The alignment cost 𝜅𝐴(𝛾e,ue) rates the quality of the alignment
𝛾e for a chosen realization e of ue. We follow a common approach in
conformance checking, and assume that the alignment cost is based
on a function 𝜅 ∶Moves → R+ that specifies a cost for each move
(𝑒𝑖, 𝑓𝑖) ∈ 𝛾e. In Section 5.2 we will discuss in more detail how this
function 𝜅 can be defined.

In addition, for a synchronous move or log move with event 𝑒𝑖, this
cost is combined with a confidence penalty that depends on conf (𝑒𝑖)
and on the confidence value 𝑝 associated to the chosen activity label
= lab(𝑒𝑖), as recorded in the event with uncertainty ue so that id(𝑒𝑖) =
d(ue), i.e., (𝑏, 𝑝) ∈ la(ue). Intuitively, this imposes a penalty depending
n the confidence of 𝑒𝑖 and for selecting 𝑏 as the activity chosen for 𝑒𝑖
7

n the realization e of ue. w
We do not fix a specific calculation of this penalty but rather keep it
arametric and denote it as 𝜃(𝑒𝑖,ue). The alignment cost of 𝛾e can then

be defined as follows:

𝜅𝐴(𝛾e,ue) =
∑𝑛

𝑖=1 𝜅(𝑒𝑖, 𝑓𝑖)⊗ 𝜃(𝑒𝑖,ue) (1)

where ⊗ denotes an arbitrary operator to combine the two costs.
For our proposed cost function K𝑙ℎ(𝛾e,ue) shown in Fig. 2 and used

in Section 6 we assume, given a realization e of a trace with uncertainty
ue and an alignment 𝛾e = ⟨(𝑒1, 𝑓1),… , (𝑒𝑛, 𝑓𝑛)⟩:

𝜅(𝑒𝑖, 𝑓𝑖)⊗𝜃(𝑒𝑖,ue) =
⎧

⎪

⎨

⎪

⎩

𝜅(𝑒𝑖, 𝑓𝑖) if 𝑒𝑖 = ≫, otherwise:
𝜃(𝑒𝑖,ue) if 𝜅(𝑒𝑖, 𝑓𝑖) = 0
𝜅(𝑒𝑖, 𝑓𝑖) ⋅ (1 + 𝜃(𝑒𝑖,ue)) if 𝜅(𝑒𝑖, 𝑓𝑖) > 0

(2)

n which we fix 𝜃(𝑒𝑖,ue) = (1 − conf (𝑒𝑖)) + (1 − 𝑝), where 𝑏 is the label
f 𝑒𝑖, i.e., 𝑏 = lab(𝑒𝑖), and 𝑝 is the confidence value associated to 𝑏,
.e., (𝑏, 𝑝) ∈ la(ue) for id(𝑒𝑖) = id(ue).

Intuitively, in this instantiation of 𝜅𝐴(𝛾e,ue) used in K𝑙ℎ(𝛾e,ue) (see
ig. 2), the cost of model moves is simply (a data-aware extension of)
he usual alignment cost, which we illustrate in Section 5.2. For other
oves, the cost must include a penalty for having included 𝑒𝑖 in the

ealization e of ue and for having selected 𝑏 = lab(𝑒𝑖) as its label.
uch penalty must decrease the more we are confident about event 𝑒𝑖
nd about 𝑏 among its admissible activity labels, namely it must be
nversely proportional to conf (𝑒𝑖) and 𝑝. In our choice of K𝑙ℎ(𝛾e,ue),
hen the data-aware alignment cost is zero, we set the penalty to
(𝑒𝑖,ue) = (1−conf (𝑒𝑖))+(1−𝑝). When instead the data-aware alignment
ost is greater than zero, then the penalty is computed by multiplying
hat cost by (1 + 𝜃(𝑒𝑖,ue)). Other definitions of 𝜃 and ⊗ are however
ossible.
(2) The event removal cost 𝜅𝑅(e,ue) measures the cost of select-

ng the subsets of the events in ue that appear in e, discarding the
emaining (uncertain) events. Although we do not fix a specific function
𝑅, a reasonable option is to assume it to be based on a mapping
ue ∶  → R≥0 assigning a removal cost to each event, proportionally
o the confidence value conf (ue) for ue ∈ ue so that id(𝑒) = id(ue). The
ost for event removal is thus calculated as follows:

𝑅(e,ue) =
∑

𝑒∈ue,𝑒∉e 𝜅ue(𝑒)

or instance, for our proposed cost function K𝑙ℎ(𝛾e,ue) used in Section 6
nd in our implementation we take 𝜅ue(𝑒) to be precisely conf (ue), for
e as above, when such a confidence value is smaller than 1, and equal
o infinity otherwise (to prevent events that are not uncertain to be
iscarded from realizations). Namely, in K𝑙ℎ(𝛾e,ue) we define:

ue(𝑒) =
{

conf (ue) if conf (ue) < 1, with id(𝑒) = id(ue)
∞ otherwise (3)

owever, different definitions of 𝜅𝑅 are conceivable as well.
In conclusion, according to these expressions, the cost of selecting

as a realization of ue results from 𝜅𝑅(e,ue) for removed events
ombined, at each step, with a penalty 𝜃(𝑒𝑖,ue) for not having discarded
𝑖 but having selected one admissible label among those associated to
he uncertain event in ue with the same id.

Accordingly, the cost function K𝑙ℎ(𝛾e,ue) that we propose as instan-
iation of the general cost function K(𝛾e,ue) for alignments, and which

e use for the encoding and implementation, is summarized in Fig. 2.

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

a

𝜃

i

D
t
t
⟨

a
f

a
K

D
f
r
f

r
i
f
a

i
e
l

E
b
t
e
b
f
e
N
e
t
b

Fig. 2. The instantion of the cost structure in Fig. 1, used in the encoding in Section 6.
o
d
f
F

5

f
r
t
f

𝑃

c
p
f
p
d
i
a
𝑃
L
f
2

D
D
a
s
b
𝑃
a
𝛾
v
t
d
l

E
a

{

A
i
s
w
(
d
o
i
i
i

c
b

Example 5.1. Consider again the trace with uncertainty ue1 from Ex-
mple 4.2: ue1 = {⟨#1⟩, .25, {a ∶ 1}, [0-5], {𝑥 ↦ {2, 3}},

⟨#2, .9, {b ∶ .8, c ∶ .2}, {2}, {𝑦 ↦ {1}}⟩} and three of its possible realiza-
tions:

e1 = ⟨⟨#1,a, {𝑥 ↦ 3}⟩⟩e2 = ⟨⟨#2,b, {𝑦 ↦ 1}⟩⟩e3 = ⟨⟨#2, c, {𝑦 ↦ 1}⟩⟩

where in all cases one of the two events was removed. By adopting
K𝑙ℎ(𝛾e,ue) in Fig. 2 as instantiation of the general cost function, we
have that 𝜅𝑅(e2,ue1) > 𝜅𝑅(e1,ue1) since conf (#2) > conf (#1). Similarly,
e2 and e3 differ only in the activity chosen for #2, therefore the cost
of selecting e2 is smaller than the cost of e3 since the confidence
associated to activity b is greater than the one associated to c; hence
(⟨#2,b, {𝑦 ↦ 1}⟩,ue1) < 𝜃(⟨#2, c, {𝑦 ↦ 1}⟩,ue1).

The following definition formalizes the notion of cost of alignments
llustrated so far in this section.

efinition 5.1 (Cost of Alignments). Fixed the two arbitrary cost func-
ions 𝜅𝐴 and 𝜅𝑅 introduced above, given  , a trace with uncer-
ainty ue, a realization e = ⟨𝑒1,… , 𝑒𝑛⟩ of ue and an alignment 𝛾e =
(𝑒1, 𝑓1),… , (𝑒𝑛, 𝑓𝑛)⟩ ∈ 𝐴𝑙𝑖𝑔𝑛( , e), the cost of alignment 𝛾e w.r.t. ue,

denoted K(𝛾e,ue), is computed as shown in Fig. 1:

K(𝛾e,ue) = 𝜅𝐴(𝛾e,ue) + 𝜅𝑅(e,ue).

We say that an alignment 𝛾e is optimal for a given trace (specifically,
realization) e if 𝜅𝐴(𝛾e,ue) is minimal among all complete alignments

or e, namely there is no alignment 𝛾 ′e ∈ 𝐴𝑙𝑖𝑔𝑛( , e) with 𝜅𝐴(𝛾 ′e,ue) <
𝜅𝐴(𝛾e,ue). Similarly, given  and a trace with uncertainty ue, we
say that 𝛾e is optimal for ue if K(𝛾e,ue) is minimal among all possible
realizations of ue, i.e., there is no other realization e′ ∈ (ue) and
lignment 𝛾e′ ∈ 𝐴𝑙𝑖𝑔𝑛( , e′) that has a smaller cost, i.e., such that
(𝛾e′ ,ue) < K(𝛾e,ue).

efinition 5.2 (Conformance Checking). Given a DPN  , the con-
ormance checking task for a trace with uncertainty ue is to find a
ealization e ∈ (ue) and an alignment 𝛾e ∈ 𝐴𝑙𝑖𝑔𝑛( , e) that is optimal
or ue.

It is possible that, for a given trace with uncertainty ue, multiple
ealizations e and optimal alignments 𝛾e exist, though the minimal cost
s unique once we fix our cost function. The conformance checking task
or a log with uncertainty consists of the conformance checking task for
ll its traces.

As an example of further instantiation of the general cost structure
n Fig. 1, we show how to capture the alignment problem in Pegoraro
t al. (2021b) (once adapted to our representation of uncertain event
ogs).

xample 5.2. It is possible to capture the task of finding the lower-
ound on the cost of possible alignments among the set of all realiza-
ions of a given trace with uncertainty ue (as considered in Pegoraro
t al. (2021b)), by simply choosing 𝜅𝑅(e,ue) = 0, 𝜃(𝑒,ue) = 1 and
y taking ⊗ as product. Intuitively, this corresponds to paying no cost
or the selection of arbitrary realizations (hence no cost for discarding
vents), thus simply returning one that has minimal alignment cost 𝜅.
amely, given an alignment 𝛾e = ⟨(𝑒1, 𝑓1),… , (𝑒𝑛, 𝑓𝑛)⟩ for a realization
of ue, this corresponds to considering K𝑏𝑟(𝛾e,ue) =

∑𝑛
𝑖=1 𝜅(𝑒𝑖, 𝑓𝑖). In

he rest of the paper, we call this instantiation of the cost structure the
8

est-realization cost ; it is also supported by our implementation. r
In the remainder of this section, we discuss separately the definition
f the alignment cost 𝜅, namely our data-aware extension of the usual
istance-based cost function. This is used both in the generic cost
unction K(𝛾e,ue) (see Fig. 1) and in our instantiation K𝑙ℎ(𝛾e,ue) (see
ig. 2).

.2. Data-aware alignment cost function

We use a generalized form of a cost function to measure the con-
ormance between a trace (and specifically a realization) and a process
un in 𝑅𝑢𝑛𝑠(), i.e., to define 𝜅 ∶Moves → R≥0 as used in Defini-
ion 5.1. As in Felli et al. (2021), we parameterize this by three penalty
unctions:

𝐿 ∶  → N 𝑃𝑀 ∶ () → N 𝑃= ∶  ×  () → N

alled log move penalty, model move penalty and synchronous move
enalty, respectively. Intuitively, 𝑃𝐿(𝑒) gives the cost that has to be paid
or a log move 𝑒; 𝑃𝑀 (𝑓) penalizes a model move 𝑓 ; and 𝑃=(𝑒, 𝑓) ex-
resses the cost to be paid for a synchronous move of 𝑒 and 𝑓 . Then, the
ata-aware cost function 𝜅 ∶Moves → R≥0 we adopt in Definition 5.1
s simply defined as 𝜅(𝑒, 𝑓) = 𝑃𝐿(𝑒) if 𝑓 = ≫, 𝜅(𝑒, 𝑓) = 𝑃𝑀 (𝑓) if 𝑒 = ≫,
nd 𝜅(𝑒, 𝑓) = 𝑃=(𝑒, 𝑓) otherwise. By suitably instantiating 𝑃=, 𝑃𝐿, and
𝑀 , one can obtain conventional cost functions (Felli et al., 2021): the
evenshtein distance (Boltenhagen et al., 2019, 2021), standard cost
unction for multi-perspective conformance checking (Mannhardt et al.,
016; Mannhardt, 2018).

ata-aware cost component of 𝑃=. Crucially, as we are considering
PNs in place of standard Petri nets, we typically want to consider
data-aware extension of the usual distance-based cost function for

ynchronous moves. Therefore, when comparing an event 𝑒 = (id, 𝑏, 𝛼̂)
elonging to a realization and a transition firing 𝑓 = (𝑡, 𝛽), we want
=(𝑒, 𝑓) to compare also the values that are assigned to variables by 𝛼̂
nd 𝛽, respectively. In Example 4.3, as an example, in the alignment
2
e1

the first (synchronous) move presents a mismatch between the
alue assigned to variable 𝑥 by the event #1 (i.e., 𝛼̂(#1)(𝑥) = 2) and
he value assigned by transition firing (i.e., (a, {𝑥𝑤 ↦ 5})). Various
ata-aware realizations of 𝑃= have been already addressed in the
iterature (Mannhardt et al., 2016; Felli et al., 2021).

xample 5.3. Consider again the trace with uncertainty ue1 from Ex-
mple 5.1,

⟨#1, .25, {a∶ 1}, [0-5], {𝑥 ↦ {2, 3}}⟩,

⟨#2, .9, {b∶ .8, c∶ .2}, {2}, {𝑦 ↦ {1}}⟩}.

ssume to fix 𝑃𝑀 , 𝑃𝐿 to be as usual in the standard cost function, as
llustrated in Felli et al. (2021), namely 𝑃𝐿(𝑏, 𝛼) = 1; 𝑃𝑀 (𝑡, 𝛽) = 0 if 𝑡 is
ilent (i.e., 𝓁(𝑡) = 𝜏) and 𝑃𝑀 (𝑡, 𝛽) equal to 1 plus the number of variables
ritten by 𝑔𝑢𝑎𝑟𝑑(𝑡) otherwise. For 𝑃=, assume a data-aware extension

of the 𝑃= used to match the standard cost function (Felli et al., 2021))
efined as: 𝑃=(⟨id, 𝑏, 𝛼̂⟩, (𝑡, 𝛽)) = |{𝑣 ∣ 𝛼̂(𝑣) ≠ 𝛽(𝑣𝑤)}| ∕ |𝑉 | if 𝑏 is the label
f 𝑡, i.e. 𝑏 = 𝓁(𝑡), and 𝑃=(⟨id, 𝑏, 𝛼̂⟩, (𝑡, 𝛽)) = ∞ otherwise. Then, if we
nstantiate cost functions as in Example 5.1 (also used in our encoding
n Section 6), the optimal alignment of ue1 w.r.t. the DPN  depicted
n Example 3.1 is 𝛾1e′ as shown in Example 4.3 (of cost 2.05).

Further, if we consider the task of finding the lower-bound on the
ost of optimal alignments for any realization of ue1 (as discussed
elow Definition 5.2), then this is 1 and it is given as well by the

′ 1
ealization e and 𝛾e′ .

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

A
c
s
a
r
o
u
(

6

l
a
a
t
a
s
w
g
c
t

L

H
m
s
s
t
t
t
b
𝜌

E
p
t

6. Encoding

This section describes our encoding for conformance checking of
traces with uncertainty. We give all details for the two cost functions
proposed in Section 5, but it is not hard to adapt the encoding to a
similar cost scheme. The conformance checking process via SMT can
be structured in four phases:

(1) represent the process run, the trace realization, and the align-
ment symbolically by a set of SMT variables,

(2) set up constraints 𝛷 that express optimality of the alignment,
(3) solve 𝛷 to obtain a satisfying assignment 𝜈, and
(4) decode from 𝜈 the process run, trace realization, and optimal

alignment.

similar procedure was followed in Felli et al. (2021), though with
rucial differences: In the uncertainty setting, step (1) requires to repre-
ent not only the process run but also the trace realization. To this end,
ll uncertainty features of the given uncertain trace must be suitably
eflected. A particular complication is given by the fact that the order
f the events need not be fixed. In addition, different cost functions are
sed, as explained in Section 5, which requires modifications in phase
2). All changes also affect the decoding in (4).

.1. Upper bounding the alignment length

We start by showing that there is a computable upper bound on the
ength of the process run associated with an optimal alignment. This is
crucial observation, since, as was already done in earlier SAT-based

pproaches (Boltenhagen et al., 2021; Felli et al., 2021, 2023), we need
o construct a symbolic representation of both a process run and an
lignment, that are subsequently concretized using an SMT solver. This
ymbolic representation must use a finite number of variables, so that
e need to fix upfront an upper bound on the size of the process run. In
eneral, the upper bound, and even its existence, depends on the chosen
ost function. The next lemma establishes a (coarse) upper bound for
he likelihood cost function from Fig. 2.

emma 6.1 (Upper Bound For K𝑙ℎ). Let  be a DPN and ue a trace with
uncertainty that has 𝑚1 certain and 𝑚2 uncertain events. Let ⟨𝑓1,… , 𝑓𝑛⟩ be
a run of  such that 𝑐 = ∑𝑛

𝑗=1 𝑃𝑀 (𝑓𝑗) is minimal, and 𝑘 the length of the
longest acyclic sequence of silent transitions in  . Then there is an optimal
alignment 𝛾 for ue such that the length of 𝛾|𝑀 is at most (4𝑚1+2𝑚2+𝑐) ⋅𝑘.

Proof. Let e = ⟨𝑒1,… , 𝑒𝑚⟩ ∈ (ue) be the realization associated with
𝛾, so 𝑚 ≤ 𝑚1 + 𝑚2. Then 𝛾0 = ⟨(𝑒1,≫),… , (𝑒𝑚,≫), (≫,𝑓1),…(≫,𝑓𝑛)⟩
is a valid alignment for e, with the following cost: First, the log steps
𝛾 ′0 = ⟨(𝑒1,≫),… , (𝑒𝑚,≫)⟩ have cost 𝜅𝐴(𝛾 ′0,ue)+𝜅𝑅(𝛾

′
0,ue). Since for each

uncertain event 𝑒 in ue the event removal cost is 𝜅ue(𝑒) < 1, we have
𝜅𝑅(𝛾 ′0,ue) ≤ 𝑚2. Second, 𝜅𝐴(𝛾 ′0,ue) =

∑𝑚1
𝑖=1

(

𝜅(𝑒𝑖,≫) ⋅ (1 + 𝜃(𝑒𝑖,ue))
)

,
where 𝜅(𝑒𝑖,≫) = 1 and 𝜃(𝑒𝑖,ue) ≤ 2. Hence, 𝜅𝐴(𝛾 ′0,ue) ≤ 3𝑚1. Overall,
K𝑙ℎ(𝛾0,ue) ≤ 3𝑚1 +𝑚2 + 𝑐, where 𝑐 is the cost of ⟨(≫,𝑓1),…(≫,𝑓𝑛)⟩ by
assumption.

An optimal alignment 𝛾 must satisfy K𝑙ℎ(𝛾,ue) ≤ K𝑙ℎ(𝛾0,ue). By as-
sumption, 𝛾 can have at most 𝑚 synchronous moves. For a conservative
estimate, we assume their cost is 0. In addition, 𝛾|𝑀 may feature non-
silent moves, each costing at least 1, and thus have at most 3𝑚1+𝑚2+𝑐
non-silent moves (otherwise, we would have K𝑙ℎ(𝛾,ue) > K𝑙ℎ(𝛾0,ue)).
Thus 𝛾 has at most 4𝑚1 + 2𝑚2 + 𝑐 moves that are either synchronous or
non-silent model moves. However, in between every one of these, as
well as before and afterwards, there may be silent transitions of cost 0.
There could also be loops which consist of silent transitions only, and
executing such a loop an arbitrary number of times does not incur any
additional cost. However, as silent transitions do not write variables, an
alignment whose process run involves such a loop cannot have strictly
smaller cost than the alignment obtained by omitting the loop. So it is
9

W

safe to assume that in the optimal alignment 𝛾, in between two non-
silent transitions there are at most 𝑘 silent ones. Thus, the length of
𝛾|𝑀 is at most (4𝑚1 + 2𝑚2 + 𝑐) ⋅ 𝑘. □

Note that if the DPN has loops that consist of silent transitions
only, there can be infinitely many optimal alignments that are not
bounded in length (as such loops can be repeated arbitrarily often
without increasing the cost). Indeed, the above lemma shows existence
of an optimal alignment within that bound, but the bound need not
apply to all optimal alignments.

For the best-realization cost function K𝑏𝑟 from Pegoraro et al.
(2021b) (cf. Example 5.2), it is also possible to upper-bound the length
of the process run in an optimal alignment: one can simply pick an
arbitrary realization of the given trace with uncertainty, and use the
results from Felli et al. (2021).

6.2. Encoding the process run

We assume that  is the given DPN as in Definition 3.2, and 𝑛 is
an upper bound on the length of the process run 𝛾|𝑀 in the optimal
alignment 𝛾 (cf. Section 6.1). To ensure that an optimal alignment of
length exactly 𝑛 exists, we first modify  such that it has a silent
transition from the final marking to itself. Then, the following SMT
variables are used to represent this run:

(a) transition variables S𝑖 for 1 ≤ 𝑖 ≤ 𝑛 of type integer. The intended
meaning is that, if the set of transitions in  is 𝑇 = {𝑡1,… , 𝑡

|𝑇 |},
S𝑖 is assigned 𝑗 iff the 𝑖th transition in the process run is 𝑡𝑗 ;

(b) marking variables M𝑖,𝑝 of type integer for all places 𝑝 ∈ 𝑃 and all
𝑖 with 0 ≤ 𝑖 ≤ 𝑛. The intended meaning is that M𝑖,𝑝 is assigned 𝑘
iff there are 𝑘 tokens in place 𝑝 at instant 𝑖;

(c) data variables X𝑖,𝑣 for all 𝑣 ∈ 𝑉 and all 𝑖, 0 ≤ 𝑖 ≤ 𝑛, where the
type of these variables is that of 𝑣. The intended meaning is that
X𝑖,𝑣 is assigned 𝑟 iff the value of 𝑣 at instant 𝑖 is 𝑟. We also write
X𝑖 for (X𝑖,𝑣1 ,… ,X𝑖,𝑣𝑘).

To encode that variables (a)–(c) are assigned values which represent
a valid process run, we use the constraints

𝜑run = 𝜑init ∧ 𝜑fin ∧ 𝜑trans ∧ 𝜑enabled ∧ 𝜑mark ∧ 𝜑data

where the subformulas reflect the requirements to a process run as
follows:
⋀

𝑝∈𝑃 M0,𝑝 =𝑀𝐼 (𝑝) ∧
⋀

𝑣∈𝑉 X0,𝑣 = 𝛼0(𝑣) (𝜑𝑖𝑛𝑖𝑡)
⋀

𝑝∈𝑃 M𝑛,𝑝 =𝑀𝐹 (𝑝) (𝜑𝑓𝑖𝑛)
⋀

1≤𝑖≤𝑛 1 ≤ S𝑖 ≤ |𝑇 | (𝜑trans)
⋀

1≤𝑖≤𝑛
⋀

1≤𝑗≤|𝑇 | (S𝑖 = 𝑗) →
⋀

𝑝∈ ∙𝑡𝑗
M𝑖−1,𝑝 ≥ |

∙𝑡𝑗 |𝑝 (𝜑enabled)
⋀

1≤𝑖≤𝑛

⋀

1≤𝑗≤|𝑇 |
(S𝑖 = 𝑗) →

⋀

𝑝∈𝑃
M𝑖,𝑝 − M𝑖−1,𝑝 = |𝑡𝑗

∙
|𝑝 − |

∙𝑡𝑗 |𝑝 (𝜑mark)

⋀

1≤𝑖<𝑛

⋀

1≤𝑗≤|𝑇 |
(S𝑖 = 𝑗) → 𝜌(guard(𝑡𝑗)) ∧

⋀

𝑣∉𝑤𝑟𝑖𝑡𝑒(𝑡𝑗)
X𝑖−1,𝑣 = X𝑖,𝑣 (𝜑data)

ere (𝜑init) enforces the initial marking 𝑀𝐼 , (𝜑fin) enforces the last
arking to be final, (𝜑trans) ensures that transitions variables are as-

igned numbers that correspond to transitions in  , (𝜑enabled) makes
ure that fired transitions were enabled, where |

∙𝑡𝑗 |𝑝 denotes the mul-
iplicity of 𝑝 in the multiset ∙𝑡𝑗 , (𝜑mark) ascertains that the moving of
okens follows the flow relation of the Petri net, where |𝑡𝑗 ∙|𝑝 denotes
he multiplicity of 𝑝 in 𝑡𝑗 ∙, and finally (𝜑data) transition guards must
e satisfied. Here 𝜌 is the substitution with domain 𝑉𝑟 ∪ 𝑉𝑤 defined as
(𝑣𝑟) = X𝑖−1,𝑣 and 𝜌(𝑣𝑤) = X𝑖,𝑣.

xample 6.1. We illustrate the encoding on the DPN from Exam-
le 3.1, and ue1 be as in Example 4.1. For simplicity, we assume that
he maximal length of the process run in the optimal alignment is 𝑛 = 3.
e add an additional silent transition from place 3 to itself, called f,

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

f

M

6

f
a
⟨

T
a

t
t

T
t

I
e
a
t

E
a
m
1
T
f

A

(

(

(

(

l
f
o
s
n
c
t
a
a
o
c
o

6

c
a

d
p
F
f
i
v
t
S
a
r
d
a
c

and encode transitions a,b,… , f by integers 1 to 6. This results in the
ollowing constraints:

0,0 =1 ∧ M0,1 =M0,2 =M0,3 =0 ∧ X0,𝑥=X0,𝑦=0 (𝜑init)

M3,0 =M3,1 =M3,2 =0 ∧ M3,3 =1 (𝜑fin)
⋀

1≤𝑖≤3
(S𝑖 =a ∨ S𝑖 =b ∨ S𝑖 = c ∨ S𝑖 =d ∨ S𝑖 =e ∨ S𝑖 = f) (𝜑trans)

⋀

1≤𝑖≤3 (S𝑖 =a → M𝑖−1,0 ≥ 1) ∧ (S𝑖 =b → M𝑖−1,1 ≥ 1) ∧ (S𝑖 = c → M𝑖−1,2 ≥ 1) ∧

(S𝑖 =d → M𝑖−1,2 ≥ 1) ∧ (S𝑖 =e → M𝑖−1,3 ≥ 1) ∧ (S𝑖 = f → M𝑖−1,3 ≥ 1)

(𝜑enabled)
⋀

1≤𝑖≤3 (S𝑖 =a → (M𝑖−1,0−M𝑖,0 =1 ∧ M𝑖,1−M𝑖−1,1 =1 ∧ M𝑖,2 =M𝑖−1,2 ∧ M𝑖,3 =M𝑖−1,3))
⋀

1≤𝑖≤3 (S𝑖 =b → (M𝑖,0 =M𝑖−1,0 ∧ M𝑖−1,1−M𝑖,1 =1 ∧ M𝑖,2−M𝑖−1,2 =1 ∧ M1,3 =M0,3))
⋀

1≤𝑖≤3 (S𝑖 = c → (M𝑖,0 =M𝑖−1,0 ∧ M𝑖,1 =M𝑖−1,1 ∧ M𝑖−1,2−M𝑖,2 =1 ∧ M𝑖,3−M𝑖−1,3 =1))
⋀

1≤𝑖≤3 (S𝑖 =d → (M𝑖,0 =M𝑖−1,0 ∧ M𝑖,1 =M𝑖−1,1 ∧ M𝑖−1,2−M𝑖,2 =1 ∧ M𝑖,3−M𝑖−1,3 =1))
⋀

1≤𝑖≤3 (S𝑖 =e → (M𝑖,0 =M𝑖−1,0 ∧ M𝑖,1 =M𝑖−1,1 ∧ M𝑖,2 =M𝑖−1,2 ∧ M𝑖,3 =M𝑖−1,3))
⋀

1≤𝑖≤3 (S𝑖 = f → (M𝑖,0 =M𝑖−1,0 ∧ M𝑖,1 =M𝑖−1,1 ∧ M𝑖,2 =M𝑖−1,2 ∧ M𝑖,3 =M𝑖−1,3))

(𝜑mark)
⋀

1≤𝑖≤3 (S𝑖 =a → (X𝑖,𝑥 ≥ 0 ∧ X𝑖,𝑦 =X𝑖−1,𝑦))
⋀

1≤𝑖≤3 (S𝑖 =b → (X𝑖,𝑦 > 0 ∧ X𝑖,𝑥 =X𝑖−1,𝑥))
⋀

1≤𝑖≤3 (S𝑖 = c → (X𝑖−1,𝑥 ≠X𝑖−1,𝑦 ∧ X𝑖,𝑥 =X𝑖−1,𝑥 ∧ X𝑖,𝑦 =X𝑖−1,𝑦+1))
⋀

1≤𝑖≤3 (S𝑖 =d → (X𝑖−1,𝑥 =X𝑖−1,𝑦 ∧ X𝑖,𝑥 =X𝑖−1,𝑥 ∧ X𝑖,𝑦 =X𝑖−1,𝑦+1))
⋀

1≤𝑖≤3 (S𝑖 =e → (X𝑖,𝑦 =X𝑖−1,𝑦+1 ∧ X𝑖,𝑥 =X𝑖−1,𝑥))
⋀

1≤𝑖≤3 (S𝑖 = f → (X𝑖,𝑥 =X𝑖−1,𝑥 ∧ X𝑖,𝑦 =X𝑖−1,𝑦)) (𝜑data)

.3. Trace realization constraints

If a trace contains some kind of uncertainty, the realization taken
or an optimal alignment must be encoded as well, which requires
dditional variables. We assume that ue = {ue1,… , ue𝑚} where ue𝑗 =
id, conf , la, ts, 𝛼⟩ for each 1 ≤ 𝑗 ≤ 𝑚, with la = {𝑏1 ∶ 𝑝1,… , 𝑏𝑁𝑗

∶ 𝑝𝑁𝑗
}.

hen, three kinds of variables are used to represent the realization, for
ll 1 ≤ 𝑗 ≤ 𝑚:

(d) a Boolean drop variable dropue𝑗 that expresses whether the event
is discarded and satisfies dropue𝑗 → (ue𝑗 .conf < 1), i.e., it can
only be assigned true for uncertain events;

(e) an integer activity variable Aue𝑗 that encodes which of the labels
𝑏1,… , 𝑏𝑁𝑗

is chosen in the realization, with the constraint that
⋁𝑁𝑗

𝑠=1 Aue𝑗 = 𝑏𝑠, and
(f) trace data variables D𝑣,ue𝑗 of suitable type for all 𝑣 ∈ 𝑉 that

express which value a variable 𝑣 takes in the realization of ue𝑗 ;
these variables must satisfy ⋁

𝑐∈ue.𝛼 D𝑣,ue𝑗 = 𝑐 if 𝛼(ue)(𝑣) is a set,
or 𝑙≤D𝑣,ue𝑗 ≤ 𝑢 if 𝛼(ue)(𝑣) is an interval [𝑙, 𝑢].

We call ue sequential if every element of ue has a single, distinct
imestamp. In this case, ue can be assumed to be ordered by the
imestamps as ⟨ue1,… , ue𝑛⟩. Otherwise, ue has at least one uncertain

timestamp, and we use the following additional variables for all 𝑗,
1 ≤ 𝑗 ≤ 𝑚:

(g) a time stamp variable Tue𝑗 to express when event ue𝑗 happened,
with the constraint ⋁

𝑡∈ts(ue𝑗) Tue𝑗 = 𝑡 if ts(ue𝑗) is a set, or
𝑙≤Tue𝑗 ≤ 𝑢 if ts(ue𝑗) is an interval [𝑙, 𝑢],

(h) an integer position variable Pue𝑗 for the position of ue𝑗 in the
realization,

(i) an integer item variable L𝑘 that indicates the 𝑘th element in the
realization, i.e., L𝑘 has value id(ue𝑗) if and only if the 𝑘th event
in the trace with uncertainty is ue𝑗 ; we thus issue the constraint
⋁𝑚
10

𝑗=1 L𝑘 = id(ue𝑗) to fix the range of L𝑘, for all 1 ≤ 𝑘 ≤ 𝑚. d
he formula 𝜑trace consists of the range constraints in (d)–(i), in addi-
ion to:
⋀𝑚

𝑗=1
⋀𝑚

𝑘=1(Pue𝑗 < Pue𝑘 ⟶ Tue𝑗 ≤ Tue𝑘) ∧ (Tue𝑗 < Tue𝑘 ⟶ Pue𝑗 < Pue𝑘)
⋀𝑚

𝑗=1
⋀𝑚

𝑘=1 L𝑗 = id(ue𝑘) ⟷ Pue𝑘 = 𝑗

n this way we require that, first, the positions assigned to uncertain
vents by Pue𝑗 are compatible with the time stamps assigned by Tue𝑗
nd, second, that the Pue𝑗 variables work as an ‘‘inverse function’’ of
he L𝑘 variables.

xample 6.2. We continue Example 6.1. Since event ue1 in ue1 has
n uncertain timestamp, constraints encoding the sequence of events
ust be included as well. Since both events have a confidence below
, the constraints in (d) amount to drop𝑗 → ⊤, which amount to ⊤.
o simplify notation, we write A1 instead of Aue1 etc, and obtain the
ollowing constraints for 𝜑trace:

1 =a ∧ (A2 =b ∨ A2 = c) ∧ (D𝑥,1 =2 ∨ D𝑥,1 =3) ∧ D𝑦,2 =1 (e), (f)

0 ≤ T1 ≤ 5) ∧ T1 =2 ∧ (L1 = 1 ∨ L1 = 2) ∧ (L2 = 1 ∨ L2 = 2) (g), (i)
P1 < P2 ⟶ T1 ≤ T2) ∧ (T1 < T2 ⟶ P1 < P2) ∧

P2 < P1 ⟶ T2 ≤ T1) ∧ (T2 < T1 ⟶ P2 < P1) ∧ (L1 =1 ⟷ P1 =1) ∧

L1 =2 ⟷ P2 =1) ∧ (L2 =1 ⟷ P1 =2) ∧ (L2 =2 ⟷ P2 =2)

Notice that incorporating in the traces some information about the
ifecycle of events would require to add suitable string variables, one
or each event/activity, such that they store the current execution state
f the referred event (e.g., if it is in one of its starting states, in
ome intermediate state, or at one of its end states). Moreover, one
eeds to conjoin other formulae, involving these new variables, that
onstrain the lifecycle behavior of activities: for example, it is required
o impose that, when some event occurs, the initial states happen first
nd before the possible intermediate states, whereas the end states only
fter all the other states, and during the execution of the event no
ther activity can interfere. The encoding is conceptually similar, but
ertainly increases the size of the formula that represents realizations
f traces.

.4. Encoding the cost function

All encoding ingredients outlined so far are independent from the
hosen cost function. To encode the alignment and its cost we use
dditional variables:

(j) distance variables d𝑖,𝑗 of type integer for 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛;
the intended meaning is that d𝑖,𝑗 represents the alignment cost
of the prefix e|𝑖 of the log trace realization e and prefix f|𝑗 of the
process run f (both of which are yet to be determined).

The search for an optimal alignment is based on a notion of edit
istance, similar as in Felli et al. (2021), Boltenhagen et al. (2021). More
recisely, we assume that the data-aware alignment cost 𝜅(𝑒𝑖, 𝑓𝑖) in
ig. 1 can be encoded using a distance-based cost function with penalty
unctions 𝑃𝐿, 𝑃𝑀 , and 𝑃= as discussed in Section 5.2. The function 𝑃=
s assumed to be data-aware, i.e., to depend only on (mis)matching
ariable assignments and activity labels between the events in realiza-
ions and transition firings in process runs. We assume that there are
MT encodings of these penalty functions, denoted as [𝑃=]𝑖,𝑗 , [𝑃𝑀]𝑗 ,
nd [𝑃𝐿]𝑖. Moreover, we assume that there are encodings of the event
emoval cost function [𝜅ue]𝑖 and the confidence cost function [𝜃ue]𝑖,
efined for the 𝑖th element of the log trace realization, as well as
n encoding [⊗] of the operator ⊗. We then consider the following
onstraints for 𝑖, 𝑗 > 0: we set d0,0 = 0, and
𝑖,0 = min([𝑃𝐿]𝑖[⊗][𝜃ue]𝑖, [𝜅ue]𝑖) + d𝑖−1,0 d0,𝑗 = [𝑃𝑀]𝑗 + d0,𝑗−1

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

r
t
𝜈
a
f
𝑖
d

c
h
t
E

6

i
D

L

P
a
𝑉
t
0
i
t
a
f
𝜈
s
a
c
(

d𝑖,𝑗 = min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝑃=]𝑖,𝑗 [⊗][𝜃ue]𝑖 + d𝑖−1,𝑗−1

[𝑃𝐿]𝑖[⊗][𝜃ue]𝑖 + d𝑖−1,𝑗

[𝜅ue]𝑖 + d𝑖−1,𝑗

[𝑃𝑀]𝑗 [⊗][𝜃ue]𝑖 + d𝑖,𝑗−1

(𝜑𝛿)

This encoding works for all cost function that follow the structure of
Fig. 2. It constitutes an operational way to evaluate such cost functions,
where the components 𝜅ue and 𝜃 are distributed to single moves, which
allows us to use the encoding schema based on the edit distance. The
inductive case d𝑖,𝑗 is computed so as to locally choose the move with
minimal cost. Finally, d𝑚,𝑛 encodes the cost of the complete alignment,
which will thus be used as the minimization objective.

For our likelihood cost function, according to Eqs. (2) and (3), we
use 𝑢[⊗]𝑤 = 𝑢 for model moves, i.e., in the last line of (𝜑𝛿), and
𝑢[⊗]𝑤 = 𝑖𝑡𝑒(𝑢 = 0, 𝑤, 𝑢 ⋅ (1 + 𝑤)) in all other places. Next, [𝜅ue]𝑖
can be defined as a (nested) case distinction on the element from ue
that is chosen for the 𝑖th position (represented with variable L𝑖, cf.
Section 6.3):

[𝜅ue]𝑖 =ite(𝐿𝑖 = id(ue1) ∧ dropue1 , conf (ue1),… (4)

ite(𝐿𝑖 = id(ue𝑚) ∧ dropue𝑚 , conf (ue𝑚),∞)…)

The expression [𝜃ue]𝑖 can be encoded via case distinctions in a similar
way.

For the best-realization cost function from Example 5.2, we simply
set 𝑢[⊗]𝑤 = 𝑢 ⋅ 𝑤, [𝜅ue]𝑖 = 0, and [𝜃ue]𝑖 = 1. Then the expressions
can be simplified such that no actual multiplication is needed, and the
encoding remains in the (decidable) realms of linear arithmetic. We
illustrate this cost function on the running example:

Example 6.3. We continue Example 6.2 and instantiate (𝜑𝛿) for the
best-realization cost function, using for 𝜅(𝑒, 𝑓) the Levenshtein distance
as in Pegoraro et al. (2021b). So we set [𝑃𝐿]𝑖 = [𝑃𝑀]𝑗 =1 and [𝜃ue]𝑖 =1
for all 𝑖, 𝑗, and

[𝑃=]𝑖,𝑗 = 𝑖𝑡𝑒(S𝑗 = a ∧ L𝑖 = 1, 0, 𝑖𝑡𝑒(S𝑗 = b ∧ L𝑖 = 2 ∧ A2 = b, 0,

𝑖𝑡𝑒(S𝑗 = c ∧ L𝑖 = 2 ∧ A2 = c, 0,∞)))

which gives cost 0 if the 𝑗th transition in the model run and the 𝑖th label
in the realization match, and ∞ otherwise. Note that [𝜅ue]𝑖 = 0 for all
𝑖 since all events are uncertain. Thus, we get from (𝜑𝛿) the equations
d𝑖,0 = 0 for all 0 ≤ 𝑖 ≤ 2; and moreover d0,𝑗 = 1+d0,𝑗−1 for all 0 < 𝑗 ≤ 3,
and

d1,1 = 𝑚𝑖𝑛([𝑃=]1,1 + d0,0,d0,1, 1+d1,0)

d2,1 = 𝑚𝑖𝑛([𝑃=]2,1 + d1,0,d1,1, 1+d2,0)

d1,2 = 𝑚𝑖𝑛([𝑃=]1,2 + d0,1,d0,2, 1+d1,1)

d2,2 = 𝑚𝑖𝑛([𝑃=]2,2 + d1,1,d1,2, 1+d2,1)

d1,3 = 𝑚𝑖𝑛([𝑃=]1,3 + d0,2,d0,3, 1+d1,2)

d2,3 = 𝑚𝑖𝑛([𝑃=]2,3 + d1,2,d1,3, 1+d2,2)

6.5. Solving and decoding

Given the constraints above, we solve the following OMT problem:

𝜑run ∧ 𝜑trace ∧ 𝜑𝛿 minimizing d𝑚,𝑛 (𝛷)

Given a satisfying assignment 𝜈 for (𝛷), we construct a process run
f𝜈 = ⟨𝑓1,… , 𝑓𝑛⟩ as follows: Assuming that the set of transitions 𝑇
consists of 𝑡1,… , 𝑡

|𝑇 | in the ordering already used for the encoding, we
set 𝑓𝑖 = (𝑡𝜈(S𝑖), 𝛽𝑖). Let 𝛼𝑗 , 0≤ 𝑗 ≤ 𝑛, be the state variable assignments
given by 𝛼𝑗 (𝑣) = 𝜈(X𝑗,𝑣) for all 𝑣 ∈ 𝑉 , and 𝛽𝑖(𝑣𝑟) = 𝛼𝑖−1(𝑣) and
𝛽𝑖(𝑣𝑤) = 𝛼𝑖(𝑣) for all 𝑣 ∈ 𝑉 . Next, a realization e𝜈 = ⟨𝑒1,… , 𝑒𝑘⟩ is
obtained by ordering the events with uncertainty in ue according to
𝜈(Tue𝑖), dropping all ue𝑖 such that dropue𝑖 is true, and fixing the label
11

and data values to 𝜈(Aue𝑖) and 𝜈(Due𝑖), respectively. In order to obtain an t
alignment between f𝜈 and e𝜈 , a family of partial alignments is defined,
for all 𝑖, 𝑗 > 0:

𝛾0,0 = 𝜖 𝛾0,𝑗 = 𝛾0,𝑗−1 ⋅ (≫,𝑓𝑗)

𝛾𝑖,0 =

{

𝛾𝑖−1,0 ⋅ (𝑒𝑖,≫) if 𝜈(𝛿𝑖,0) = 𝜈([𝑃𝐿]𝑖[⊗][𝜃ue]𝑖 + 𝛿𝑖−1,0)
𝛾𝑖−1,0 if 𝜈(𝛿𝑖,0) = 𝜈([𝜅ue]𝑖 + 𝛿𝑖−1,0)

𝛾𝑖,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾𝑖−1,𝑗 ⋅ (𝑒𝑖,≫) if 𝜈(𝛿𝑖,𝑗) = 𝜈([𝑃𝐿]𝑖[⊗][𝜃ue]𝑖 + 𝛿𝑖−1,𝑗)
𝛾𝑖−1,𝑗 if 𝜈(𝛿𝑖,𝑗) = 𝜈([𝜅ue]𝑖 + 𝛿𝑖−1,𝑗)
𝛾𝑖,𝑗−1 ⋅ (≫,𝑓𝑗) if 𝜈(𝛿𝑖,𝑗) = 𝜈([𝑃𝑀]𝑗 [⊗] [𝜃ue]𝑖 + 𝛿𝑖,𝑗−1)
𝛾𝑖−1,𝑗−1 ⋅ (𝑒𝑖, 𝑓𝑗) if 𝜈(𝛿𝑖,𝑗) = 𝜈([𝑃=]𝑖,𝑗 [⊗] [𝜃ue]𝑖 + 𝛿𝑖−1,𝑗−1).

In fact, the decoding need not be unique, as multiple alternatives in the
above case distinction can apply. In this case, any applicable option will
yield an optimal (though not unique) alignment.

Example 6.4. For the constraints collected in Example 6.1–6.4, and
minimization objective d2,3, we obtain an assignment 𝜈 with 𝜈(d2,3) = 1,
so the optimal alignment has cost 1. For the variables representing the
realization, we get 𝜈(A1) =a, 𝜈(A2) = c, D𝑥,1 =2, and D𝑦,2 =1 to fix the
activity labels and data, 𝜈(T1) = 1, 𝜈(T2) = 2 for the timestamps, and
𝜈(P1) = 𝜈(L1) = 1, 𝜈(P2) = 𝜈(L2) = 2 to fix the event positions. This choice
epresents the realization e = ⟨⟨#1,a, {𝑥 ↦ 2}⟩, ⟨#2, c, {𝑦 ↦ 1}⟩⟩. For
he model run, 𝜈(S1) = a, 𝜈(S2) = b, and 𝜈(S3) = c fix the transitions;
(M0,0) = 1, 𝜈(M1,1) = 1, 𝜈(M2,2) = 1, and 𝜈(M3,3) = 1 and all other M𝑖,𝑗 are
ssigned 0, which amounts to the markings where one token moving
rom 𝑝0 to 𝑝3; and 𝜈(X𝑖,𝑥) = 0 for all 𝑖, 𝜈(X0,𝑦) = 0, and 𝜈(X𝑖,𝑦) = 1 for all
> 0, i.e., 𝑥 is set to 0 in the a transition and 𝑦 is set to 1 by b. The
istance variables are assigned as follows:

𝜈(d0,0) = 0

𝜈(d1,0) = 1

𝜈(d2,0) = 2

𝜈(d0,1) = 1

𝜈(d1,1) = 0

𝜈(d2,1) = 1

𝜈(d0,2) = 2

𝜈(d1,2) = 1

𝜈(d2,2) = 2

𝜈(d0,3) = 3

𝜈(d1,3) = 2

𝜈(d2,3) = 1

#1
a 𝑥𝑤 ↦ 0

≫
b

#2
c 𝑦𝑤 ↦ 1

The arrows indicate how d2,3 was computed, from which the alignment
an be deduced: diagonal arrows represent synchronous moves, the
orizontal arrow a model move. This amounts to the alignment on
he right, which has indeed cost 1 according to the cost function from
xample 5.2.

.6. Correctness

In this section we prove that the constructed sequence of moves
s indeed an alignment that solves our conformance checking task, cf.
efinition 5.2.

emma 6.2. For any satisfying assignment 𝜈 to (𝛷), (𝑖) f 𝜈 is a process
run, and (𝑖𝑖) e𝜈 is a realization of ue.

roof. (𝑖) Let 𝑀𝑖 be the marking such that 𝑀𝑖(𝑝) = 𝜈(M𝑖,𝑝), for all 𝑝 ∈ 𝑃 ,
nd 𝛼𝑖 the state variable assignment such that 𝛼𝑖(𝑣) = 𝜈(X𝑖,𝑣), for all 𝑣 ∈
and 0≤ 𝑖≤ 𝑛. For f𝜈 = ⟨𝑓1,… , 𝑓𝑛⟩, we show by induction on 𝑖 that the

ransition sequence f𝜈,𝑖 = ⟨𝑓1,… , 𝑓𝑖⟩ satisfies (𝑀𝐼 , 𝛼0)
f𝜈,𝑖
←←←←←←←←←←←←→ (𝑀𝑖, 𝛼𝑖) for all

≤ 𝑖 ≤ 𝑛. In the base case 𝑖 = 0, so f𝜈,𝑖 is empty. As 𝜈 satisfies 𝜑init,fin,
t must be that 𝑀0 = 𝑀𝐼 and 𝛼0 is the initial assignment, so the claim
rivially holds. In the inductive step, we consider f𝜈,𝑖+1 = ⟨𝑓1,… , 𝑓𝑖+1⟩
nd assume that f𝜈,𝑖 satisfies (𝑀𝐼 , 𝛼0)

f𝜈,𝑖
←←←←←←←←←←←←→ (𝑀𝑖, 𝛼𝑖). For the last transition

iring 𝑓𝑖+1 = (𝑡𝑗 , 𝛽) there must be some 𝑗 such that 1≤ 𝑗 ≤ |𝑇 | and
(S𝑖+1) = 𝑗, by construction and requirement (a) above. Since 𝜈 is a
olution to (𝛷), it satisfies 𝜑enabled so that 𝑡𝑗 is enabled in 𝑀𝑖. Moreover,
s 𝜈 satisfies 𝜑mark and 𝜑data, we have (𝑀𝑖, 𝛼𝑖)

𝑓𝑖+1
←←←←←←←←←←←←←←←←←→ (𝑀𝑖+1, 𝛼𝑖+1). This

oncludes the induction proof. For the case where 𝑖 = 𝑛, we thus obtain
𝑀𝐼 , 𝛼0)

f𝜈,𝑛
←←←←←←←←←←←←←←→ (𝑀𝑛, 𝛼𝑛), and f𝜈,𝑛 = f𝜈 . Finally, given that 𝜈 satisfies 𝜑fin,

he last marking 𝑀 must be final and hence f ∈ 𝑅𝑢𝑛𝑠().
𝑛 𝜈

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

S

S

S

a

(𝑖𝑖) Let {ue1,… , ue𝑘} be all events ue ∈ ue such that 𝜈(dropue) = ⊥.
By requirement (d), all events in ue ⧵ {ue1,… , ue𝑘} are uncertain. By
construction, e𝜈 = ⟨𝑒1,… , 𝑒𝑘⟩ is obtained from {ue1,… , ue𝑘} by taking
for each ue𝑖 the timestamp value 𝑡𝑖 = 𝜈(Tue𝑖) in a way such that
𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑘. For all 1 ≤ 𝑖 ≤ 𝑘, 𝑡𝑖 is an admissible timestamp for
ue𝑖 by requirement (g). We have lab(𝑒𝑖) = 𝜈(Aue𝑖), which is admissible
by requirement (e), and 𝛼̂(𝑒𝑖)(𝑣) = 𝜈(D𝑣,ue𝑖) for all 𝑣 ∈ 𝑉 , which is
admissible by requirement (f). Thus e𝜈 is a realization of ue according
to Definition 4.3. □

This lemma shows that the decoding provides both a valid process
run and a trace realization. Next we demonstrate that the decoded
alignment is optimal. To this end, we assume for the sake of simplicity
that the final marking is non-empty, and admits a silent transition
to itself; however, this restriction could be avoided by encoding re-
finements. The following proof of correctness uses our likelihood cost
function, but it can be adapted to different costs.

Theorem 6.1. Let  be a DPN, ue a log trace with uncertainty and 𝜈 a
solution to (𝛷) as in Section 6.5. Then 𝛾𝑚,𝑛 is an optimal alignment for ue
of cost K𝑙ℎ(𝛾𝑚,𝑛,ue) = 𝜈(d𝑚,𝑛).

Proof. By Lemma 6.2, f𝜈 ∈ 𝑅𝑢𝑛𝑠() and e𝜈 is a realization of ue.
Let ue1,… , ue𝑚 be the sequence of events in ue ordered in a way such
that 𝜈(Tue1) ≤ ⋯ ≤ 𝜈(Tue𝑚). Moreover, let ue𝑖 be the subset of ue such
that ue𝑖 = {ue1,… , ue𝑖} for all 0 ≤ 𝑖 ≤ 𝑚. Let moreover ê𝑖 be the
projection of e𝜈 to ue𝑖, i.e., the prefix of e𝜈 such that for all events
in ê𝑖 the respective event with uncertainty is in ue𝑖. This subtrace with
uncertainty is needed to perform the induction proof below. Using the
observations in the proof of Lemma 6.2(b), it is easy to see that ê𝑖 is
a realization of ue𝑖 for all 𝑖, 0 ≤ 𝑖 ≤ 𝑚. Note that the length of the
sequence ê𝑖 is smaller or equal to 𝑖.

Let 𝑑𝑖,𝑗 = 𝜈(d𝑖,𝑗), for all 𝑖, 𝑗 with 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛. We show
now the following (⋆): 𝛾𝑖,𝑗 is an optimal alignment of ê𝑖 and f𝜈 |𝑗 with
cost K𝑙ℎ(𝛾𝑖,𝑗 ,ue𝑖) = 𝑑𝑖,𝑗 , by induction on (𝑖, 𝑗). In the following, we freely
use the fact that [𝑃=], [𝑃𝐿], and [𝑃𝑀] are correct encodings of 𝑃=, 𝑃𝐿,
and 𝑃𝑀 from Example 5.3, cf. Felli et al. (2021).

Base case. If 𝑖= 𝑗 =0, then ue𝑖 = ∅ and 𝛾𝑖,𝑗 is the empty sequence,
which is the optimal alignment of an empty log trace and an
empty process run. We have 𝑑𝑖,𝑗 =0 by (𝜑𝛿), and also K𝑙ℎ(𝛾𝑖,𝑗 ,
ue𝑖) = 0.

tep case 1. If 𝑖=0 and 𝑗 > 0, then the only possibility to match the last
transition 𝑓𝑗 of f𝜈 |𝑗 is a model step with 𝑓𝑗 . By the induction
hypothesis, 𝛾0,𝑗−1 is an optimal alignment of the empty trace
and f𝜈 |𝑗−1 of cost K𝑙ℎ(𝛾0,𝑗−1, ∅) = 𝑑0,𝑗−1. Thus, also 𝛾0,𝑗 = 𝛾0,𝑗−1 ⋅
⟨(≫,𝑓𝑗)⟩ is optimal. We have 𝑑0,𝑗 = 𝑑0,𝑗−1+𝜈([𝑃𝑀]𝑗) by (𝜑𝛿), and
by the choice of our cost functions, K𝑙ℎ(𝛾0,𝑗 , ∅) = K𝑙ℎ(𝛾0,𝑗−1, ∅) +
𝑃𝑀 (𝑓𝑗) = 𝑑0,𝑗−1 + 𝜈([𝑃𝑀]𝑗).

tep case 2. If 𝑗 =0 and 𝑖 > 0, then according to (𝜑𝛿) either (𝑖) 𝑑𝑖,0 =
𝜈([𝑃𝐿]𝑖 + [𝑃𝐿]𝑖 ⋅ [𝜃ue]𝑖) + 𝑑𝑖−1,0 and 𝛾𝑖,0 = 𝛾𝑖−1,0 ⋅ ⟨(𝑒𝑖,≫)⟩, or
(𝑖𝑖) 𝑑𝑖,0 = 𝜈([𝜅ue]𝑖) + 𝑑𝑖−1,0 and 𝛾𝑖,0 = 𝛾𝑖−1,0. Let ue𝑖 be the
event with uncertainty in ue that matches 𝑒𝑖, and 𝑝 be such
that (lab(𝑒𝑖)∶ 𝑝) ∈ la(ue𝑖). By the induction hypothesis, 𝛾𝑖−1,0
is an optimal alignment of ê𝑖−1 and the empty run with cost
K𝑙ℎ(𝛾𝑖−1,0, ∅) = 𝑑𝑖−1,0. In case (𝑖), 𝜈([𝑃𝐿]𝑖 + [𝑃𝐿]𝑖 ⋅ [𝜃ue]𝑖) =
3 − ue𝑖.conf − 𝑝, and a similar case distinction as Eq. (4) but
for [𝜃ue]𝑖 ensures that 𝜈(dropue𝑖) = ⊥, so that K𝑙ℎ(𝛾𝑖,0, ∅) =
𝑑𝑖−1,0 + 𝜅(𝑒𝑖,≫)⊗ 𝜃(𝑒𝑖,ue𝑖) as desired, according to our choices
for the cost function and realization cost from Section 5. If case
(𝑖𝑖) applies, we can assume that 𝜈([𝜅ue]𝑖) < ∞, so by Eq. (4)
we must have 𝜈(dropue𝑖) = ⊤, and 𝑑𝑖,0 = 𝑑𝑖−1,0 + conf (ue𝑖),
by our choice for the realization cost. Requirement (d) implies
that conf (ue𝑖) < 1, so ue𝑖 is uncertain. Therefore, ê𝑖 = ê𝑖−1 is a
realization of ue𝑖 where 𝑒𝑖 is dropped, and 𝛾𝑖,0 = 𝛾𝑖−1,0 a valid
alignment. According to (𝜑𝛿), 𝑑𝑖,0 is assigned the minimum of
the values corresponding to cases (𝑖) and (𝑖𝑖), so since 𝛾𝑖−1,0 is
optimal, also 𝛾 is optimal.
12

𝑖,0 n
tep case 3. If 𝑖, 𝑗 > 0, then, since 𝜈 satisfies (𝜑𝛿), we can distinguish
four cases: (i) 𝑑𝑖,𝑗 = 𝜈([𝑃𝐿]𝑖 + [𝑃𝐿]𝑖 ⋅ [𝜃ue]𝑖) + 𝑑𝑖−1,𝑗 , (ii) 𝑑𝑖,𝑗 =
𝜈([𝜅ue]𝑖) + 𝑑𝑖−1,𝑗 , (iii) 𝑑𝑖,𝑗 = 𝜈([𝑃𝑀]𝑗) + 𝑑𝑖,𝑗−1, and finally, (iv)
𝑑𝑖,𝑗 = 𝜈(𝑖𝑡𝑒([𝑃=]𝑖,𝑗 = 0, [𝜃ue]𝑖, [𝑃=]𝑖,𝑗 + [𝑃=]𝑖,𝑗 ⋅ [𝜃ue]𝑖)) + 𝑑𝑖−1,𝑗−1.
In cases (𝑖) − (𝑖𝑖𝑖), we reason similarly as for cases (𝑖) and (𝑖𝑖) in
the Step Case 2, and as in Step Case 1, respectively, to show that
𝛾𝑖,𝑗 is an alignment of ê𝑖 and f𝜈 |𝑗 with cost K𝑙ℎ(𝛾𝑖,𝑗 ,ue𝑖) = 𝑑𝑖,𝑗 .
In case (𝑖𝑣), by the induction hypothesis, 𝑑𝑖−1,𝑗−1 is the cost
of the optimal alignment for ê𝑖−1 and f𝜈 |𝑗−1. By construction,
𝛾𝑖,𝑗 = 𝛾𝑖−1,𝑗−1 ⋅ (𝑒𝑖, 𝑓𝑗). A similar case distinction as Eq. (4) but
for [𝜃ue]𝑖 ensures that 𝜈(dropue𝑖) = ⊥, so 𝑒𝑖 is included in ê𝑖, so
𝛾𝑖,𝑗 is a valid alignment for ê𝑖. By Eq. (1), we have K𝑙ℎ(𝛾𝑖,𝑗 ,ue𝑖) =
𝑑𝑖−1,𝑗−1+𝜅(𝑒𝑖, 𝑓𝑖)⊗𝜃(𝑒𝑖,ue𝑖), and by Eq. (2), 𝜅(𝑒𝑖, 𝑓𝑖)⊗𝜃(𝑒𝑖,ue𝑖) =
𝜈(𝑖𝑡𝑒([𝑃=]𝑖,𝑗 = 0, [𝜃ue]𝑖, [𝑃=]𝑖,𝑗 + [𝑃=]𝑖,𝑗 ⋅ [𝜃ue]𝑖)), so K𝑙ℎ(𝛾𝑖,𝑗 ,ue𝑖) is
the cost of 𝛾𝑖,𝑗 .
According to (𝜑𝛿), 𝑑𝑖,𝑗 is assigned the minimum of the val-
ues corresponding to cases (𝑖) − (𝑖𝑣), so 𝛾𝑖,𝑗 is optimal, which
concludes the induction proof.

We can assume that an optimal alignment 𝛾 exists where the process
run 𝛾|𝑀 has exactly length 𝑛. While Lemma 6.1 guarantees that there is
some 𝛾 such that 𝛾|𝑀 ≤ 𝑛, we can assume 𝛾|𝑀 ≥ 𝑛 if for all 𝛼 the final
marking 𝑀𝐹 admits a step (𝑀𝐹 , 𝛼)

(𝑡,𝛽)
←←←←←←←←←←←←←←←←→ (𝑀𝐹 , 𝛼) with a silent transition

𝑡. Such transitions can always be added to the net  . Thus, the claim
of the theorem follows from case 𝑖 = 𝑚, 𝑗 = 𝑛 of (⋆), as ue𝑚 = ue and
hence ê𝑚 = e𝜈 . □

As explained in Section 5, our cost model can also accommodate
the best-realization cost function from Pegoraro et al. (2021b). Then,
a solution to (𝛷) yields a realization of ue that has minimal optimal
alignment cost wrt. 𝜅. The following lemma formalizes this property, it
is proven in a similar way as Theorem 6.1.

Lemma 6.3. For  , ue as above and 𝛾𝑚,𝑛 the alignment decoded from a
satisfying assignment 𝜈 for (𝛷) as in Section 6.5, there is no realization e
of ue and alignment 𝛾 for e such that 𝜅(𝛾) < 𝜅(𝛾𝑚,𝑛).

7. Implementation

We implemented our approach on top of cocomot (Felli et al.,
2021). Though some basic functionalities could be reused, the encoding
and decoding was designed and written from scratch, and an additional
solver was added as backend. For clarity, we will in the sequel refer to
the extended tool by cocomotu. Its source code, as well as all data
sets, are publicly available.1

cocomotu implements conformance checking for traces with the
four types of uncertainty: uncertain events, uncertain activities, uncer-
tain data (both discrete or continuous), and uncertain timestamps. The
tool cocomot is a Python command line script: it takes as input a
DPN (as .pnml file) and a log (as .xes) as input and computes the
optimal alignment distance for every trace in the log; in verbose mode,
it additionally prints an optimal alignment for every trace. Input files
with uncertainty must conform to the extension of the XES standard
proposed in Pegoraro (2021). The option -u activates the uncertainty
mode, and takes an argument to select one of two cost functions that
are implemented:

– the likelihood cost function specified in Fig. 2, which is selected
by setting the parameter -u like; and

– the best-realization cost function from Example 5.2 that com-
putes an optimal alignment for a best-case realization, which
is selected by setting the parameter -u real. With this cost
function, cocomotu implements the conformance checking task
introduced in Pegoraro et al. (2021b).2

1 https://github.com/bytekid/cocomot
2 In fact the tool Proved (Pegoraro et al., 2021b) computes the optimal

lignment for both the best-case and the worst-case realization; the latter is
ot implemented in cocomot .
u

https://github.com/bytekid/cocomot

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

t

L
c
m
t
t
o
s

P
i

p
v
e
f
c
u
t
t

SMT solvers. Our tool offers three solvers as backends: Z3 (de Moura
and Bjørner, 2008), Yices 2 (Dutertre, 2014), and OptiMathSAT Se-
bastiani and Trentin (2018). All solvers are interfaced via their Python
bindings. While Z3 and OptiMathSAT have an optimization scheme
built in, Yices does not. For Yices, we thus implemented a simple
custom optimization strategy, which subsequently tries to find an align-
ment of cost 0, 1, 2, etc. In the sequel, we call this the incremental
optimization strategy. However, this strategy is only feasible if the
optimal alignment cost is guaranteed to be a natural number. Thus,
we use incremental optimization only with the best-realization cost
function. Based on the performance comparison described in the next
section, the following solver backends are used by default: with the
best-realization cost function, we use Yices with incremental optimiza-
tion; with the likelihood cost function instead Z3 as is. For Z3 we
activate two options that are offered by the library: we use the symba
optimization engine, as the basic optimization engine caused timeouts
on some traces; and we set the option called incremental since this
resulted in a slight speedup. The solver can be controlled with the
command line option -s, which takes one of the values yices, z3,
z3-inc, optimathsat, optimathsat-inc, where the suffix inc
riggers incremental optimization.

ength bound. As described in Section 6, our encoding-based approach
rucially relies on the fact that an upper bound on the length of the
odel run in an optimal alignment can be computed (cf. Section 6.1). In

he implementation, we heuristically approximate this bound by taking
he sum of the length of the trace, the length of the shortest model run
f the Petri net without data, and a constant depending on the DPN
ize.

erformance optimizations. The implementation is based on the encod-
ng described in Section 6, though with two optimizations:

For SMT solvers, it is often beneficial to deal with less complex ex-
ressions, even at the price of more variables. We thus used additional
ariables to abbreviate complex subexpressions, adding their defining
quations separately. It can be easily shown that this only changes the
ormula structure and that the resulting formula is equisatisfiable. Thus,
orrectness is not compromised. Additional variables are especially
seful to create shorthand variables for expressions that occur multiple
imes in the encoding, for instance the cost of a log step at index 𝑖 or
he cost of a model step at index 𝑗, which occur 𝑗 resp. 𝑖 times in the

encoding of the alignment matrix.
Moreover, in the encoding we add the additional constraint that

a log step never occurs right before a model step. This eliminates
symmetries in the search space, removing redundant solutions, but it is
easily to prove that it does not hamper correctness. Indeed, the cost of
an alignment where a log step occurs before a model step is the same
as the cost of the alignment where the two steps are swapped. This
reduces the conformance checking time by about 5%.

8. Experiments

In this section we address the following questions experimentally:

(Q1) Comparison to behavior-net-based approach: How does the
SMT-based approach of cocomotu perform in comparison with
the approach from Pegoraro et al. (2021b) to find optimal align-
ments for the best-case realization?

(Q2) Impact of uncertainty on performance: How does the perfor-
mance of cocomotu change with varying degrees of uncertainty
of different types in the input, for both the best-realization and
likelihood cost functions?

(Q3) Comparison to explicit unfolding: How does the SMT-based
approach of cocomotu to find best-realization alignments com-
pare with the SMT-based approach without uncertainty (stan-
dard cocomot) run on all possible realizations?

(Q4) Solver backends: Which SMT solvers perform best as backends
13

with the two cost functions, respectively? C
Table 1
Characteristics of data sets.

traces max. length DPN size # vars

(a) road fines 4290 20 9/19 8
(b) sepsis 94 8 48/36 3
(c) hospital billing 621 12 34/36 4
(d) artificial 100 10 15/16 0

Data sets. Before addressing these questions, we describe the data
sets used in experiments. We used the following real-world event logs
with data, for which DPN models are known: (a) the road fine data
set (Mannhardt et al., 2016), (b) the sepsis data set (Mannhardt, 2018),
and (c) the hospital billing data set (Mannhardt, 2018). For (a), we
restricted to a subset that takes a representative from each cluster,
using the trace clustering technique from Felli et al. (2021), to reduce
the number of traces while maintaining a representative subset. For
the latter two, cocomot times out on some traces of the original
data set. To keep evaluation time within bounds, we thus considered
subsets of the original logs, restricting to traces up to a fixed length. To
compare with Proved, we also used the artificial data set (d) generated
within the experiment script3 provided by the authors of Pegoraro et al.
(2021b). Table 1 summarizes these data sets, reporting its number of
traces, the maximal trace length, the size of the respective DPN in terms
of places/transitions, and the number of data variables in the DPN.

To obtain event logs with uncertainty, we augmented data sets
(a)–(c) by adding random uncertainty features of different kinds. We
consider four types of uncertainty, namely (C) uncertain events as
indicated by confidence values, (A) uncertain activities, (D) uncertainty
with respect to data values, (T) uncertain timestamps, and (M) the
combination of all these.

By the degree of uncertainty of a log, we refer in the sequel to the
ratio of events that exhibit uncertainty of one type, which is thus a
value between 0 and 1. To inject uncertainty of degree 𝑟 into a given
log, we modified the log as follows, depending on the uncertainty type:

(C) A random confidence value was added with probability 𝑟 to each
event.

(A) With probability 𝑟, the activity 𝑏 of an event was replaced by a
set of activity labels {𝑏∶ 𝑝0, 𝑏1 ∶ 𝑝1, 𝑏2 ∶ 𝑝2}, where 𝑏1 and 𝑏2 are
two other labels that occur in the log, and 𝑝0, 𝑝1, 𝑝2 are chosen
randomly such that they add up to 1.

(D) For every variable 𝑥 in the domain of the assignment 𝛼 asso-
ciated with an event, with probability 𝑟, the value 𝑣 = 𝛼(𝑥) is
replaced by {𝑣, 𝑣0, 𝑣1}, where 𝑣1 and 𝑣2 are two additional values
randomly chosen from the value range of 𝑥 in the log.

(T) With probability 𝑟, the timestamp 𝑡 of an event 𝑒 was replaced
by a range [𝑡−𝛥∕2, 𝑡+𝛥∕2], where 𝛥 is the timespan of 𝑒’s trace.

(M) All the above modifications are combined. Note that as a result,
the probability that some kind of uncertainty is attached to an
event 𝑒 is much higher than 𝑟 (namely 1 − (1 − 𝑟)4).

All of the below experiments were run single-threaded on a 12-core
Intel i7-5930K 3.50 GHz machine with 32 GB of main memory.

(Q1) comparison with behavior-net based approach. We first investi-
gate how cocomotu compares with the tool Proved (Pegoraro et al.,
2021b) for the task considered therein, i.e., finding the optimal align-
ment for the best-case realization. To this end, we used the experiment
script provided by the authors of Pegoraro et al. (2021b), which first
creates benchmark (d) mentioned above and then performs confor-
mance checking. In this script, the benchmarks are created as follows:
starting from a fixed set of artificially created Petri nets, the script

3 https://github.com/proved-py/proved-core/blob/Conformance_
hecking_over_Uncertain_Event_Data/experiments

https://github.com/proved-py/proved-core/blob/Conformance_Checking_over_Uncertain_Event_Data/experiments
https://github.com/proved-py/proved-core/blob/Conformance_Checking_over_Uncertain_Event_Data/experiments

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

g
‘
r
t
d

c
f
t
a
n
a
o
s
(
e
r
a
r
t
r
a

o
t
c
m
P
o
t
u
u
h
a
f
t
e
t
e
e

Fig. 3. Comparison of cocomotu (best-realization cost) and Proved.
(
enerates playouts to obtain logs of desired size. It then adds random
‘deviations’’ to obtain not only perfectly fitting traces, and injects
andom uncertainty of a desired kind (uncertain events, activities,
imestamps, or all of these). In this way, a fixed-size data set with a
esired degree of uncertainty is obtained.

We instrumented this script to export the generated logs with un-
ertainty in xes format, ran cocomotu with the best-realization cost
unction on these logs, and compared the results. Most parameters of
he script were left as they were: we again used the set of nets of size 10
nd generated 100 traces per net. We fixed one deviation type, though,
amely a mix of the three available features (new activity labels, swaps,
nd extra events), with a coefficient of 0.1 each; since the comparison
f different deviation types is not of interest here. We considered the
ame four types of uncertainty as in Pegoraro et al. (2021b), namely
C), (A), (T), and (M) as described above. (The approach of Pegoraro
t al. (2021b) does not support data, so (D) is not applicable.) The
esults are shown in Fig. 3, where the runtimes of the two tools
re compared for the four types of uncertainty. The y-axes give the
untimes of the tools on the entire log in seconds, while the x-axes give
he degree of uncertainty between 0 and 0.9. For each data point, the
esults are averaged over three runs, i.e., over three different logs that
re random-generated as described above.

It should be noted that Proved computes the optimal alignment
f both the best-case realization and the worst-case realization within
he given time, by inspecting all realizations. The latter cannot be
omputed by cocomotu, since the problem is one of max–min opti-
ization, rather than minimization only. Overall, it can be noted that
roved is faster if the log has only confidence values, or low degrees
f uncertainty, as they were evaluated in Pegoraro et al. (2021b). On
he other hand, cocomotu scales much better for high degrees of
ncertainty. For instance, to conformance check 100 traces with mixed
ncertainty of degree 0.7, Proved required on average almost four
ours, whereas cocomotu needs only 38 s. Although Proved solves
more comprehensive task within this time, the magnitude of the dif-

erence can hardly be explained by this fact alone. A possible reason for
he reduced performance is that behavior nets get more complex if more
vents have some kind of uncertainty, so that also the product nets
o compute alignments become larger. In the experiments of Pegoraro
t al. (2021b), only comparatively low degrees of uncertainty were
xplored (up to 0.15), so this effect was likely not observed.
14
Q2) impact of uncertainty on performance. Next, we investigate how
injection of uncertainty of different kinds into real-world logs with data
affects performance of cocomotu. To this end, we consider the data
sets (a)–(c) and uncertainty types (C), (A), (D), (T), and (M) described
above, with both cost functions.

In Fig. 4 we show the results for cocomotu with cost function
best-realization (left), and likelihood (right) for the three data sets.
The y-axes show the conformance checking time for the entire data set
in seconds. The x-axes show the degree of uncertainty added, ranging
from 0 to 0.9 for best-realization, and from 0 to 0.5 for likelihood. The
reason for less uncertain events being added in the second case is that
the performance impact is already considerable for 0.5. We see that
the impact of the different types of uncertainty is very different, and
depends also on the cost function. For best-realization, we observe the
following: (C) Adding confidence values tends to improve performance,
likely because the best-realization cost can only be smaller when adding
uncertain events, so that the solver’s search time decreases. However,
there is also a tradeoff with a slightly more complex encoding. With
degree of uncertainty 0.9, the required time decreases by 13% (road
fines) and 70% (hospital billing), respectively, though for the sepsis
data we noted a very slight increase. (A) Uncertain activity labels
somewhat increase conformance checking time, probably due to an in-
creased search space and a somewhat more complex encoding, though
the increase is limited. With degree of uncertainty 0.1, the required
time increases by only 3%–5%. Even with degree of uncertainty 0.9,
the required time increases by less than 5% (road fines), 50% (sepsis),
and 30% (hospital billing). (D) Uncertainty with respect to data values
hardly makes a difference, probably because changes in data have no
impact on optimal alignments with the cost function best-realization.
(T) Adding uncertain timestamps considerably or even drastically de-
teriorates performance. This is to be expected, since the encoding with
uncertain timestamps is considerably more complex (cf. Section 6.3).
With degree of uncertainty 0.1, the required time increases by 25%
(road fines), 80% (sepsis), and more than 150% (hospital billing). With
degree of uncertainty 0.9 (i.e., the event order in traces is basically
lost), the required time multiplies by a factor of 6 (road fines), a factor
of 3 (sepsis), and a factor of 7 (hospital billing). (M) Interestingly, per-
formance deteriorates considerably less when all types of uncertainties
are combined. We assume that in this case the deterioration caused by
uncertain timestamps is mitigated by the positive effect of confidence

values.

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.
Fig. 4. Conformance checking with increasing degree of uncertainty.
With the likelihood cost function, the impact of uncertainty on per-
formance is generally much higher. (C) In contrast to best-realization,
with likelihood the presence of confidence values in events increases
the required time, likely because in contrast to best-realization, con-
fidence values do not allow for simpler alignments as events can be
skipped; instead, the cost function gets considerably more complex
since other expressions in the cost function get multiplied by a value de-
pending on the confidence. For degree of uncertainty 0.5, the required
time is multiplied by a factor of 2–3 on all data sets. (A) Performance
deteriorates much less by adding uncertain activity labels, by only
10%–20%, probably because uncertain activities in the cost function
just add more alternatives, but do not introduce multiplication. (D)
Uncertain data has a negligible effect on performance even with the
likelihood cost function, likely because (mis)matching data values are
hardly determinative for optimality of an alignment on these data sets.
(T) Adding uncertain timestamps increases the conformance checking
time for all data sets, which is to be expected since the encoding gets
more complex. The effect varies for the data sets though, a degree of
uncertainty 0.5 causes an increase by 20% for the road fine benchmark,
15
by 200% for the sepsis benchmark, and by 12% for the hospital bench-
mark. (M) As is to be expected, introducing all kinds of uncertainty
causes even more slowdown.

(Q3) comparison to explicit unfolding. In order to compute the minimal
optimal alignment among all realizations of an uncertain trace, instead
of employing the SMT-based approach for uncertain traces presented
in this paper with the best-realization cost function, one could also
compute all possible realizations, and apply to these the SMT-based
approach for traces without uncertainty from Felli et al. (2021), i.e., the
standard cocomot tool. We next study how these two approaches
compare with respect to performance.

We again consider the data sets (a)–(c) described above. First,
Fig. 5 illustrates how many realizations the traces in these three logs
exhibit when augmented with varying degrees of uncertainty. Indeed,
the number of realizations grows exponentially, and soon becomes
hard to compute explicitly, especially for uncertain timestamps and
mixed uncertainty. It is thus not surprising that cocomot run on all
realizations is much slower than cocomot , even for comparatively
u

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.

t
t
a

(
c
l
t
c
e
T
i
G
a
f
n
h
u

c
c
f

Fig. 5. Number of realizations with increasing degree of uncertainty.
Table 2
Comparison of cocomot with cocomotu with best-realization cost.

uncertainty cocomot cocomotu
realizations time TMO time TMO

(a) road fines (C) 0.1 7360 9886 166 454 0
(A) 0.1 6505 5115 184 464 0
(T) 0.1 27923 ∞ 539 0

(b) sepsis (C) 0.1 185 5122 1 273 0
(A) 0.1 392 44646 1 631 0
(D) 0.1 295 1062 1 611 0
(T) 0.1 1076 ∞ 1140 0

(c) hospital billing (C) 0.1 1346 1638 0 615 0
(A) 0.1 2797 6099 0 614 0
(D) 0.1 675 1629 0 685 0
(T) 0.1 38191 ∞ 1818 0
Table 3
Comparison of solvers (best-realization cost).

Yices (inc) OptiMathSAT Z3 OptiMathSAT (inc) Z3 (inc)

enc slv mem enc slv mem enc slv mem enc slv mem enc slv mem

(a) baseline 142 295 2.7 130 1673 16 1269 1530 1.5 133 1105 1.5 1325 1292 1.5
(b) baseline 9 608 2 12 1846 2.5 143 1628 1.5 11 1682 1.5 152 6713 1.5
(c) baseline 40 538 2 54 3177 4.8 595 2886 1.5 53 3634 1.6 709 6381 1.5
low degrees of uncertainty. Table 2 illustrates this observation for some
data sets and uncertainty of different kinds. Here, the columns refer to
the type of uncertainty added to the log, the number of realizations, the
conformance checking time in seconds, and the number of SMT solver
timeouts (600 s). An ∞ symbol indicates that cocomot ran for more
han 24 h without completing the conformance check of the log. The
able clearly shows that cocomotu outperforms by far the approach
pplying cocomot to all realizations.

Q4) solver backends. Tables 3 and 4 show the performance of co-
omotu using different solver backends with the best-realization and

ikelihood cost functions. The columns OptiMathSAT and Z3 refer to
he respective solvers using their built-in optimization schemes. In the
olumns labeled (inc), the incremental optimization search strategy was
mployed for Yices, OptiMathSAT, and Z3, respectively (cf. Section 7).
he columns enc and slv refer to the total encoding and solving time

n seconds, while mem gives the approximate memory consumption in
B. For the evaluation with the likelihood cost function, we imposed
timeout of 600 s for every trace (with the best-realization cost

unction, solvers generally need much less time, and no timeout was
eeded). We used the data sets (a) road traffic billing, (b) sepsis, and (c)
ospital billing described above without uncertain events (but using the
ncertainty encoding, as opposed to the one from standard cocomot).

The tables illustrate that overall the encoding time is negligible
ompared to the solving time (except for Yices perhaps, but in this
ase also the solving time is small). With the best-realization cost
16

unction, it turns out that Yices clearly outperforms the other tools
Table 4
Comparison of solvers (likelihood cost).

OptiMathSAT Z3

enc slv mem TMO enc slv mem TMO

(a) baseline – – 30 – 1757 10459 1.6 5
(b) baseline 6270 23980 2.5 18 185 254 1.5 0
(c) baseline 1227 173363 5.6 214 770 6335 1.5 0

despite the quite naive incremental optimization scheme, being at least
a factor of two faster. Thus, cocomotu defaults to Yices with this cost
function. While OptiMathSAT performs comparably with Z3 with best-
realization, it is by far slower than Z3 with the likelihood cost function.
In fact, on data set (a), OptiMathSAT had to be stopped after having
processed about 75% of the trace because the available memory was
consumed. We tried to adjust solver settings but could not improve this
behavior. By default, cocomotu thus uses Z3 with the likelihood cost
function.

9. Conclusions

In this work we extend the theoretical framework for alignment-
based conformance checking of (deterministically known) data-aware
processes over logs with uncertain data studied in Felli et al. (2022).
We consider four types of uncertain data following the taxonomy of

uncertainty types proposed in Pegoraro and van der Aalst (2019),

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.
Pegoraro et al. (2021b): uncertain events, uncertain timestamps, uncer-
tain activities and uncertain (generic) data values. Such uncertainties
are accounted for as additional annotations provided for respective
attributes in the log. Using data Petri nets (Mannhardt et al., 2016;
de Leoni et al., 2018) as the reference process model, the alignment
computation per trace is then encoded as an SMT instance with an
objective function (describing the optimal distance between the trace
and a model run) to be minimized. This theoretical framework is, to
the best of our knowledge, generalizes all existing approaches dealing
with uncertain log data in the context of conformance checking.

The extension provides three essential results demonstrating the
feasibility of the approach proposed in Felli et al. (2022). First, we
present formal guarantees of the correctness of the problem encoding in
SMT. Specifically, we show that our approach is capable of producing
trace realizations and, given a concrete distance function, the align-
ments it produces are optimal. Second, we implement the approach
by extending CoCoMoT – our previously developed tool for SMT-based
conformance checking (Felli et al., 2021). Third, we provide a thorough
experimental evaluation to assess how feasible is our approach in prac-
tice. To this end, we use publicly available and synthetically generated
event logs and DPN models. As a side result, the artificially generated
models and respective logs can be used as benchmarks for other process
mining approaches for data-aware processes. We also compare our tool
to the one from Pegoraro et al. (2021b), test its performance using
various SMT solvers and demonstrate experimentally the advantage of
the direct encoding of uncertainty realization by comparing the tool
runtime against the results produced by the tool from Felli et al. (2021)
ran over traces with resolved uncertainties.

The results presented in this paper open up multiple future work di-
rections. Given the feasibility and relatively good computational speed,
the approach can be extended towards the support of process models
with uncertainties. Like that, similarly to Bogdanov et al. (2022), one
can study the conformance checking problem for a stochastic extension
of data Petri nets and use an augmented SMT encoding to compute
(optimal) alignments.

The application of machine learning techniques also seems like a
promising future direction. While our encoding allows for concrete,
automatic realization of uncertain event data, such uncertainties are
resolved while computing the optimal alignments using the SMT en-
coding, and such optimality is only subject to the objective function
encoding the distance between a given trace and the process model.
However, one cannot guess the ‘‘real’’ realization, that is, the most
preferred one in the given system enactment context. Moreover, al-
though SMT solvers are very efficient and our approach offers a unified
way for resolving all types of mentioned uncertainties in logs, the ex-
perimental evaluation demonstrated that the performance drops when
dealing with timestamp uncertainties. To address these two issues the
usage of automated reasoning techniques is not enough and one might
need to resort to classification approaches coming from the machine
learning domain. Like that, our tool can be used in the process of
training a chosen classifier as follows. Given a trace, the conformance
checker proposes a concrete realization for the best alignment, which
is then decoded and presented to the domain expert. They evaluate the
correctness/suitability of the realization and send their feedback back
to the classifier. Feedback results can be also accommodated in the
shape of concrete attribute realizations that can be suitably added to
the SMT encoding. The process can be repeated until the domain expert
accepts the best alignment and the realization (pattern) is recorded by
the machine learning framework at hand.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
17

influence the work reported in this paper.
Data availability

No data was used for the research described in the article.

Acknowledgments

This research has been partially supported by the Italian Ministry of
University and Research (MUR) under the PRIN project PINPOINT Prot.
2020FNEB27, and by UNIBZ under the projects ADAPTERS, MENS, and
SMART-APP.

References

Abiteboul, S., Kanellakis, P.C., Grahne, G., 1987. On the representation and querying of
sets of possible worlds. In: Dayal, U., Traiger, I.L. (Eds.), Proc. SIGMOD Conference
1987. ACM Press, pp. 34–48.

Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P., 2011a. Conformance checking
using cost-based fitness analysis. In: Proc. EDOC 2011. IEEE Computer Society, pp.
55–64.

Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.,
2012. Alignment based precision checking. In: Rosa, M.L., Soffer, P. (Eds.), Proc.
BPM Workshops 2012. In: Lecture Notes in Business Information Processing, 132,
Springer, pp. 137–149.

Adriansyah, A., Sidorova, N., van Dongen, B.F., 2011b. Cost-based fitness in confor-
mance checking. In: Caillaud, B., Carmona, J., Hiraishi, K. (Eds.), Proc. ACSD 2011.
IEEE Computer Society, pp. 57–66.

Aggarwal, C.C., 2009. Managing and Mining Uncertain Data. In: Advances in Database
Systems, vol. 35, Kluwer.

Alman, A., Maggi, F.M., Montali, M., Peñaloza, R., 2022. Probabilistic declarative
process mining. Inf. Syst. 109, 102033.

Barrett, C., Fontaine, P., Tinelli, C., 2018. The SMT-LIB Standard: Version 2.6. Tech.
Rep., Available at: , http://smtlib.cs.uiowa.edu/language.shtml.

Barrett, C.W., Tinelli, C., 2018. Satisfiability modulo theories. In: Handbook of Model
Checking. Springer, pp. 305–343.

Bergami, G., Maggi, F.M., Montali, M., Peñaloza, R., 2021. Probabilistic trace alignment.
In: Proc. of ICPM 2021. IEEE, pp. 9–16.

Bogdanov, E., Cohen, I., Gal, A., 2022. Conformance checking over stochastically known
logs. In: Ciccio, C.D., Dijkman, R.M., del-Río-Ortega, A., Rinderle-Ma, S. (Eds.),
Proc. BPM Forum 2022. In: Lecture Notes in Business Information Processing, vol.
458, Springer, pp. 105–119.

Boltenhagen, M., Chatain, T., Carmona, J., 2019. Encoding conformance checking
artefacts in SAT. In: Proc. BPM Workshops 2019. pp. 160–171.

Boltenhagen, M., Chatain, T., Carmona, J., 2021. Optimized SAT encoding of
conformance checking artefacts. Computing 103, 29–50.

Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M., 2018. Conformance Checking -
Relating Processes and Models. Springer.

Chandra, J., Bose, J.C., Mans, R.S., van der Aalst, W.M.P., 2013. Wanna improve process
mining results? In: CIDM 2013. IEEE, pp. 127–134.

Chesani, F., Mello, P., De Masellis, R., Di Francescomarino, C., Ghidini, C., Montali, M.,
Tessaris, S., 2018. Compliance in business processes with incomplete information
and time constraints: A general framework based on abductive reasoning. Fundam.
Informaticae 161 (1–2), 75–111.

Cohen, I., Gal, A., 2021. Uncertain process data with probabilistic knowledge: Prob-
lem characterization and challenges. In: Proc. BPM Workshops 2021. In: CEUR
Workshop Proceedings, vol. 2938, CEUR-WS.org, pp. 51–56.

de Leoni, M., van der Aalst, W.M.P., 2013. Data-aware process mining: discovering
decisions in processes using alignments. In: Proc. 28th SAC. pp. 1454–1461.

de Leoni, M., Felli, P., Montali, M., 2018. A holistic approach for soundness verification
of decision-aware process models. In: Proc. 37th International Conference on
Conceptual Modeling. In: LNCS, vol. 11157, pp. 219–235.

de Moura, L., Bjørner, N., 2008. Z3: an efficient SMT solver. In: Proc. TACAS 2008.
pp. 337–340.

Dutertre, B., 2014. Yices 2.2. In: Proc. CAV 2014. pp. 737–744.
Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S., 2021. CoCoMoT: Conformance

checking of multi-perspective processes via SMT. In: Proc. BPM 2021. Springer, pp.
217–234.

Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S., 2022. Conformance checking
with uncertainty via SMT. In: Ciccio, C.D., Dijkman, R.M., del-Río-Ortega, A.,
Rinderle-Ma, S. (Eds.), Proc. BPM 2022. In: Lecture Notes in Computer Science,
vol. 13420, Springer, pp. 199–216.

Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S., 2023. Data-aware
conformance checking with SMT. Inf. Syst. 117.

Goel, K., Leemans, S.J.J., Martin, N., Wynn, M.T., 2022. Quality-informed process
mining: A case for standardised data quality annotations. ACM Trans. Knowl.
Discov. Data 16 (5), 97:1–97:47.

Leemans, S.J.J., van der Aalst, W.M.P., Brockhoff, T., Polyvyanyy, A., 2021. Stochastic
process mining: Earth movers’ stochastic conformance. Inf. Syst. 102, 101724.

http://refhub.elsevier.com/S0952-1976(23)01079-5/sb1
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb1
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb1
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb1
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb1
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb2
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb2
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb2
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb2
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb2
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb3
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb3
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb3
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb3
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb3
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb3
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb3
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb5
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb5
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb5
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb6
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb6
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb6
http://smtlib.cs.uiowa.edu/language.shtml
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb8
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb8
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb8
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb9
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb9
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb9
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb10
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb10
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb10
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb10
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb10
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb10
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb10
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb11
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb11
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb11
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb12
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb12
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb12
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb13
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb13
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb13
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb14
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb14
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb14
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb15
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb15
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb15
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb15
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb15
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb15
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb15
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb16
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb16
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb16
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb16
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb16
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb17
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb17
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb17
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb18
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb18
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb18
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb18
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb18
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb19
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb19
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb19
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb20
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb21
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb21
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb21
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb21
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb21
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb22
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb22
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb22
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb22
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb22
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb22
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb22
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb23
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb23
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb23
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb24
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb24
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb24
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb24
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb24
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb25
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb25
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb25

Engineering Applications of Artificial Intelligence 126 (2023) 106895P. Felli et al.
Leemans, S.J., van Zelst, S.J., Lu, X., 2022. Partial-order-based process mining: A survey
and outlook. Knowl. Inf. Syst. 1–29.

Li, L., Wang, H., Li, J., Gao, H., 2020. A survey of uncertain data management. Front.
Comput. Sci. 14 (1), 162–190.

Lu, X., Fahland, D., van der Aalst, W.M.P., 2014. Conformance checking based on
partially ordered event data. In: Fournier, F., Mendling, J. (Eds.), Proc. BPM
Workshops 2014. In: Lecture Notes in Business Information Processing, vol. 202,
Springer, pp. 75–88.

Mannhardt, F., 2018. Multi-perspective Process Mining (Ph.D. thesis). Technical
University of Eindhoven.

Mannhardt, F., de Leoni, M., Reijers, H., van der Aalst, W., 2016. Balanced
multi-perspective checking of process conformance. Computing 98 (4), 407–437.

Pegoraro, M., 2021. Process mining on uncertain event data (extended abstract). In:
Proc. ICPM-D 2021. CEUR, pp. 1–2.

Pegoraro, M., van der Aalst, W.M.P., 2019. Mining uncertain event data in process
mining. In: ICPM 2019. IEEE, pp. 89–96.

Pegoraro, M., Bakullari, B., Uysal, M.S., van der Aalst, W.M.P., 2021a. Probability
estimation of uncertain process trace realizations. In: Munoz-Gama, J., Lu, X. (Eds.),
Process Mining Workshops - ICPM 2021, Revised Selected Papers. In: Lecture Notes
in Business Information Processing, vol. 433, Springer, pp. 21–33.
18
Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P., 2021b. Conformance checking over
uncertain event data. Inf. Syst. 102, 101810.

Polyvyanyy, A., Kalenkova, A.A., 2022. Conformance checking of partially matching
processes: An entropy-based approach. Inf. Syst. 106, 101720.

Sebastiani, R., Tomasi, S., 2015. Optimization modulo theories with linear rational
costs. ACM Trans. Comput. Log. 16 (2), 12:1–12:43.

Sebastiani, R., Trentin, P., 2018. OptiMathSAT: A tool for optimization modulo theories.
J. Automat. Reason..

Solé, M., Carmona, J., 2018. Encoding process discovery problems in SMT. Softw. Syst.
Model. 17 (4), 1055–1078.

van der Aa, H., Leopold, H., Weidlich, M., 2020. Partial order resolution of event logs
for process conformance checking. Decis. Support Syst. 136, 113347.

van der Aalst, W.M.P., Santos, L.F.R., 2021. May I take your order? - on the interplay
between time and order in process mining. In: Marrella, A., Weber, B. (Eds.), Proc.
BPM Workshops 2021. In: Lecture Notes in Business Information Processing, vol.
436, Springer, pp. 99–110.

van der Aalst Wil, M.P., et al., 2011. Process mining manifesto. In: Proc. of BPM
Workshops 2011. Springer, pp. 169–194.

Wynn, M.T., Sadiq, S.W., 2019. Responsible process mining - A data quality perspective.
In: Proc. BPM 2020. Springer, pp. 10–15.

http://refhub.elsevier.com/S0952-1976(23)01079-5/sb26
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb26
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb26
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb27
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb27
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb27
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb29
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb29
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb29
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb30
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb30
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb30
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb31
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb31
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb31
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb32
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb32
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb32
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb33
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb33
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb33
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb33
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb33
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb33
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb33
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb34
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb34
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb34
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb35
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb35
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb35
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb36
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb36
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb36
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb37
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb37
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb37
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb38
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb38
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb38
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb41
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb41
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb41
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb42
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb42
http://refhub.elsevier.com/S0952-1976(23)01079-5/sb42

	Multi-perspective conformance checking of uncertain process traces: An SMT-based approach
	Introduction
	Related Work
	Preliminaries
	Data Petri Nets
	Satisfiability and Optimization Modulo Theories (SMT)

	Event Logs with Uncertainty and Alignments
	Cost Functions and Optimal Alignments
	General structure of the cost model
	Data-aware Alignment Cost Function

	Encoding
	Upper Bounding the Alignment Length
	Encoding the Process Run
	Trace Realization Constraints
	Encoding the Cost Function
	Solving and Decoding
	Correctness

	Implementation
	Experiments
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

