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Abstract
SGGS (Semantically-Guided Goal-Sensitive reasoning) is a refutationally complete theorem-proving
method that offers first-order conflict-driven reasoning and is model complete in the limit. This paper
investigates the behavior of SGGS on Horn clauses, which are widely used in declarative programming,
knowledge representation, and verification. We show that SGGS generates the least Herbrand model of
a set of definite clauses, and that SGGS terminates on Horn clauses if and only if hyperresolution does,
with the advantage that SGGS builds a model. We report on experiments applying the SGGS prototype
prover Koala to Horn problems, with promising performances especially on satisfiable inputs.

Keywords
Theorem proving, Model building, SGGS, Horn theories

1. Introduction

SGGS (Semantically-Guided Goal-Sensitive reasoning) [1, 2, 3] is a first-order theorem-proving
method with a rare combination of properties. SGGS is semantically guided by a fixed initial
Herbrand interpretation 𝐼 , that in this paper is either all-negative (𝐼−) or all-positive (𝐼+). SGGS
is model-based, as it searches for a model of the input set of clauses by building candidate models,
obtained by modifying 𝐼 . Each candidate model is represented by a sequence of clauses, called a
trail. SGGS is conflict-driven, as it applies inferences such as resolution only to explain conflicts
between candidate model and clauses to be satisfied. Indeed, SGGS generalizes to first-order
logic the CDCL (Conflict Driven Clause Learning) procedure for propositional satisfiability [4].
In addition to being refutationally complete, SGGS is model complete in the limit, which means
that given a satisfiable input, the limit of a fair derivation represents a model.

Horn clauses are a standard language for declarative programming and knowledge repre-
sentation, where definite clauses represent knowledge and negative clauses play the role of
queries. Horn clauses are also an essential language for program verification [5]. A Horn
theory is a theory presented by a set of definite clauses, and Horn theories are those such that
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the intersection of models is still a model [6, 7]. Thus, a set of definite clauses admits a least
Herbrand model, the intersection of all its Herbrand models. The least Herbrand model is also
the least fixpoint of a functional associated to a set of definite clauses [8, 9, 10].

In this paper we analyze the behavior of SGGS on Horn clauses and relate it to that of
hyperresolution [11]. The interest in this parallel stems from the fact that SGGS with 𝐼− or 𝐼+

and hyperresolution have sign-based semantic guidance in common. Indeed, hyperresolution is
the instance of semantic resolution [12] that adopts 𝐼− or 𝐼+ for semantic guidance. Positive
hyperresolution employs 𝐼− and negative hyperresolution employs 𝐼+. In this paper we
consider positive hyperresolution that we call hyperresolution for short. After an overview of
SGGS (Sect. 2), we describe the behavior of SGGS with 𝐼− or 𝐼+ on Horn clauses, and show that
SGGS with 𝐼− generates the least fixpoint model (Sect. 3). It is well-known that hyperresolution
has this property. We continue by proving that given a set of Horn clauses SGGS halts if and
only if hyperresolution halts, but SGGS can learn from Horn subproblems useful information for
termination on first-order problems (Sect. 4). As another well-known property of hyperresolution
is that it behaves linearly if given a set of ground Horn clauses, we show that SGGS also has
this property (Sect. 5). In the experiments we apply the SGGS prototype prover Koala [13] to
Horn sets from the TPTP library [14], with promising results on satisfiable problems (Sect. 6).

2. Basic Definitions and Overview of SGGS

We assume the basic notions in theorem proving, and we use a, b for constants, P,Q,R,T
for predicates, f, g for functions, 𝑥, 𝑦, 𝑧 for variables, 𝑡, 𝑢, 𝑣 for terms, 𝒱𝑎𝑟(𝑡) for the set of
variables in 𝑡, and top(𝑡) for the top symbol of 𝑡. We also use 𝐿,𝑀,𝑃,𝑄 for literals, 𝑎𝑡(𝐿) for
𝐿’s atom, 𝐶,𝐷,𝐸 for clauses, Greek lower case letters for substitutions, and 𝐼, 𝐽 for Herbrand
interpretations. The 𝑎𝑡 notation extends to sets of literals and the 𝒱𝑎𝑟 notation to literals. A
clause is positive if all its literals are positive, negative if all its literals are negative, and mixed
otherwise. A clause is Horn if it has at most one positive literal, and definite if it has exactly one
positive literal. 𝐶+ and 𝐶− denote the disjunctions of the positive and negative literals in 𝐶 .

We refer the readers to [1] for a simple exposition of SGGS, and to [2, 3] for a complete
treatment. In SGGS, a clause 𝐶 may have a constraint 𝐴, written 𝐴▷𝐶 . The atomic constraints
have the form true , false , top(𝑡)= 𝑓 , or 𝑡≡𝑢, where ≡ is syntactic identity. The negation,
conjunction, and disjunction of constraints is a constraint. Constraints may be omitted for
brevity. The set 𝐺𝑟(𝐴 ▷ 𝐶) of constrained ground instances (cgi’s) of 𝐴 ▷ 𝐶 is the set of the
ground instances of 𝐶 that satisfy 𝐴, and hence are the effective ground instances. Literals 𝐴▷𝐿
and 𝐵 ▷𝑀 intersect if 𝑎𝑡(𝐺𝑟(𝐴▷ 𝐿)) ∩ 𝑎𝑡(𝐺𝑟(𝐵 ▷𝑀)) ̸= ∅, and are disjoint otherwise.

SGGS is semantically guided by an initial interpretation 𝐼 . Given a set 𝑆 of clauses, if 𝐼 ̸|= 𝑆,
SGGS seeks a model of 𝑆, by building candidate partial interpretations different from 𝐼 , and
using 𝐼 as default to complete them. If the empty clause ⊥ is generated, unsatisfiability is
reported. If 𝐼 is 𝐼− (𝐼+) SGGS tries to discover which positive (negative) literals need to be true
to satisfy 𝑆.

SGGS works with a trail of clauses Γ = 𝐴1 ▷ 𝐶1[𝐿1], . . . , 𝐴𝑛 ▷ 𝐶𝑛[𝐿𝑛], where 𝐴𝑖 ▷ 𝐶𝑖[𝐿𝑖]
occurs at index 𝑖 and the brackets mean that literal 𝐿𝑖 is selected in 𝐶𝑖. The length of Γ and its
prefix of length 𝑗 are denoted |Γ| and Γ|𝑗 . An SGGS trail Γ represents a partial interpretation



𝐼𝑝(Γ): if Γ is empty, denoted 𝜀, 𝐼𝑝(Γ)=∅; otherwise, 𝐼𝑝(Γ)=𝐼𝑝(Γ|𝑛−1) ∪ 𝑝𝑐𝑔𝑖(𝐴𝑛 ▷ 𝐿𝑛,Γ),
where pcgi abbreviates proper constrained ground instances. A pcgi of 𝐴𝑛▷𝐶𝑛[𝐿𝑛] is a cgi 𝐶[𝐿]
that is not satisfied by 𝐼𝑝(Γ|𝑛−1) (i.e., 𝐼𝑝(Γ|𝑛−1) ∩ 𝐶[𝐿] = ∅) and can be satisfied by adding
𝐿 as ¬𝐿 ̸∈ 𝐼𝑝(Γ|𝑛−1). Thus, pcgi’s are productive instances as they produce 𝐼𝑝(Γ). For the
selected literal, 𝑝𝑐𝑔𝑖(𝐴𝑛▷𝐿𝑛,Γ) = {𝐿 : 𝐶[𝐿] ∈ 𝑝𝑐𝑔𝑖(𝐴𝑛▷𝐶𝑛[𝐿𝑛],Γ)}. 𝐼𝑝(Γ) is completed
into an interpretation 𝐼[Γ] by consulting 𝐼 for the truth value of any literal undefined in 𝐼𝑝(Γ).

A literal 𝐿 is uniformly false in an interpretation 𝐽 , if all 𝐿′ ∈𝐺𝑟(𝐿) are false in 𝐽 . Then, 𝐿
is said to be 𝐼-false if it is uniformly false in 𝐼 and 𝐼-true if it is true in 𝐼 . A clause is 𝐼-all-true if
all its literals are 𝐼-true and 𝐼-all-false if all its literals are 𝐼-false. 𝐼-false literals are preferred
for selection to differentiate 𝐼[Γ] from 𝐼 . An 𝐼-true literal is selected only in an 𝐼-all-true clause.

A clause is a conflict clause if all its literals are uniformly false in 𝐼[Γ]. SGGS ensures that
every 𝐼-all-true clause 𝐶[𝐿] in Γ is either a conflict clause or the justification of its selected
literal 𝐿, meaning that all literals of 𝐶[𝐿] except 𝐿 are uniformly false in 𝐼[Γ], so that 𝐿 must
be true in 𝐼[Γ] to satisfy 𝐶[𝐿]. To this end, SGGS assigns 𝐼-true literals to clauses. Given trail
Γ = 𝐴1 ▷𝐶1[𝐿1], . . . , 𝐴𝑛 ▷𝐶𝑛[𝐿𝑛], an 𝐼-true literal 𝑀 ∈ 𝐶𝑗 [𝐿𝑗 ] is assigned to 𝐶𝑘[𝐿𝑘] if 𝑘<𝑗
and the selection of 𝐿𝑘 makes 𝑀 uniformly false in 𝐼[Γ] (all literals in 𝐺𝑟(𝐴𝑗 ▷𝑀) appear
negated in 𝑝𝑐𝑔𝑖(𝐴𝑘 ▷ 𝐿𝑘,Γ) and hence in 𝐼𝑝(Γ)). SGGS requires that a non-selected 𝐼-true
literal is assigned, while a selected 𝐼-true literal is assigned if possible. If all the literals of an
𝐼-all-true clause 𝐶[𝐿] in Γ are assigned, 𝐶[𝐿] is a conflict clause, and 𝐿 is assigned to the largest
index (or to the rightmost clause) among all literals in 𝐶[𝐿]. If all the literals of 𝐶[𝐿] except 𝐿 are
assigned, 𝐶[𝐿] is the justification of 𝐿, and 𝐶[𝐿] is in the disjoint prefix of Γ. The disjoint prefix
of Γ, denoted 𝑑𝑝(Γ), is the longest prefix such that 𝑝𝑐𝑔𝑖(𝐴𝑗 ▷ 𝐶𝑗 [𝐿𝑗 ],Γ) = 𝐺𝑟(𝐴𝑗 ▷ 𝐶𝑗 [𝐿𝑗 ])
for all 𝐴𝑗 ▷ 𝐶𝑗 [𝐿𝑗 ] in 𝑑𝑝(Γ). Thus, all selected literals in 𝑑𝑝(Γ) are disjoint.

An SGGS-derivation is a series of trails Γ0 ⊢ Γ1 ⊢ . . .Γ𝑗 ⊢ . . ., where Γ0 = 𝜀, and ∀𝑗, 𝑗 > 0,
an SGGS-inference generates Γ𝑗 from Γ𝑗−1 and 𝑆. If ⊥ ̸∈ Γ and 𝐼[Γ] ̸|= 𝑆, SGGS has two ways
to make progress. If Γ = 𝑑𝑝(Γ), the trail is in order, but since 𝐼[Γ] ̸|= 𝑆 it means that 𝐼[Γ] ̸|= 𝐶 ′

for a 𝐶 ′ ∈ 𝐺𝑟(𝐶) and 𝐶 ∈ 𝑆. Then, SGGS applies SGGS-extension to generate from 𝐶 and Γ a
clause 𝐴▷𝐸, such that 𝐸 is an instance of 𝐶 and 𝐶 ′∈𝐺𝑟(𝐴▷𝐸). If Γ ̸= 𝑑𝑝(Γ), the trail needs
repair: either there are intersections between selected literals to be removed by SGGS-splitting,
or there is a conflict. The SGGS-extension rules specialize the SGGS-extension scheme ([3, Def.
12]) that we instantiate for 𝐼 = 𝐼+ or 𝐼 = 𝐼−:

Definition 1. Given input set 𝑆 and trail Γ, if there is a clause 𝐶∈𝑆 such that for all its 𝐼-true
literals 𝐿1, . . . , 𝐿𝑛 (𝑛≥0) there are clauses 𝐵1▷𝐷1[𝑀1], . . . , 𝐵𝑛▷𝐷𝑛[𝑀𝑛] in 𝑑𝑝(Γ), such that
literals 𝑀1, . . . ,𝑀𝑛 are 𝐼-false, and ∀𝑗, 1⩽𝑗⩽𝑛, 𝐿𝑗𝛼=¬𝑀𝑗𝛼 with simultaneous most general
unifier (mgu) 𝛼, SGGS-extension adds to Γ the extension clause 𝐴▷ 𝐸 = (

⋀︀𝑛
𝑗=1𝐵𝑗𝛼)▷ 𝐶𝛼,

assigning 𝐿1𝛼, . . . , 𝐿𝑛𝛼 to 𝐷1, . . . , 𝐷𝑛, respectively.

Clause 𝐶 is the main premise and 𝐵1 ▷𝐷1[𝑀1], . . . , 𝐵𝑛 ▷𝐷𝑛[𝑀𝑛] are the side premises. An
SGGS-extension is conflicting, if 𝐴▷ 𝐸 is a conflict clause, and non-conflicting otherwise, that
is, if 𝐴 ▷ 𝐸 has 𝑝𝑐𝑔𝑖’s and therefore extends 𝐼[Γ]. If 𝐴 ▷ 𝐸 is 𝐼-all-true then it is a conflict
clause. A derivation starts with a non-conflicting SGGS-extension where 𝐶 is 𝐼-all-false, so
that 𝛼 is empty, 𝑛 = 0, and 𝐸 = 𝐶 . All such steps can be done as one and we assume they are.



Example 1. Consider the following set 𝑆 of definite clauses with 𝐼− as initial interpretation:

P(f(a, 𝑥)) (𝑖) P(g(b, 𝑥)) (𝑖𝑖)

¬P(f(𝑦, a)) ∨ P(g(𝑦, a)) (𝑖𝑖𝑖) ¬P(g(𝑧, b)) ∨ P(f(𝑧, b)) (𝑖𝑣).

𝐼− satisfies clauses (𝑖𝑖𝑖) and (𝑖𝑣) because they have negative literals, but not the positive clauses
(𝑖) and (𝑖𝑖). SGGS extends the trail with (𝑖) and (𝑖𝑖), so that 𝐼[Γ1] satisfies them. Thus, 𝐼[Γ1]
satisfies neither the instance of (𝑖𝑖𝑖) with {𝑦 ← a} nor the instance of (𝑖𝑣) with {𝑧 ← b}. SGGS
extends the trail with these instances and halts, as 𝐼[Γ3] satisfies 𝑆:

Γ0 : 𝜀 ⊢ Γ1 : [P(f(a, 𝑥))], [P(g(b, 𝑥))]

⊢ Γ2 : [P(f(a, 𝑥))], [P(g(b, 𝑥))], ¬P(f(a, a)) ∨ [P(g(a, a))]

⊢ Γ3 : [P(f(a, 𝑥))], [P(g(b, 𝑥))], ¬P(f(a, a)) ∨ [P(g(a, a))], ¬P(g(b, b)) ∨ [P(f(b, b))].

Hyperresolution generates P(g(a, a)) and P(f(b, b)), and then halts. In the case of definite clauses
the two methods appear close, as one selects positive literals on the trail and the other generates
positive unit clauses. However, SGGS generates explicitly a model on the trail.

SGGS-deletion removes all disposable clauses, where𝐴𝑛▷𝐶𝑛[𝐿𝑛] is disposable if 𝐼𝑝(Γ|𝑛−1) |=
𝐴𝑛 ▷ 𝐶𝑛[𝐿𝑛]. SGGS-splitting aims at isolating intersections between selected literals, and it
is the rule that introduces constraints. A partition of 𝐴▷ 𝐶[𝐿] is a set {𝐴𝑖 ▷ 𝐶𝑖[𝐿𝑖]}𝑛𝑖=1 such
that 𝐺𝑟(𝐴 ▷ 𝐶) =

⋃︀𝑛
𝑖=1{𝐺𝑟(𝐴𝑖 ▷ 𝐶𝑖)}, the 𝐿𝑖’s are chosen consistently with 𝐿, and the

𝐴𝑖▷𝐿𝑖’s are pairwise disjoint (cf. [3, Sect. 3.2]). Given trail clauses 𝐴▷𝐶[𝐿] and 𝐵▷𝐷[𝑀 ], a
splitting of 𝐶 by 𝐷, denoted split(𝐶,𝐷), is a partition of 𝐴▷𝐶[𝐿] such that 𝑎𝑡(𝐺𝑟(𝐴𝑗 ▷𝐿𝑗))
for some 𝑗 is the intersection of 𝐴▷ 𝐿 and 𝐵 ▷𝑀 , and all other 𝐴𝑖 ▷ 𝐿𝑖’s are disjoint from
𝐵▷𝑀 . SGGS-splitting replaces 𝐴▷𝐶[𝐿] with split(𝐶,𝐷). Clause 𝐴▷𝐶[𝐿] is the split clause,
and 𝐴𝑗 ▷ 𝐶𝑗 [𝐿𝑗 ] is the representative of 𝐵 ▷𝐷[𝑀 ] in the splitting. Splitting by similar literals
(s-splitting) and splitting by dissimilar literals (d-splitting) apply when 𝐴 ▷ 𝐶[𝐿] occurs at a
higher index than 𝐵 ▷𝐷[𝑀 ], with similar and dissimilar referring to whether 𝐿 and 𝑀 have
the same or opposite sign. After an s-splitting, 𝐷’s representative in split(𝐶,𝐷) is disposable
(cf. [3, Lem. 3]) and hence removed by SGGS-deletion. After a d-splitting, the intersection
between 𝐿 and 𝑀 is removed by SGGS-resolution.

If a clause 𝐴▷𝐶[𝐿] added by SGGS-extension is in conflict with 𝐼[Γ] and 𝐿 is 𝐼-false, SGGS-
resolution explains the conflict by resolving 𝐴 ▷ 𝐶[𝐿] with the justification in 𝑑𝑝(Γ) whose
selected literal makes 𝐿 uniformly false in 𝐼[Γ].

Definition 2 (SGGS-Resolution). If Γ contains clauses 𝐵 ▷ 𝐷[𝑀 ] and 𝐴 ▷ 𝐶[𝐿] such that
𝐵 ▷𝐷[𝑀 ] is 𝐼-all-true, is in 𝑑𝑝(Γ), and occurs at a smaller index than 𝐴 ▷ 𝐶[𝐿], 𝐿 is 𝐼-false,
𝐿 = ¬𝑀𝜗 for some substitution 𝜗, and 𝐴 |= 𝐵𝜗, then SGGS-resolution generates the SGGS-
resolvent 𝐴▷𝑅, where 𝑅 is (𝐶 ∖ {𝐿}) ∪ (𝐷 ∖ {𝑀})𝜗, replaces 𝐶 by 𝐴▷𝑅, deletes all clauses
with literals assigned to 𝐶 , and assigns every 𝐼-true literal 𝑃𝜗 in 𝑅 to the same clause that 𝑃 in
𝐶 or 𝐷 was assigned to (cf. [3, Def. 26]).

In conflict explanation the resolvent is still a conflict clause. As SGGS-extension ensures that
all 𝐼-false literals of a conflict clause can be resolved away (cf. [3, Def. 19]), conflict explanation



generates either ⊥ or an 𝐼-all-true conflict clause 𝐻 ▷𝐸[𝑃 ]. Conflict solving moves 𝐻 ▷𝐸[𝑃 ]
to the left of the clause 𝐴▷ 𝐶[𝐿] in 𝑑𝑝(Γ) to which 𝑃 is assigned (SGGS-move): the effect is
to flip 𝑃 from being uniformly false to being an implied literal. Then 𝐸 resolves with 𝐶 , so
that the simplest conflict explanation and solving sequence has the form resolve* move resolve.
Prior to the move, if the pcgi’s of 𝐿 contain more than the complements of the cgi’s of 𝑃
(i.e., ¬𝐺𝑟(𝐻 ▷ 𝑃 ) ⊂ 𝑝𝑐𝑔𝑖(𝐴▷ 𝐿,Γ)), left splitting replaces 𝐴▷ 𝐶[𝐿] by split(𝐶,𝐸) with 𝑃
assigned to the representative of 𝐸 in split(𝐶,𝐸). Left splitting enables SGGS-move, which
places 𝐸 to the left of its representative in split(𝐶,𝐸). Thus, the sequence has the form
resolve* l-split?move resolve, where ? means at most once. If 𝐸 contains another literal 𝑄 that
is assigned to clause 𝐶 and unifies with 𝑃 with mgu 𝜗, 𝐸 cannot move because 𝑄 would have
nowhere to be assigned. Then SGGS-factoring replaces 𝐸 by split(𝐸,𝐸𝜗), where the SGGS-
factor 𝐸𝜗 is its own representative and literal assignments are inherited. As SGGS-factoring
may repeat, the full form of the sequence is resolve* factor* l-split?move resolve.

Fairness of an SGGS-derivation involves several properties: an inference is applied whenever
⊥̸∈ Γ and 𝐼[Γ] ̸|= 𝑆; no trivial splitting (e.g., splitting a ground clause) occurs; SGGS-deletion
and other clause removals are applied eagerly; conflicts are solved before more SGGS-extensions;
and inferences applying to shorter prefixes of the trail are not forever neglected in favor of
others applying to longer prefixes (cf. [3, Defs. 32, 37, and 49]). The limit of a fair derivation
Γ0 ⊢ Γ1 ⊢ . . .Γ𝑗 ⊢ Γ𝑗+1 ⊢ . . . is the longest trail Γ∞ such that ∀𝑖, 𝑖 ⩽ |Γ∞|, there exists an
𝑛𝑖 such that ∀𝑗, 𝑗 ⩾ 𝑛𝑖, if |Γ𝑗 | ≥ 𝑖 then Γ𝑗 |𝑖 is equivalent to Γ∞|𝑖 (cf. [3, Def. 50]). In words,
all prefixes of the trail stabilize eventually, and 𝑑𝑝(Γ∞) = Γ∞. Both derivation and Γ∞ may
be infinite, but Γ∞ is Γ𝑘 if the derivation halts at stage 𝑘. SGGS is refutationally complete and
model complete in the limit: for all inputs 𝑆, initial interpretations 𝐼 , and fair derivations, if 𝑆 is
satisfiable, 𝐼[Γ∞] |= 𝑆, and if 𝑆 is unsatisfiable, ⊥∈Γ𝑘 for some 𝑘 (cf. [3, Thms. 9 and 11]).

3. On the Behavior of SGGS on Horn Clauses

Let 𝑆 be a set of definite clauses and 𝒜 its Herbrand base. The powerset 𝒫(𝒜) of 𝒜 is the
set of all Herbrand interpretations viewed as sets of atoms. It is a complete lattice ordered by
the subset relation ⊆, with intersection

⋂︀
as the greatest lower bound (glb) operator, union

⋃︀
as the least upper bound (lub) operator, ∅ as bottom, and 𝒜 as top element. A set of definite
clauses admits a least Herbrand model, defined as the intersection of all Herbrand models of 𝑆,
or, equivalently, as the fixpoint of the functional 𝑇𝑆 : 𝒫(𝒜) → 𝒫(𝒜) defined as follows. For
all 𝐽 ∈ 𝒫(𝒜) and 𝐿 ∈ 𝒜, if there exist a clause 𝑃 ∨ ¬𝑄1 ∨ . . . ∨ ¬𝑄𝑚 (𝑚 ⩾ 0) in 𝑆 and a
ground substitution 𝜎, such that 𝐿 = 𝑃𝜎 and {𝑄1𝜎 . . . 𝑄𝑚𝜎} ⊆ 𝐽 , then 𝐿 ∈ 𝑇𝑆(𝐽) and vice
versa. As 𝑇𝑆 is continuous (cf. [10, Prop. 6.3]) its least fixpoint lfp(𝑇𝑆) is given by the lub of
the nondecreasing ⊆-chain {𝑇 𝑘

𝑆 (∅)}𝑘⩾0 so that lfp(𝑇𝑆) =
⋃︀

𝑘⩾0 𝑇
𝑘
𝑆 (∅) (cf. [10, Thm. 6.5]).

The initial interpretation 𝐼− corresponds to the bottom ∅ of lattice 𝒫(𝒜). SGGS with 𝐼−

reasons forward or bottom-up. The derivation starts with an SGGS-extension that puts on the
trail all the positive unit clauses in 𝑆. If this addition of positive literals to 𝐼𝑝(Γ) falsifies all
the negative literals in instances of mixed clauses, SGGS-extensions with mixed clauses follow.
Since 𝐼−-false (i.e., positive) literals are preferred for selection, and every clause has exactly
one, all selected literals are positive, with no choice of selected literal. All extensions are non-



conflicting extensions that add pcgi’s to 𝐼𝑝(Γ), which contains only positive literals and grows
monotonically: ∀𝑗, 𝑗 ⩾ 0, 𝐼𝑝(Γ𝑗) ⊆ 𝐼𝑝(Γ𝑗+1). Since all selected literals are positive, the only
splitting inferences are s-splitting steps, followed by deletions of representatives that remove
intersections between selected literals, without affecting 𝐼𝑝(Γ) and its monotonic growth. Since
𝐼 = 𝐼−, for an atom 𝐿 ∈ 𝒜, 𝐼[Γ∞] |= 𝐿 if and only if 𝐿 ∈ 𝐼𝑝(Γ∞). In other words, 𝐼[Γ∞] seen
as a set of atoms is 𝐼𝑝(Γ∞). The next theorem shows that 𝐼𝑝(Γ∞) = lfp(𝑇𝑆).

Theorem 1. Given an input set 𝑆 of definite clauses, with Herbrand base 𝒜 and functional
𝑇𝑆 : 𝒫(𝒜) → 𝒫(𝒜), for all fair SGGS-derivations with 𝐼− as initial interpretation and limit
Γ∞, it is 𝐼𝑝(Γ∞) = lfp(𝑇𝑆).

Proof: lfp(𝑇𝑆) ⊆ 𝐼𝑝(Γ∞): since SGGS is model complete in the limit, 𝐼[Γ∞] |= 𝑆, that is,
𝐼𝑝(Γ∞) |= 𝑆, writing Herbrand models as sets of atoms. Thus, lfp(𝑇𝑆) ⊆ 𝐼𝑝(Γ∞), because
lfp(𝑇𝑆) is the least Herbrand model.
𝐼𝑝(Γ∞) ⊆ lfp(𝑇𝑆): if 𝐿 ∈ 𝐼𝑝(Γ∞), it means that 𝐿 ∈ 𝑝𝑐𝑔𝑖(𝐴𝑖 ▷ 𝐿𝑖,Γ∞) for some clause
𝐴𝑖 ▷ 𝐶𝑖[𝐿𝑖] at index 𝑖 in Γ∞. This clause is placed at index 𝑖 of the trail at some stage of the
derivation. Since it is still there in Γ∞, there exists a stage 𝑘 such that for all stages 𝑗, 𝑗 ⩾ 𝑘,
clause 𝐴𝑖 ▷𝐶𝑖[𝐿𝑖] is at index 𝑖 in Γ𝑗 and 𝐿 ∈ 𝐼𝑝(Γ𝑗). The proof is by induction on the smallest
such 𝑘.
Base case: 𝑘 = 1 and 𝐿 ∈ 𝐼𝑝(Γ1). Trail Γ1 is the result of the first SGGS-extension that adds
all the 𝐼−-all-false input clauses. Since 𝑆 is a set of definite clauses, the 𝐼−-all-false input
clauses are the positive unit clauses of 𝑆. Thus, 𝐿 ∈ 𝐼𝑝(Γ1) means that 𝐿 = 𝑃𝜎 for a ground
substitution 𝜎 and a positive unit clause 𝑃 ∈ 𝑆 with [𝑃 ] in Γ1. By definition of 𝑇𝑆 , 𝐿 ∈ 𝑇𝑆(∅)
and 𝐿 ∈ lfp(𝑇𝑆).
Induction hypothesis: for all 𝑘 (𝑘 ⩾ 1), for all 𝑛 ⩽ 𝑘, if 𝑛 is the smallest stage of the SGGS-
derivation such that for all 𝑗, 𝑗 ⩾ 𝑛, 𝐿 ∈ 𝐼𝑝(Γ𝑗), then 𝐿 ∈ lfp(𝑇𝑆).
Inductive case: take an 𝐿 ∈ 𝒜 for which 𝑘+1 is the smallest stage of the SGGS-derivation such
that for all 𝑗, 𝑗 ⩾ 𝑘+1, 𝐿 ∈ 𝐼𝑝(Γ𝑗). This means that𝐿 ̸∈ 𝐼𝑝(Γ𝑘). Thus, the stepΓ𝑘 ⊢ Γ𝑘+1 must
be a non-conflicting SGGS-extension with main premise 𝐶 = 𝑃 ∨¬𝑄1∨ . . .∨¬𝑄𝑚 in 𝑆 (𝑚>0),
mgu 𝛼, and extension clause 𝐶𝛼 = [𝑃𝛼]∨¬𝑄1𝛼∨ . . .∨¬𝑄𝑚𝛼, such that 𝐿 ∈ 𝑝𝑐𝑔𝑖(𝑃𝛼,Γ𝑘+1).
Therefore, there exist a ground substitution 𝜎′ such that 𝐿 = 𝑃𝛼𝜎′ and hence a substitution
𝜎 such that 𝐶𝜎 is ground and 𝐿 = 𝑃𝜎. Furthermore, ∀𝑖, 1⩽ 𝑖⩽𝑚, 𝑄𝑖𝜎 ∈ 𝐼𝑝(Γ𝑘), because
otherwise 𝐼[Γ𝑘] |= ¬𝑄𝑖𝜎 (as 𝐼− |= ¬𝑄𝑖𝜎), and hence [𝑃𝜎] ∨ ¬𝑄1𝜎 ∨ . . . ∨ ¬𝑄𝑚𝜎 would not
be in 𝑝𝑐𝑔𝑖([𝑃𝛼] ∨ ¬𝑄1𝛼 ∨ . . . ∨ ¬𝑄𝑚𝛼,Γ𝑘+1) and 𝐿 would not be in 𝑝𝑐𝑔𝑖(𝑃𝛼,Γ𝑘+1). Then,
for all 𝑖, 1 ⩽ 𝑖 ⩽ 𝑚, let ℎ𝑖 be the smallest stage such that ∀𝑗, 𝑗 ⩾ ℎ𝑖, 𝑄𝑖𝜎 ∈ 𝐼𝑝(Γ𝑗). Since
𝑄𝑖𝜎 ∈ 𝐼𝑝(Γ𝑘), we have ℎ𝑖 ⩽ 𝑘 for all 𝑖, 1 ⩽ 𝑖 ⩽ 𝑚. Thus, by induction hypothesis, for all 𝑖,
1 ⩽ 𝑖 ⩽ 𝑚, 𝑄𝑖𝜎 ∈ lfp(𝑇𝑆). Since lfp(𝑇𝑆) |= 𝑆, we have lfp(𝑇𝑆) |= 𝑃 ∨¬𝑄1 ∨ . . .∨¬𝑄𝑚 and
hence lfp(𝑇𝑆) |= 𝑃𝜎 ∨ ¬𝑄1𝜎 ∨ . . . ∨ ¬𝑄𝑚𝜎. Therefore, 𝐿 = 𝑃𝜎 ∈ lfp(𝑇𝑆). □

For instance, in Example 1, lfp(𝑇𝑆) is 𝐼𝑝(Γ3). We describe next the behavior of SGGS when
also negative clauses enter the picture, first with 𝐼− and then with 𝐼+.

Let 𝑆 be a set of Horn clauses and 𝑆𝐷 ⊂ 𝑆 the subset of the definite clauses. Unless a model
of 𝑆 is found, the consequence of adding positive ground literals to 𝐼𝑝(Γ) towards building
lfp(𝑇𝑆𝐷

) is that some instance of a negative clause in 𝑆 becomes an 𝐼−-all-true conflict clause,
that a conflicting SGGS-extension adds to the trail. Let 𝐶 be the first conflict clause of this kind



and Γ𝑘 the first trail where 𝐶 appears. The fact that 𝐶 is in conflict with 𝐼[Γ𝑘] means that
𝐶 is in conflict with 𝐼𝑝(Γ𝑘). By Theorem 1, this means that 𝐶 is in conflict with a subset of
lfp(𝑇𝑆𝐷

) and hence with lfp(𝑇𝑆𝐷
) itself. Since lfp(𝑇𝑆𝐷

) is the intersection of all the Herbrand
models of 𝑆𝐷 , it follows that 𝐶 is in conflict with all of them. Therefore, the appearance of 𝐶 on
the trail reveals that 𝑆 is unsatisfiable. By contrast, a set of first-order clauses does not admit
a least Herbrand model, and the appearance of a negative conflict clause on a trail Γ𝑘 in an
SGGS-derivation with 𝐼− simply means that 𝐼[Γ𝑘] ̸|= 𝑆, so that SGGS solves the conflict and
searches for another model.

Furthermore, because all the literals in 𝐶 are assigned, it is possible to predict the number
of SGGS-resolutions needed to go from 𝐶 to ⊥. This number turns out to be equal to the
cardinality |𝑑Γ(𝐶)| of the dependence set 𝑑Γ(𝐶) of 𝐶 in Γ. This set is defined inductively as
follows: if an 𝐼-true literal in 𝐶 is assigned to clause 𝐷 then 𝐷 ∈ 𝑑Γ(𝐶); if 𝐷 ∈ 𝑑Γ(𝐶) and an
𝐼-true literal in 𝐷 is assigned to clause 𝐷′ then 𝐷′ ∈ 𝑑Γ(𝐶); nothing else is in 𝑑Γ(𝐶).

Lemma 1. Given an input set 𝑆 of Horn clauses and 𝐼− as initial interpretation, for all fair SGGS-
derivations, if an SGGS-extension adds to a trail Γ an 𝐼−-all-true conflict clause 𝐶 , the derivation
is a refutation, and the number of SGGS-resolution steps after the stage of Γ is |𝑑Γ(𝐶)|.

Proof: The proof is by induction on the cardinality |𝑑Γ(𝐶)|.
Base case: |𝑑Γ(𝐶)| = 0 and hence 𝑑Γ(𝐶) = ∅. Since 𝐶 is an 𝐼−-all-true conflict clause, all its
literals must be assigned. Thus, 𝑑Γ(𝐶) = ∅ implies that 𝐶 is ⊥ and both claims are fulfilled.
Induction hypothesis: if |𝑑Γ(𝐶)| = 𝑘 for 𝑘⩾ 0 then both claims hold.
Inductive case: let |𝑑Γ(𝐶)| = 𝑘+1, literal 𝐿 be selected in 𝐶 , and 𝐷[𝑀 ] be the clause which 𝐿
is assigned to.
If SGGS-factoring applies to 𝐶[𝐿] (one or more times), let 𝐶𝑓 [𝐿𝑓 ] and Γ1 be the final SGGS-
factor and trail, or 𝐶𝑓 [𝐿𝑓 ] = 𝐶[𝐿] and Γ1 = Γ otherwise. Either way, 𝑑Γ1(𝐶𝑓 ) = 𝑑Γ(𝐶),
because SGGS-factoring unifies two literals of 𝐶 that are both assigned to 𝐷 and SGGS-factors
inherit assignments, so that 𝐿𝑓 is still assigned to 𝐷 in Γ1. Also, 𝑑Γ1(𝐷) = 𝑑Γ(𝐷) trivially
holds.
If left-splitting applies to 𝐶𝑓 [𝐿𝑓 ] and 𝐷, let 𝐷′[𝑀 ′] and Γ2 be the representative of 𝐶𝑓 in
split(𝐷,𝐶𝑓 ) and the resulting trail, or 𝐷′[𝑀 ′] = 𝐷[𝑀 ] and Γ2 = Γ1 otherwise. Either way,
𝐿𝑓 is assigned to 𝐷′ in Γ2 and 𝑑Γ2(𝐷′) = 𝑑Γ1(𝐷) = 𝑑Γ(𝐷), because the 𝐼−-true literals in
𝐷′ inherit their assignments from those in 𝐷. Thus, 𝑑Γ2(𝐶𝑓 ) = 𝑑Γ1(𝐶𝑓 ) ∖ {𝐷} ∪ {𝐷′} =
𝑑Γ(𝐶) ∖ {𝐷} ∪ {𝐷′} as the only change is that 𝐿𝑓 is assigned to 𝐷 in Γ1 and to 𝐷′ in Γ2 (†).
SGGS-move places 𝐶𝑓 [𝐿𝑓 ] to the left of 𝐷′[𝑀 ′] and then SGGS-resolution applies to 𝐶𝑓 [𝐿𝑓 ]
and 𝐷′[𝑀 ′] generating the SGGS-resolvent 𝑅 = (𝐶𝑓 ∖ {𝐿𝑓}) ∪ (𝐷′ ∖ {𝑀 ′})𝜗 that replaces
𝐷′ in the resulting trail Γ3. Every 𝐼−-true literal 𝑃𝜗 in 𝑅 is assigned to the same clause that
𝑃 in 𝐶𝑓 or in 𝐷′ was assigned to (⋆). Since 𝐶𝑓 is negative and 𝐷′ is Horn, 𝑅 is negative, it is
another 𝐼−-all-true conflict clause, and all its literals are assigned.
We show that 𝑑Γ3(𝑅) = 𝑑Γ(𝐶) ∖ {𝐷}. For every clause 𝐸 ∈ 𝑑Γ3(𝑅) due to a literal in
(𝐶𝑓 ∖ {𝐿𝑓})𝜗, it is 𝐸 ∈ 𝑑Γ2(𝐶𝑓 ) by (⋆), and 𝐸 ∈ 𝑑Γ1(𝐶𝑓 ) by (†), and 𝐸 ∈ 𝑑Γ(𝐶) because
𝑑Γ1(𝐶𝑓 ) = 𝑑Γ(𝐶). For every clause 𝐸 ∈ 𝑑Γ3(𝑅) due to a literal in (𝐷′ ∖ {𝑀 ′})𝜗, it is
𝐸 ∈ 𝑑Γ2(𝐷′) by (⋆), and 𝐸 ∈ 𝑑Γ(𝐷) as 𝑑Γ2(𝐷′) = 𝑑Γ1(𝐷) = 𝑑Γ(𝐷), and hence 𝐸 ∈ 𝑑Γ(𝐶)
because the selected literal 𝐿 of 𝐶 is assigned to 𝐷 in Γ. Up to here we have shown that



𝑑Γ3(𝑅) ⊆ 𝑑Γ(𝐶). Next, 𝐷 ∈ 𝑑Γ(𝐶), but 𝐷 ̸∈ 𝑑Γ3(𝑅), because 𝐿𝑓 was resolved away, and 𝑅
replaced 𝐷′ which either replaced 𝐷 or is 𝐷 itself. Thus, 𝑑Γ3(𝑅) ⊂ 𝑑Γ(𝐶). Furthermore, it is
exactly 𝑑Γ3(𝑅) = 𝑑Γ(𝐶) ∖ {𝐷}, because by inspection of the above inferences nothing else
has changed. Since |𝑑Γ(𝐶)| = 𝑘 + 1, we have |𝑑Γ3(𝑅)| = 𝑘. By induction hypothesis the first
claim holds, and the number of SGGS-resolutions after the stage of Γ3 is 𝑘, so that the number
of SGGS-resolutions after the stage of Γ is 𝑘 + 1 = |𝑑Γ(𝐶)|. □

The initial interpretation 𝐼+ is the top 𝒜 of lattice 𝒫(𝒜). Given a set 𝑆 of definite clauses,
SGGS with 𝐼+ does not do anything as 𝐼+ |= 𝑆. If 𝑆 is a set of Horn clauses, where the
negative clauses are the goal clauses, 𝐼+ is goal-sensitive (it satisfies the assumptions, not the
goal clauses), and hence SGGS with 𝐼+ is goal-sensitive (all generated clauses are connected
to goal clauses) [3]. Indeed, SGGS with 𝐼+ reasons backward or top-down. The derivation
starts with an SGGS-extension that puts on the trail all the negative clauses in 𝑆, each with a
literal selected. If the addition of negative ground literals to 𝐼𝑝(Γ) falsifies the positive literal in
instances of a mixed clause in 𝑆, a non-conflicting SGGS-extension with mixed extension clause
applies: a negative literal is selected in the extension clause and more negative ground literals
are added to 𝐼𝑝(Γ). Unless a model of 𝑆 is found, the consequence of adding negative ground
literals to 𝐼𝑝(Γ) is that some instance of a positive unit clause in 𝑆 becomes an 𝐼+-all-true
conflict clause, that a conflicting SGGS-extension adds to the trail.

Example 2. Given 𝑆 = {¬Q(a, 𝑥), ¬R(𝑥, 𝑦) ∨ ¬R(𝑦, 𝑥) ∨ Q(𝑥, 𝑦), R(b, a), R(a, b)}, the
SGGS-derivation with 𝐼+ starts as follows:

Γ0 : 𝜀 ⊢ Γ1 : [¬Q(a, 𝑥)] extend

⊢ Γ3 : [¬Q(a, 𝑥)], [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦) extend

and continues extending with 𝐼+-all-true conflict clause R(a, b) and solving the conflict:

⊢ Γ4 : [¬Q(a, 𝑥)], [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦), [R(a, b)] extend

⊢ Γ5 : [¬Q(a, 𝑥)], [¬R(a, b)] ∨ ¬R(b, a) ∨ Q(a, b),

𝑡𝑜𝑝(𝑦) ̸= b▷ [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦), [R(a, b)] l-split
⊢ Γ6 : [¬Q(a, 𝑥)], [R(a, b)], [¬R(a, b)] ∨ ¬R(b, a) ∨ Q(a, b),

𝑡𝑜𝑝(𝑦) ̸= b▷ [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦) move

⊢ Γ7 : [¬Q(a, 𝑥)], [R(a, b)], [¬R(b, a)] ∨ Q(a, b),

𝑡𝑜𝑝(𝑦) ̸= b▷ [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦) resolve

Then the derivation proceeds extending with 𝐼+-all-true conflict clause R(b, a) whose conflict-
solving phase finds a refutation:

⊢ Γ8 : [¬Q(a, 𝑥)], [R(a, b)], [¬R(b, a)] ∨ Q(a, b),

𝑡𝑜𝑝(𝑦) ̸= b▷ [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦), [R(b, a)] extend

⊢ Γ9 : [¬Q(a, 𝑥)], [R(a, b)], [R(b, a)], [¬R(b, a)] ∨ Q(a, b),

𝑡𝑜𝑝(𝑦) ̸= b▷ [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦) move



⊢ Γ10 : [¬Q(a, 𝑥)], [R(a, b)], [R(b, a)], [Q(a, b)],
𝑡𝑜𝑝(𝑦) ̸= b▷ [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦) resolve

⊢ Γ11 : [¬Q(a, b)], 𝑡𝑜𝑝(𝑥) ̸= 𝑏▷ [¬Q(a, 𝑥)], [R(a, b)], [R(b, a)],
[Q(a, b)], 𝑡𝑜𝑝(𝑦) ̸= b▷ [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦) l-split
⊢ Γ12 : [Q(a, b)], [¬Q(a, b)], 𝑡𝑜𝑝(𝑥) ̸= 𝑏▷ [¬Q(a, 𝑥)], [R(a, b)],
[R(b, a)], 𝑡𝑜𝑝(𝑦) ̸= b▷ [¬R(a, 𝑦)] ∨ ¬R(𝑦, a) ∨ Q(a, 𝑦) move

⊢ Γ13 : [Q(a, b)], ⊥, . . . resolve

If the second literal is selected in the second clause of Γ2, the derivation is very similar, extending
first with R(b, a) and then with R(a, b).

4. On the Termination of SGGS and Hyperresolution

Both SGGS and hyperresolution halt on the clause set of Example 1. We show that this is a general
result: given a Horn set, SGGS with 𝐼− halts if and only if hyperresolution with subsumption,
henceforth HR+S , halts. A derivation by HR+S has the form 𝑆0 ⊢ 𝑆1 ⊢ . . . 𝑆𝑗 ⊢ 𝑆𝑗+1 ⊢ . . .,
where 𝑆0=𝑆; for all 𝑗, 𝑗 ⩾ 0, 𝑆𝑗+1 is obtained from 𝑆𝑗 by either a hyperresolution or a
subsumption step; and the limit 𝑆∞ is the set

⋃︀
𝑖⩾0

⋂︀
𝑗⩾𝑖 𝑆𝑗 of the persistent clauses. In the

Horn case, all hyperresolvents are unit clauses identified with their single literal. The next lemma
establishes a correspondence between clauses in the respective limits of the two derivations.

Lemma 2. Given a satisfiable set 𝑆 of Horn clauses, for all fair derivations by SGGS with 𝐼− and
HR+S , respectively, (i) for all clauses𝐴▷𝐶[𝐿] inΓ∞, there exists a unit clause𝑄 ∈ 𝑆∞ such that
𝐺𝑟(𝐴▷𝐿) ⊆ 𝐺𝑟(𝑄), and (ii) for all unit clauses 𝑄 ∈ 𝑆∞ there exist clauses {𝐵𝑗▷𝐷𝑗 [𝑀𝑗 ]}𝑛𝑗=1

in Γ∞ such that 𝐺𝑟(𝑄) ⊆
⋃︀𝑛

𝑗=1𝐺𝑟(𝐵𝑗 ▷𝑀𝑗).

Proof: As 𝑆 is satisfiable and both methods are sound, neither derivation is a refutation. As
described in Sect. 3 and by Lemma 1, the only inferences in the SGGS-derivation are non-
conflicting SGGS-extensions, that add non-negative clauses where the single positive literal is
selected, s-splitting, or SGGS-deletion steps.
Proof of Claim (i): by induction on the smallest stage 𝑘 (𝑘 ⩾ 1) such that 𝐴▷ 𝐶[𝐿] is in Γ𝑘.
Base case: 𝑘 = 1 and 𝐶[𝐿] is an 𝐼−-all-false (i.e., positive, hence unit) input clause 𝐿 ∈ 𝑆 added
by the first SGGS-extension. If 𝐿 is not subsumed in the HR+S -derivation, 𝑄 = 𝐿 ∈ 𝑆∞.
Otherwise, there exists a 𝑄 ∈ 𝑆∞ that subsumes 𝐿, that is, 𝐿 = 𝑄𝜎 for some substitution 𝜎, so
that 𝐺𝑟(𝐿) ⊆ 𝐺𝑟(𝑄) holds.
Induction hypothesis: for all 𝑗, 0⩽ 𝑗⩽ 𝑘, for all clauses 𝐴▷ 𝐶[𝐿] for which 𝑗 is the smallest
stage such that 𝐴▷ 𝐶[𝐿] is in Γ𝑗 , the claim holds.
Inductive case: let 𝐴▷𝐶[𝐿] be a clause for which 𝑘+1 is the smallest stage such that 𝐴▷𝐶[𝐿]
is in Γ𝑘+1. This means that 𝐴 ▷ 𝐶[𝐿] is placed on the trail by step Γ𝑘 ⊢ Γ𝑘+1. If Γ𝑘 ⊢ Γ𝑘+1

is an s-splitting step, 𝐴▷ 𝐶[𝐿] is a clause in a partition of a split clause 𝐵 ▷𝐷[𝑀 ] in Γ𝑘. By
definition of partition, 𝐺𝑟(𝐴▷𝐶[𝐿]) ⊆ 𝐺𝑟(𝐵▷𝐷[𝑀 ]) and hence 𝐺𝑟(𝐴▷𝐿) ⊆ 𝐺𝑟(𝐵▷𝑀).
By induction hypothesis, there exists a 𝑄 ∈ 𝑆∞ such that 𝐺𝑟(𝐵 ▷ 𝑀) ⊆ 𝐺𝑟(𝑄). Thus,



𝐺𝑟(𝐴▷ 𝐿) ⊆ 𝐺𝑟(𝐵 ▷𝑀) ⊆ 𝐺𝑟(𝑄) and the claim holds. Otherwise, Γ𝑘 ⊢ Γ𝑘+1 is an SGGS-
extension. Let 𝐶 ∈ 𝑆 be the main premise, 𝐵1▷𝐷1[𝑀1], . . . , 𝐵𝑛▷𝐷𝑛[𝑀𝑛] in 𝑑𝑝(Γ𝑘) the side
premises, and (

⋀︀𝑛
𝑖=1𝐵𝑖𝛼)▷ 𝐶[𝐿]𝛼 the extension clause, where 𝐿 is the only positive literal

in 𝐶 , and 𝛼 is the simultaneous mgu of all the 𝐼−-true (i.e., negative) literals ¬𝐿1, . . . ,¬𝐿𝑛

of 𝐶 with 𝑀1, . . . ,𝑀𝑛 (i.e., 𝐿𝑖𝛼 = 𝑀𝑖𝛼 for all 𝑖, 1⩽ 𝑖⩽𝑛). By induction hypothesis, for all 𝑖,
1 ⩽ 𝑖 ⩽ 𝑛, there exists a 𝑄𝑖 ∈ 𝑆∞ such that 𝐺𝑟(𝐵𝑖▷𝑀𝑖) ⊆ 𝐺𝑟(𝑄𝑖). This implies that for all 𝑖,
1 ⩽ 𝑖 ⩽ 𝑛, there exists a substitution 𝜎𝑖 (which can be a variable renaming or even empty) such
that 𝑀𝑖 = 𝑄𝑖𝜎𝑖. The fact that the 𝑀𝑖’s are instances of the 𝑄𝑖’s, together with the fact that the
𝑀𝑖’s do not share variables (∀𝑖 ∀𝑗, 1⩽ 𝑖 ̸= 𝑗⩽𝑛, 𝒱𝑎𝑟(𝑀𝑖)∩𝒱𝑎𝑟(𝑀𝑗) = ∅), because they come
from distinct clauses, and the existence of the above simultaneous mgu 𝛼, imply the existence of
a simultaneous mgu 𝜏 such that ∀𝑖, 1⩽ 𝑖⩽𝑛, 𝐿𝑖𝜏 = 𝑄𝑖𝜏 . For all 𝑖, 1⩽ 𝑖⩽𝑛, let 𝑟𝑖 be the stage
such that 𝑄𝑖 ∈

⋂︀
𝑗⩾𝑟𝑖

𝑆𝑗 and let 𝑟 = 𝑚𝑎𝑥{𝑟𝑖 : 1⩽ 𝑖⩽𝑛}, so that 𝑄1, . . . , 𝑄𝑛 ∈ 𝑆𝑟 . Therefore,
hyperresolution applies to nucleus 𝐶 ∈𝑆 and satellites 𝑄1, . . . , 𝑄𝑛 ∈ 𝑆𝑟 , generating the unit
hyperresolvent 𝐿𝜏 . Since 𝜏 is a unifier of more general literals, there exists a substitution
𝜎 such that 𝐿𝛼 = 𝐿𝜏𝜎. If 𝐿𝜏 is persistent, 𝑄 = 𝐿𝜏 ∈ 𝑆∞, and from 𝐿𝛼 = 𝐿𝜏𝜎 we get
𝐺𝑟((

⋀︀𝑛
𝑗=1𝐵𝑗𝛼)▷ 𝐿𝛼) ⊆ 𝐺𝑟(𝐿𝛼) ⊆ 𝐺𝑟(𝑄). If 𝐿𝜏 is subsumed, there exist a 𝑄 ∈ 𝑆∞ and a

substitution 𝛿, such that 𝐿𝜏 = 𝑄𝛿. Thus, it is 𝐺𝑟((
⋀︀𝑛

𝑗=1𝐵𝑗𝛼)▷𝐿𝛼) ⊆ 𝐺𝑟(𝐿𝛼) ⊆ 𝐺𝑟(𝐿𝜏) ⊆
𝐺𝑟(𝑄).
Proof of Claim (ii): by induction on the smallest stage 𝑘 (𝑘 ⩾ 0) such that 𝑄 ∈ 𝑆𝑘.
Base case: 𝑘=0 and 𝑄∈𝑆0=𝑆 is a positive unit input clause. Thus, the first SGGS-extension
that adds to the trail all 𝐼−-all-false clauses (i.e., all positive unit input clauses) places [𝑄] on
trail Γ1 at some index 𝑖. If [𝑄] is subject to neither SGGS-deletion nor s-splitting, [𝑄] is in Γ∞
and the claim holds. Since SGGS-move never applies, no clause is inserted to the left of [𝑄] (i.e.,
at an index smaller than 𝑖) at any subsequent stage 𝑗 (𝑗 > 1) of the SGGS-derivation. Thus,
the only clauses that can s-split [𝑄] or make it disposable are other positive unit input clauses
that the first SGGS-extension places on the left of [𝑄]. By fairness, SGGS-deletion is applied
before any other inference, and removes all disposable clauses in Γ1 in one step. If a bunch of
positive unit input clauses [𝑄1], . . . , [𝑄𝑛] on the left of [𝑄] in Γ1 make it disposable, we have
𝐺𝑟(𝑄) ⊆

⋃︀𝑛
𝑗=1 𝑝𝑐𝑔𝑖(𝑄𝑗 ,Γ1) ⊆

⋃︀𝑛
𝑗=1𝐺𝑟(𝑄𝑗). If [𝑄′] on the left of [𝑄] splits [𝑄] into a partition

{𝐵𝑗 ▷ [𝑀𝑗 ]}𝑛𝑗=1, the representative of [𝑄′] is subsequently deleted by SGGS-deletion. Without
loss of generality, let the representative of [𝑄′] be 𝐵𝑛 ▷ [𝑀𝑛]. Then {[𝑄′]} ∪ {𝐵𝑗 ▷ [𝑀𝑗 ]}𝑛−1

𝑗=1

is a partition of [𝑄], that is, 𝐺𝑟(𝑄) = 𝐺𝑟(𝑄′) ∪
⋃︀𝑛−1

𝑗=1 𝐺𝑟(𝐵𝑗 ▷𝑀𝑗). Since the model-fixing
phase between the first and the second SGGS-extension is finite, even if some of these clauses
were subject in turn to s-splitting, the reasoning repeats and the process cannot go on forever,
so that the claim is satisfied by clauses in Γ∞.
Induction hypothesis: for all 𝑗, 0⩽ 𝑗⩽ 𝑘, for all unit clauses 𝑄 for which 𝑗 is the smallest stage
such that 𝑄 ∈ 𝑆𝑗 , the claim holds.
Inductive case: let 𝑄 be a unit clause for which 𝑘 + 1 is the smallest stage such that 𝑄 ∈
𝑆𝑘+1. This means that 𝑄 is a unit hyperresolvent generated by the step 𝑆𝑘 ⊢ 𝑆𝑘+1. Let
𝐶 = (𝑃 ∨ ¬𝐿1 ∨ . . . ∨ ¬𝐿𝑚) ∈ 𝑆 ⊆ 𝑆𝑘 (𝑚 > 0) be the nucleus, 𝑄1, . . . , 𝑄𝑚 ∈ 𝑆𝑘 the
positive unit satellites, and 𝜏 the simultaneous mgu for this hyperresolution inference (i.e.,
∀𝑖, 1⩽ 𝑖⩽𝑚, 𝐿𝑖𝜏 = 𝑄𝑖𝜏 ), so that 𝑄 = 𝑃𝜏 . By induction hypothesis, for all 𝑖, 1⩽ 𝑖⩽𝑚,
there exist sets of clauses {𝐵ℎ𝑖

▷ 𝐷ℎ𝑖
[𝑀ℎ𝑖

]}𝑛𝑖
ℎ𝑖=1 all in Γ∞ = 𝑑𝑝(Γ∞), such that 𝐺𝑟(𝑄𝑖) ⊆



⋃︀𝑛𝑖
ℎ𝑖=1𝐺𝑟(𝐵ℎ𝑖

▷ 𝑀ℎ𝑖
). Let 𝑟 be the smallest stage of the SGGS-derivation where all these

clauses are in 𝑑𝑝(Γ𝑟). By Lemma 3, at most Π𝑚
𝑖=1𝑛𝑖 SGGS-extensions, applying at stages equal

to or greater than 𝑟, generate extension clauses {𝐴𝑗 ▷ 𝐶[𝑃 ]𝛼𝑗}ℎ𝑗=1, with ℎ ⩽ Π𝑚
𝑖=1𝑛𝑖, such

that 𝐺𝑟(𝑄) = 𝐺𝑟(𝑃𝜏) ⊆
⋃︀ℎ

𝑗=1𝐺𝑟(𝐴𝑗 ▷ 𝑃𝛼𝑗). By the Lifting Theorem for SGGS [3, Thm. 4],
extension clauses are not disposable in the trail to which they are added. Since SGGS-move
never applies, it cannot be that these clauses are made disposable by clauses that move to their
left at subsequent stages. Thus, the clauses in {𝐴𝑗 ▷ ([𝑃𝛼𝑗 ] ∨ ¬𝐿1𝛼𝑗 ∨ . . . ∨ ¬𝐿𝑚𝛼𝑗)}ℎ𝑗=1 are
in Γ∞, unless some of them is subject to s-splitting during the finite model-fixing phases that
follow each SGGS-extension. As already shown in the base case, if this happens, each split
clause get replaced by clauses in Γ∞ with the same ground instances, so that the claim holds. □

The lemma invoked in the above proof is stated and proved below.

Lemma 3. Given a set 𝑆 of Horn clauses, assume that hyperresolution generates from nucleus
𝐶 = (𝑃 ∨ ¬𝐿1 ∨ . . . ∨ ¬𝐿𝑚) ∈ 𝑆 and satellites 𝑄1, . . . , 𝑄𝑚 the unit hyperresolvent 𝑄 = 𝑃𝜏 ,
where 𝜏 is the simultaneous mgu such that ∀𝑖, 1⩽ 𝑖⩽𝑚, 𝐿𝑖𝜏 = 𝑄𝑖𝜏 . Suppose that for every
satellite 𝑄𝑖, SGGS with 𝐼− has in 𝑑𝑝(Γ) a set of clauses {𝐵ℎ𝑖

▷𝐷ℎ𝑖
[𝑀ℎ𝑖

]}𝑛𝑖
ℎ𝑖=1 with positive se-

lected literals, such that𝐺𝑟(𝑄𝑖) ⊆
⋃︀𝑛𝑖

ℎ𝑖=1𝐺𝑟(𝐵ℎ𝑖
▷𝑀ℎ𝑖

). Then at mostΠ𝑚
𝑖=1𝑛𝑖 SGGS-extensions

with main premise 𝐶 apply and generate extension clauses {𝐴𝑗 ▷ 𝐶[𝑃 ]𝛼𝑗}ℎ𝑗=1 (ℎ ⩽ Π𝑚
𝑖=1𝑛𝑖),

such that 𝐺𝑟(𝑄) = 𝐺𝑟(𝑃𝜏) ⊆
⋃︀ℎ

𝑗=1𝐺𝑟(𝐴𝑗 ▷ 𝑃𝛼𝑗).

Proof: We show that 𝐺𝑟(𝑃𝜏) ⊆
⋃︀ℎ

𝑗=1𝐺𝑟(𝐴𝑗 ▷ 𝑃𝛼𝑗). Let 𝐿 ∈ 𝐺𝑟(𝑃𝜏), that is, 𝐿 = 𝑃𝜏𝜎
for some ground instance 𝐶𝜏𝜎 of 𝐶 . By the first part of the hypothesis, for all 𝑖, 1⩽ 𝑖⩽𝑚,
𝐿𝑖𝜏 = 𝑄𝑖𝜏 , and hence 𝐿𝑖𝜏𝜎 = 𝑄𝑖𝜏𝜎, so that 𝑄𝑖𝜏𝜎 is a ground instance of 𝑄𝑖. By the
second part of the hypothesis, for all 𝑖, 1⩽ 𝑖⩽𝑚, there exists an ℎ𝑖 (1⩽ℎ𝑖⩽𝑛𝑖) such that
𝑄𝑖𝜏𝜎 ∈ 𝐺𝑟(𝐵ℎ𝑖

▷ 𝑀ℎ𝑖
). Take as the side premises the 𝐵ℎ𝑖

▷ 𝑀ℎ𝑖
, 1 ⩽ 𝑖 ⩽ 𝑚, such that

𝑄𝑖𝜏𝜎 ∈ 𝐺𝑟(𝐵ℎ𝑖
▷ 𝑀ℎ𝑖

). Their positive selected literals 𝑀ℎ1 , . . . ,𝑀ℎ𝑚 are simultaneously
unifiable with the atoms 𝐿1, . . . , 𝐿𝑚, as witnessed by the unifier 𝜏𝜎. Let 𝛼 be their most
general unifier, and 𝛿 the substitution such that 𝜏𝜎 = 𝛼𝛿. Then, SGGS-extension applies
with main premise 𝐶 , side premises 𝐵ℎ𝑖

▷ 𝑀ℎ𝑖
, 1 ⩽ 𝑖 ⩽ 𝑚, and simultaneous mgu 𝛼,

producing extension clause (
⋀︀𝑚

𝑖=1𝐵ℎ𝑖
𝛼) ▷ 𝐶[𝑃 ]𝛼, such that 𝐿 ∈ 𝐺𝑟((

⋀︀𝑚
𝑖=1𝐵ℎ𝑖

𝛼) ▷ 𝑃𝛼),
because 𝐿 = 𝑃𝜏𝜎 = 𝑃𝛼𝛿. Since an SGGS-extension with main premise 𝐶 needs 𝑚 side
premises whose positive selected literals unify simultaneously with 𝐿1, . . . , 𝐿𝑚, and for each
𝐿𝑖, 1⩽ 𝑖⩽𝑚, there are 𝑛𝑖 candidates, there are clearly at most Π𝑚

𝑖=1𝑛𝑖 such extensions. □

The main theorem follows.

Theorem 2. Given a set of Horn clauses SGGS with 𝐼− halts if and only if HR+S halts.

Proof: Since both SGGS and HR+S are refutationally complete, it suffices to prove the claim for
a satisfiable input set 𝑆 of Horn clauses. Let 𝑆𝐷 ⊆ 𝑆 be the subset of the definite clauses.
(⇒) By way of contradiction, assume that SGGS with 𝐼− halts and HR+S does not. SGGS
halts at a stage 𝑘 (𝑘 > 0) with finite limit Γ𝑘 = 𝐵1 ▷ 𝐷1[𝑀1], . . . , 𝐵𝑚 ▷ 𝐷𝑚[𝑀𝑚] and
𝐼𝑝(Γ𝑘) =

⋃︀𝑚
𝑗=1 𝑝𝑐𝑔𝑖(𝐵𝑗 ▷ 𝑀𝑗 ,Γ𝑘) =

⋃︀𝑚
𝑗=1𝐺𝑟(𝐵𝑗 ▷ 𝑀𝑗), as Γ𝑘 = 𝑑𝑝(Γ𝑘). By Theo-

rem 1, 𝐼𝑝(Γ𝑘) = lfp(𝑇𝑆𝐷
). The HR+S -derivation is infinite with infinite limit 𝑆∞ contain-

ing infinitely many persistent positive unit clauses 𝐿0, 𝐿1, 𝐿2, . . .. Also HR+S generates



lfp(𝑇𝑆𝐷
), represented by

⋃︀
𝑖⩾0𝐺𝑟(𝐿𝑖). Thus,

⋃︀𝑚
𝑗=1𝐺𝑟(𝐵𝑗 ▷𝑀𝑗) =

⋃︀
𝑖⩾0𝐺𝑟(𝐿𝑖). By Claim (i)

in Lemma 2, ∀𝑗, 1⩽ 𝑗⩽𝑚, there exists a 𝑄𝑗 ∈ 𝑆∞ such that 𝐺𝑟(𝐵𝑗 ▷𝑀𝑗) ⊆ 𝐺𝑟(𝑄𝑗). There-
fore,

⋃︀
𝑖⩾0𝐺𝑟(𝐿𝑖) =

⋃︀𝑚
𝑗=1𝐺𝑟(𝐵𝑗 ▷𝑀𝑗) ⊆

⋃︀𝑚
𝑗=1𝐺𝑟(𝑄𝑗). Since the 𝑄𝑗 ’s are finitely many,

this means that all but finitely many clauses in 𝑆∞ can be subsumed, contradicting the assump-
tion that 𝑆∞ (the limit of a fair derivation) is infinite.
(⇐) By way of contradiction, assume that HR+S halts whereas SGGS with 𝐼− does not.
HR+S halts at some stage 𝑘 (𝑘⩾ 0) with finite limit 𝑆𝑘. The set {𝐿1, . . . , 𝐿𝑚} of the posi-
tive unit clauses in 𝑆𝑘 represents lfp(𝑇𝑆𝐷

), in the sense that
⋃︀𝑚

𝑖=1𝐺𝑟(𝐿𝑖) = lfp(𝑇𝑆𝐷
). SGGS

with 𝐼− produces an infinite derivation with infinite limit Γ∞ = 𝐵1 ▷ 𝐷1[𝑀1], . . . , 𝐵𝑗 ▷
𝐷𝑗 [𝑀𝑗 ], 𝐵𝑗+1▷𝐷𝑗+1[𝑀𝑗+1], . . ., where ∀𝑗, 𝑗 ⩾ 0, 𝑀𝑖 ∈ 𝐷+

𝑖 and 𝐼𝑝(Γ∞) =
⋃︀

𝑗⩾1 𝑝𝑐𝑔𝑖(𝐵𝑗▷
𝑀𝑗 ,Γ∞) =

⋃︀
𝑗⩾1𝐺𝑟(𝐵𝑗 ▷𝑀𝑗) as Γ∞ = 𝑑𝑝(Γ∞). By Theorem 1, 𝐼𝑝(Γ∞) = lfp(𝑇𝑆𝐷

). Thus,⋃︀
𝑗⩾1𝐺𝑟(𝐵𝑗 ▷𝑀𝑗) =

⋃︀𝑚
𝑖=1𝐺𝑟(𝐿𝑖). By Claim (ii) in Lemma 2, for all 𝑖, 1⩽ 𝑖⩽𝑚, there exist

clauses {𝐵ℎ𝑖
▷𝐷ℎ𝑖

[𝑀ℎ𝑖
]}𝑛𝑖

ℎ𝑖=1 in Γ∞ such that 𝐺𝑟(𝐿𝑖) ⊆
⋃︀𝑛𝑖

ℎ𝑖=1𝐺𝑟(𝐵ℎ𝑖
▷𝑀ℎ𝑖

). Therefore,⋃︀
𝑗⩾1𝐺𝑟(𝐵𝑗 ▷𝑀𝑗) =

⋃︀𝑚
𝑖=1𝐺𝑟(𝐿𝑖) ⊆

⋃︀𝑚
𝑖=1

⋃︀𝑛𝑖
ℎ𝑖=1𝐺𝑟(𝐵ℎ𝑖

▷𝑀ℎ𝑖
). Since the 𝐿𝑖’s are finitely

many, and each of them is covered by finitely many clauses in Γ∞, this means that all but
finitely many clauses in Γ∞ are disposable, contradicting the assumption that Γ∞ (the limit of
a fair derivation) is infinite. □

Example 3. Given the following set 𝑆 of definite clauses

P(𝑥, f(𝑥)) (𝑖) ¬P(𝑥, f(𝑦)) ∨ Q(f(𝑦), 𝑥) (𝑖𝑖)

¬Q(f(𝑥), 𝑦) ∨ R(𝑥) (𝑖𝑖𝑖) ¬R(f(𝑥)) ∨ T(𝑥) (𝑖𝑣)

¬R(𝑥) ∨ Q(a, a) (𝑣)

SGGS with 𝐼− halts after five extensions:

Γ0 : 𝜀 ⊢ Γ1 : [P(𝑥, f(𝑥))]

⊢ Γ2 : [P(𝑥, f(𝑥))], ¬P(𝑥, f(𝑥)) ∨ [Q(f(𝑥), 𝑥)]

⊢ Γ3 : [P(𝑥, f(𝑥))], ¬P(𝑥, f(𝑥)) ∨ [Q(f(𝑥), 𝑥)], ¬Q(f(𝑥), 𝑥) ∨ [R(𝑥)]

⊢ Γ4 : [P(𝑥, f(𝑥))], ¬P(𝑥, f(𝑥)) ∨ [Q(f(𝑥), 𝑥)], ¬Q(f(𝑥), 𝑥) ∨ [R(𝑥)],

¬R(f(𝑥)) ∨ [T(𝑥)]

⊢ Γ5 : [P(𝑥, f(𝑥))], ¬P(𝑥, f(𝑥)) ∨ [Q(f(𝑥), 𝑥)], ¬Q(f(𝑥), 𝑥) ∨ [R(𝑥)],

¬R(f(𝑥)) ∨ [T(𝑥)], ¬R(𝑥) ∨ [Q(a, a)]

as 𝐼[Γ5] |= 𝑆. Hyperresolution halts after generating the selected literals in Γ5 as unit clauses.

Thanks to its model-based character and model representation via selected literals, SGGS can
learn from a Horn subproblem of a non-Horn first-order problem a literal selection strategy that
is useful for termination on the non-Horn problem.

Definition 3. A clause set 𝑆𝐻 is a Horn subproblem of a clause set 𝑆 if for every 𝐶 ∈𝑆 the set
𝑆𝐻 contains a maximal subclause 𝐶 ′⊆𝐶 that is Horn, and 𝑆𝐻 contains no other clauses.



Let 𝑆𝐻 be a Horn subproblem of a non-Horn first-order problem 𝑆. Note that if 𝐽 |= 𝑆𝐻

then 𝐽 |= 𝑆 for a Herbrand interpretation 𝐽 . A Horn subproblem 𝑆𝐻 defines a literal selection
strategy, that can be used when SGGS with 𝐼− is applied to 𝑆, as follows. Whenever SGGS-
extension adds an instance 𝐶𝛼 of a clause 𝐶 ∈𝑆, such that 𝐶𝛼 has multiple positive literals that
can be selected,1 the strategy picks the positive literal 𝐿𝛼 such that 𝐿 appears in the maximal
Horn subclause 𝐶 ′⊆𝐶 in 𝑆𝐻 . While 𝑆 may have more than one Horn subproblem 𝑆𝐻 , the
strategy is uniquely defined once an 𝑆𝐻 is chosen. The next example portrays a situation where
SGGS with 𝐼− halts with the literal selection based on 𝑆𝐻 and diverges otherwise.

Example 4. Let 𝑆 = {(𝑖) P(𝑥, a), (𝑖𝑖) ¬P(𝑥, 𝑦) ∨ R(𝑦) ∨ P(𝑥, f(𝑦)), (𝑖𝑖𝑖) ¬R(f(𝑥)) ∨
¬P(𝑥, f(𝑥))} and 𝑆𝐻 = {(𝑖), (𝑖𝑖′) ¬P(𝑥, 𝑦) ∨ R(𝑦), (𝑖𝑖𝑖)}. Given 𝑆𝐻 , SGGS with 𝐼− halts
in two steps:

𝜀 ⊢ [P(𝑥, a)] ⊢ [P(𝑥, a)], ¬P(𝑥, a) ∨ [R(a)].

If the literal selection strategy defined by 𝑆𝐻 is adopted, SGGS with 𝐼− halts also on 𝑆:

𝜀 ⊢ [P(𝑥, a)] ⊢ [P(𝑥, a)], ¬P(𝑥, a) ∨ [R(a)] ∨ P(𝑥, f(a)).

In both derivations 𝐼𝑝(Γ2) is {P(f𝑘(a), a) : 𝑘 ⩾ 0}∪ {R(a)} and 𝐼[Γ2] satisfies both 𝑆𝐻 and 𝑆.
On the other hand, if the last literal in (𝑖𝑖)’s instances is systematically selected, SGGS diverges:

𝜀 ⊢ [P(𝑥, a)] ⊢ [P(𝑥, a)], ¬P(𝑥, a) ∨ R(a) ∨ [P(𝑥, f(a))]

⊢ [P(𝑥, a)], ¬P(𝑥, a) ∨ R(a) ∨ [P(𝑥, f(a))], ¬P(𝑥, f(a)) ∨ R(f(a)) ∨ [P(𝑥, f2(a))]

⊢ . . . .

Hyperresolution also halts on 𝑆𝐻 , but if given 𝑆 it generates an infinite series of hyperresolvents
where both depth and number of literals increase: R(a)∨P(𝑥, f(a)), R(a)∨R(f(a))∨P(𝑥, f2(a)),
R(a)∨R(f(a))∨R(f2(a))∨P(𝑥, f3(a)), . . . . Furthermore, in this example, the nontermination of
hyperresolution cannot be cured by an ordering≻ on literals and the restriction to resolve only upon
maximal literals in satellites. Indeed, the first satellite (𝑖) is a unit clause, and in the generated
hyperresolvents no ground literal can dominate the non-ground literal. For example, R(a) ̸≻
P(𝑥, f(a)) as R(a) and 𝑥 are incomparable.

The following theorem generalizes the observation that termination of SGGS on a satisfiable
Horn subproblem corresponds to termination on the original non-Horn problem.

Theorem 3. Given a set 𝑆 of clauses and 𝐼− as initial interpretation, if 𝑆 has a satisfiable Horn
subproblem 𝑆𝐻 for which there exists a fair, finite SGGS-derivation, then there exists a fair finite
SGGS-derivation for 𝑆 that selects the same literals and hence builds the same model.

Proof: Let Θ and Θ′ denote SGGS-derivations with initial interpretation 𝐼− and input 𝑆 and 𝑆𝐻

respectively. We assume that Θ′ is fair and finite: Γ′
0 ⊢ Γ′

1 ⊢ · · · ⊢ Γ′
𝑘. We show by induction

on the length 𝑘 of Θ′ that there exists a fair, finite derivation Θ: Γ0 ⊢ Γ1 ⊢ · · · ⊢ Γ𝑘 of the

1The SGGS-extension is non-conflicting and 𝐶𝛼 has more than one positive literal with pcgi’s, or 𝐶𝛼 is a non-𝐼−-
all-true conflict clause where any positive literal can be selected.



same length, such that for all stages 𝑗 (0⩽ 𝑗⩽ 𝑘) and indices ℎ (1⩽ℎ⩽ |Γ𝑗 |) if Γ′
𝑗 has at index

ℎ clause 𝐴ℎ ▷ 𝐶 ′
ℎ[𝐿ℎ] then Γ𝑗 has at index ℎ a clause 𝐴ℎ ▷ 𝐶ℎ[𝐿ℎ] with the same selected

constrained literal. Since the induced partial interpretation is determined by the selected literals,
it follows that for all stages 𝑗 (0⩽ 𝑗⩽ 𝑘) it holds that 𝐼𝑝(Γ𝑗) = 𝐼𝑝(Γ′

𝑗) and hence 𝐼[Γ𝑗 ] = 𝐼[Γ′
𝑗 ].

Base case: 𝑘 = 0: Γ′
0 is empty and so is Γ0.

Induction hypothesis: the claim holds for length 𝑘.
Inductive case: let the length of Θ′ be 𝑘 + 1. As described in Sect. 3 and by Lemma 1, since
𝑆𝐻 is a satisfiable Horn set, no conflicts can occur in Θ′, so that Γ′

𝑘 ⊢ Γ′
𝑘+1 can only be a non-

conflicting extension or an s-splitting or an SGGS-deletion step. IfΓ′
𝑘 ⊢ Γ′

𝑘+1 is a non-conflicting
extension with main premise 𝐶 ′ ∈ 𝑆𝐻 and side premises 𝐷′

1[𝑀1], . . . , 𝐷
′
𝑛[𝑀𝑛] in 𝑑𝑝(Γ′

𝑘), it
adds extension clause 𝐶 ′[𝐿]𝛼, where 𝛼 is the simultaneous mgu of all the 𝐼−-true (i.e., negative)
literals ¬𝐿1, . . . ,¬𝐿𝑛 of 𝐶 ′ with 𝑀1, . . . ,𝑀𝑛. Since 𝑆𝐻 is a Horn subproblem of 𝑆, there must
be a clause 𝐶 ∈ 𝑆 such that 𝐶 ′ ⊆ 𝐶 . Furthermore, (𝐶 ′)− = 𝐶− because 𝐶 ′ is a maximal
Horn subclause. By induction hypothesis, there exist clauses 𝐷1[𝑀1], . . . 𝐷𝑛[𝑀𝑛] in 𝑑𝑝(Γ𝑘)
with the same selected literals. Therefore, Θ can be extended with a non-conflicting extension
Γ𝑘 ⊢ Γ𝑘+1 with the same mgu and extension clause 𝐶[𝐿]𝛼. If Γ′

𝑘 ⊢ Γ′
𝑘+1 is an s-splitting

step, it replaces a clause 𝐴ℎ ▷ 𝐶 ′
ℎ[𝐿ℎ] by split(𝐶 ′

ℎ, 𝐶
′
𝑟) for some 𝐴𝑟 ▷ 𝐶 ′

𝑟[𝐿𝑟] (𝑟 < ℎ), where
split(𝐶 ′

ℎ, 𝐶
′
𝑟) is a partition {𝐵𝑖 ▷𝐷′

𝑖[𝑀𝑖]}𝑛𝑖=1 such that 𝐺𝑟(𝐴ℎ ▷𝐶 ′
ℎ) =

⋃︀𝑛
𝑖=1{𝐺𝑟(𝐵𝑖 ▷𝐷′

𝑖)}.
By induction hypothesis, Γ𝑘 has constrained clauses 𝐴ℎ▷𝐶ℎ[𝐿ℎ] and 𝐴𝑟 ▷𝐶𝑟[𝐿𝑟] at positions
ℎ and 𝑟 respectively. Since the partition in SGGS-splitting is determined by the selected
literals, Θ can be extended with an s-splitting step that replaces 𝐴ℎ ▷ 𝐶ℎ[𝐿ℎ] by split(𝐶ℎ, 𝐶𝑟),
where split(𝐶ℎ, 𝐶𝑟) is a respective partition {𝐵𝑖 ▷ 𝐷𝑖[𝑀𝑖]}𝑛𝑖=1 such that 𝐺𝑟(𝐴ℎ ▷ 𝐶ℎ) =⋃︀𝑛

𝑖=1{𝐺𝑟(𝐵𝑖 ▷𝐷𝑖)}. If Γ′
𝑘 ⊢ Γ′

𝑘+1 deletes 𝐴ℎ ▷𝐶 ′
ℎ[𝐿ℎ], it means that this clause is disposable,

that is, 𝐼𝑝(Γ′
𝑘|ℎ−1) |= 𝐴ℎ ▷ 𝐶 ′

ℎ[𝐿ℎ]. By induction hypothesis, Γ𝑘 has a clause 𝐴ℎ ▷ 𝐶ℎ[𝐿ℎ] at
index ℎ and 𝐼𝑝(Γ𝑘|ℎ−1) = 𝐼𝑝(Γ′

𝑘|ℎ−1). Thus, 𝐴ℎ ▷ 𝐶ℎ[𝐿ℎ] is disposable in Γ𝑘 and Θ can be
extended with a deletion step that removes it. Since Θ is made of inferences mirroring those in
Θ′ and Θ′ is fair, also Θ is fair. □

Suppose that 𝑆 is a first-order problem that is not in an SGGS-decidable fragment [13]. If 𝑆
is unsatisfiable, SGGS halts by refutational completeness. Otherwise, one can look for a Horn
subproblem 𝑆𝐻 of 𝑆 such that SGGS terminates on 𝑆𝐻 , and apply SGGS to 𝑆 with the literal
selection dictated by 𝑆𝐻 . If 𝑆𝐻 is satisfiable, SGGS halts with a model of both 𝑆 and 𝑆𝐻 . If
𝑆𝐻 is unsatisfiable, 𝑆 may still be satisfiable, SGGS may halt or not, but the literal selection
induced by 𝑆𝐻 is not the cause of non-termination: if it does not lead to a model, conflicts arise,
via conflict solving SGGS selects other literals, and searches elsewhere.

5. On the Length of SGGS-Derivations

Let 𝑆 be a set of clauses and 𝒜 its Herbrand base. A finite subset ℬ ⊆ 𝒜 is a finite basis. An
SGGS-derivation is in ℬ, if all cgi’s of all clauses on the trail during the derivation are made of
atoms in ℬ. A fair SGGS-derivation in a finite basis is finite [13, Thm. 1]. An SGGS-derivation
is ground, if all clauses on the trail during the derivation are ground. The following example
shows that a ground derivation may arise also if the input is not ground.



Example 5. Let 𝑆𝑛 be the following parametric set of Horn clauses (𝑛 ⩾ 0):
{(𝑖) P(f𝑛(a)), (𝑖𝑖) ¬P(f(𝑥)) ∨ P(𝑥), (𝑖𝑖𝑖) ¬P(𝑥) ∨ ¬P(f(𝑥)) ∨ . . . ∨ ¬P(f𝑛(𝑥))}. These sets
belong to an SGGS-decidable class named restrained where SGGS-derivations are ground and in
a finite basis [13]. The finite basis for 𝑆𝑛 is ℬ𝑛 = {P(f𝑘(a)) : 0⩽𝑘⩽𝑛}. The length of the
SGGS-derivation with 𝐼− is linear in 𝑛:

Γ0 : 𝜀 ⊢ Γ1 : [P(f
𝑛(a))] extend (𝑖)

⊢ Γ2 : [P(f
𝑛(a))], ¬P(f𝑛(a)) ∨ [P(f𝑛−1(a))] extend (𝑖𝑖)

⊢ Γ3 : [P(f
𝑛(a))], ¬P(f𝑛(a)) ∨ [P(f𝑛−1(a))],

¬P(f𝑛−1(a)) ∨ [P(f𝑛−2(a))] extend (𝑖𝑖)

⊢ . . .

⊢ Γ𝑛+1 : . . . , ¬P(f(a)) ∨ [P(a)] extend (𝑖𝑖)

⊢ Γ𝑛+2 : . . . , [¬P(a)] ∨ . . . ∨ ¬P(f𝑛(a)) extend (𝑖𝑖𝑖)

⊢ Γ𝑛+3 : . . . , [¬P(a)] ∨ . . . ∨ ¬P(f𝑛(a)),¬P(f(a)) ∨ [P(a)] move

⊢ Γ𝑛+4 : . . . , [¬P(f(a))] ∨ . . . ∨ ¬P(f𝑛(a)) resolve

⊢ . . .

⊢ Γ3𝑛+4 : ⊥, . . . resolve

where the derivation length is 3𝑛+4 = 𝑛+4+2𝑛 as it takes 2 steps (move and resolve) to eliminate
each of the 𝑛 literals in the last clause in Γ𝑛+4. Hyperresolution generates P(f𝑛−1(a)), . . . ,P(a)
and then ⊥. Unrestricted resolution does not stay in ℬ (e.g., resolving (𝑖) upon ¬P(f𝑛−1(𝑥)) in
(𝑖𝑖𝑖) gets a clause including ¬P(f𝑛+1(a))), and may generate exponentially many clauses in the
worst case (e.g., the 2𝑛+1 subclauses of the instance of (𝑖𝑖𝑖) where 𝑥← a).

Theorem 4. Given a set 𝑆 of Horn clauses, for all fair SGGS-derivations with 𝐼− as initial inter-
pretation, if the derivation is ground and in a finite basis ℬ, its length is linear in |ℬ|.

Proof: By [13, Lem. 1], for all stages 𝑗 (𝑗 ⩾ 0) of a fair derivation in a finite basis ℬ, |Γ𝑗 | ⩽ |ℬ|+1
and |Γ𝑗 | ⩽ |ℬ| if 𝑑𝑝(Γ𝑗) = Γ𝑗 . Let Θ denote a fair ground derivation in ℬ. Since Θ is ground,
𝑑𝑝(Γ𝑗) = Γ𝑗 holds at all stages, because ground literals have no intersection. Also, Θ is finite
by [13, Thm. 1]. Recall the behavior of SGGS with 𝐼− from Sect. 3. Since Θ is ground, no
SGGS-splitting (and hence no SGGS-deletion) applies, and the model-constructing phase of Θ is
made only of SGGS-extensions. If 𝑆 is satisfiable, no conflict ever arises, Θ itself is made only of
SGGS-extensions, and |Γ𝑗 | ⩽ |ℬ| at its final stage 𝑗 means that the number of SGGS-extensions
and hence |Θ| is in 𝒪(|ℬ|). If 𝑆 is unsatisfiable, a conflict with an 𝐼−-all-true conflict clause
must arise. Let Γ𝑖 ⊢ Γ𝑖+1 be the conflicting extension that adds to the trail such a conflict clause.
By Lemma 1, Θ is a refutation, and the number of SGGS-resolutions after stage 𝑖+ 1 is equal to
the cardinality of the dependence set of the conflict clause, which is bounded by |Γ𝑖|, hence by
|ℬ|. Since Θ is ground, SGGS-factoring and left splitting do not apply during the conflict-solving
phase. As there is at most one application of SGGS-move for every resolution step, the length
of the conflict-solving phase is in 𝒪(|ℬ|). Since the length of both model-constructing and
conflict-solving phases is in 𝒪(|ℬ|), the claim follows. □



problem # Koala (𝐼−) Koala (𝐼+) E 2.4 Vampire 4.4 iProver 3.5
class sets SAT UNS SAT UNS SAT UNS SAT UNS SAT UNS
Horn 1,220 131 581 66 467 43 889 79 969 106 970

Table 1
Results of Koala, E, Vampire, and iProver on Horn problems within 300 sec of wall-clock time.

all SAT UNS EPR Stratified Restrained Sort-restrained
average 148 260 123 227 191 21 175
median 37 120 31 121 58 7 40

Table 2
Average and median length of the derivations by Koala on Horn problems.

As a corollary, if 𝑆 is ground, no inference introduces new atoms, and ℬ is given by the set
of the ground atoms occurring in 𝑆. While also hyperresolution behaves linearly, given a set
of ground Horn clauses, other resolution-based strategies (e.g., positive or negative resolution,
ordered resolution) can still generate an exponential number of clauses [15, Ch. 1].

6. Experiments

We focus on Horn problems as Horn logic is the subject of this paper. We wrote a script that
considers all 5,000 problems without equality in TPTP 7.4.0, transforms problems into clausal
form if needed and detects Horn problems. This resulted in 1,220 Horn problems that we
submitted to the SGGS prototype prover Koala,2 with 𝐼− or 𝐼+ as initial interpretation, E,
Vampire, and iProver. All experiments were run single-threaded on a 12-core Intel i7-5930K
3.50GHz machine with 32GB of main memory.

Table 1 reports how many problems were found satisfiable (SAT) or unsatisfiable (UNS) by
each tool. Since Koala with 𝐼− succeeded on 712 of the 1,220 Horn sets (58% success rate),
whereas Koala with 𝐼+ succeeded on 633 of them (51% success rate), the results suggest that
𝐼− is more effective than 𝐼+ on Horn problems. In comparison with the other provers, Koala is
ahead on the satisfiable instances but remains behind on the unsatisfiable ones. Indeed, SGGS
works by building models, whereas resolution-based strategies are notoriously very good at
discovering the unsatisfiability of Horn sets.

Table 2 displays data about the length of SGGS-derivations produced by Koala, distinguishing
between satisfiable and unsatisfiable Horn problems, and among four classes that are SGGS-
decidable because they admit finite bases [13].

2Koala is available at https://github.com/bytekid/koala, the experimental data at http://cl-informatik.uibk.ac.at/
users/swinkler/koala/horn.html or http://profs.sci.univr.it/~bonacina/sggs.html.

https://github.com/bytekid/koala
http://cl-informatik.uibk.ac.at/users/swinkler/koala/horn.html
http://cl-informatik.uibk.ac.at/users/swinkler/koala/horn.html
http://profs.sci.univr.it/~bonacina/sggs.html


7. Discussion

We studied what happens when SGGS with sign-based semantic guidance is applied to Horn
clauses. If the input is Horn, SGGS reasons forward (a.k.a. bottom-up) or backward (a.k.a. top-
down), depending on whether the guiding interpretation is all-negative (𝐼−) or all-positive (𝐼+).
SGGS with 𝐼− generates the least fixpoint model of a set of definite clauses, and if the input
is unsatisfiable, the first conflict with negative conflict clause announces a refutation: while
hyperresolution may get ⊥ in one step, SGGS may get it with a multi-step conflict explanation
and solving phase, because SGGS builds a model and has to fix it when a conflict arises.

SGGS with 𝐼− and hyperresolution with subsumption have the same termination behavior
on Horn (note that SGGS-deletion and subsumption are not equivalent, because SGGS-deletion
depends on the order of appearance of clauses on the trail, e.g. [3, Ex. 2 and Lem. 1]). Fur-
thermore, SGGS can learn from a Horn subproblem of a non-Horn problem a literal selection
strategy useful for termination on the non-Horn problem. The model-based character of SGGS
pays off on satisfiable inputs, as seen in the experiments comparing the Koala prototype with
mature theorem provers such as Vampire [16], E [17], and iProver [18].

Horn problems are not the playground that SGGS was designed for, and hence it is plausible
that they do not exercise all its features, such as its conflict-driven nature and its similarity to
CDCL. This is not surprising, because the approaches to generalize features of DPLL-CDCL from
propositional to first-order logic (e.g., first-order splitting [19], the model evolution calculus [20],
SGGS [3]) were designed having non-Horn problems in mind, as resolution-based strategies are
efficient on Horn problems. Thus, the results of this paper show that SGGS behaves well also in
a realm that was not its motivating target.

A main direction for future work is to endow SGGS with equality reasoning by building
the equality axioms in both inference system and model representation. The model-based and
conflict-driven style of SGGS also makes it an attractive candidate for integration in frameworks
for satisfiability modulo theories such as CDSAT [21, 22]. The Koala prototype may be developed
in many ways, including preprocessing the input w.r.t. unit resolution, unit-resulting resolution,
and subsumption, and devising caching techniques to avoid recomputations.
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