
Approximating Multi-Perspective Trace
Alignment Using Trace Encodings?

Alessandro Gianola, Jonghyeon Ko, Fabrizio Maria Maggi,
Marco Montali, and Sarah Winkler

Free University of Bozen-Bolzano, Italy
{gianola}@inf.unibz.it, {jongko}@unibz.it, {maggi, montali, winkler}@inf.unibz.it

Abstract. Alignments provide sophisticated diagnostics that pinpoint
deviations in a trace with respect to a process model. One crucial aspect
is to consider, in the alignment task, not only the control flow perspec-
tive but also other sources of information available in event logs like
data payloads. However, the combination of these dimensions makes the
problem of multi-perspective trace alignment highly challenging since
the number of traces accepted by the model is typically infinite. In this
paper, we address this problem by proposing an approximate approach
to alignment computation: instead of computing the optimal alignments
based on the complete knowledge about a process trace available in the
log, we perform approximate alignments based on lossy trace encodings
that only consider certain information about the trace. The advantage of
this approach is twofold. First, the trace alignment task is much faster.
Second, the analyst can choose what type of information is relevant for
computing the alignments by selecting the encodings that represent a
trace based on that information. Our experiments show that the ap-
proximate approach is faster than the optimal one and, for encodings
sufficiently rich, able to provide accurate results.

Keywords: Conformance checking · Trace Encoding · Multi-Perspective
process mining · SMT

1 Introduction

Conformance checking is one of the central tasks of process mining [2]. Its main
goal is to compare a reference process model with an event log containing actual
process executions to understand whether such concrete executions deviate from
the model. Within the family of conformance checking techniques, a prominent
approach is to measure and explain deviations through alignments.

An alignment is intuitively a sequence of pairs, called moves, consisting of
an event from the log and a transition in the process model. Given a suitable
function that assigns cost to moves, an optimal alignment is an alignment whose

? This research has been partially supported by the Italian Ministry of University and
Research (MUR) under the PRIN project PINPOINT Prot. 2020FNEB27, and by
the Free University of Bozen-Bolzano with the ADAPTERS and CAT projects.

2 A. Gianola et al.

overall cost is minimal. This is notoriously challenging to compute, as it requires
to solve an optimization problem over a finite portion of the space of model
traces, where the portion to be considered depends on the length of the trace
under scrutiny, and comes with the additional computational burden of com-
puting trace distances. A plethora of techniques have been therefore defined to
tackle the problem in an optimal [2] or approximate [1] way.

In the alignment task, however, not only the control flow perspective is cru-
cial, but also other sources of information from event logs like data payloads.
This has led to a recent series of approaches to tackle data-aware conformance
checking [3, 16, 17, 4]. There, Data Petri Nets (DPNs) [16, 10] are the reference
model to represent a process that accounts for control-flow and data, with pro-
cess variables that can carry data values of different types.

The standard way for measuring the distance between a log trace and a
DPN is to compute optimal alignments, based on a notion of distance that
tackles at once the events, their orderings, and their data payloads. However, in
the presence of models with rich data and control flow perspectives, computing
optimal alignments can be extremely costly in terms of performance. This is also
due to the fact that even by bounding the maximum length of model traces, the
number of them is usually infinite, because of data. This calls for sophisticated
techniques to handle the data component.

In this paper, we propose an alternative approach for data-aware conformance
checking, which approximates optimal alignments based on machine learning
techniques, in particular lossy trace encodings [12, 14]. To this end, we do not
work directly on models, but on sets of abstract traces. Roughly, our approach
proceeds in three stages:

(1) We build a set T of abstract traces, i.e., classes of traces representative for all
possible behaviors of the process. For this set, we propose two possibilities:
(1a) For the class of DPNs whose transition guards are only variable-to-
constant comparisons, we show how all possible behaviors up to a bounded
length can be succinctly represented by a finite set of abstract traces. (1b)
For DPNs with numeric variables but more complex guards, such a represen-
tation is in general not possible. In this case, our approach can be applied
by taking as T simply a set of “happy paths”, i.e., traces that are con-
sidered representative of the process behavior (e.g., obtained by collecting
sufficiently many cases).

(2) We use machine learning techniques known as encodings to represent T as a
set of vectors in a vector space. Here, different encodings can be employed to
preserve from the abstract traces the information that is deemed most rele-
vant for the conformance checking task. The result, called behavior encoding
space is a compact numeric representation of all relevant behaviors.

(3) In order to check the conformance of a concrete trace, we apply the encod-
ing from the previous stage to it, obtaining a vector X, and subsequently
compute the k vectors from the behavior encoding space that are closest to
X, using a kNN-based method. From these vectors, we can then get back
the abstract traces that are considered closest to the input trace.

Approximating Multi-Perspective Trace Alignment Using Trace Encodings 3

Note that the class of DPNs in (1a) has been found expressive and useful in
practice, and is amenable to automatic discovery techniques [11, 8]. Moreover, it
is known that the process run in an optimal alignment can be upper-bounded in
length in terms of the given trace [3], and T is a complete set of representatives.
Therefore, the conformance checking task can be reformulated as the task to
select a suitable abstract trace from T , without loss of precision, which justifies
the subsequent approximation approach in stages (2) and (3).

We experimentally validate our approach for both settings (1a) and (1b),
comparing the results with the conformance checker CoCoMoT [3]. These ex-
periments show that abstract traces (1a) together with smart trace encodings
and vector space distance measures allow for a good approximation of the opti-
mal alignments, in terms of precision and similarity. Moreover, we show that even
when using a plain trace set as a representation of the process behaviors (1b),
the encoding-based approach approximates the optimal one with high precision.

The remainder of this paper is structured as follows: We first recall back-
ground about DPNs and alignments (Section 2). Then, we present our notions of
trace-based distance function and abstract traces (Section 3), and subsequently,
trace encodings (Section 4). We evaluate our approach in Section 5. Finally, we
discuss related work (Section 6) and conclude (Section 7).

2 Background and Preliminaries

We use a restricted but significant class of Data Petri nets (DPNs) for modeling
multi-perspective processes, adopting the same formalization as in [3, 16].

Let V be a set of process variables, each with a type and an associated domain:
integers (int), or rationals (rat).1 We consider two disjoint sets of annotated
variables V r = {vr | v ∈V } and V w = {vw | v ∈V } to be read and written
by process activities, as explained below. Based on these, we define constraints
according to the grammar for c:

c ::= vz � z | vr � q | c ∧ c

where vz ∈ Vint, z ∈ Z, vq ∈ Vrat, and q ∈ Q, and � is in {≥,≤, >,<,=}. Our
constraints are thus more restrictive than in other sources [3], permitting only
variable-to-constant comparisons, but this will allow us to define precise abstract
traces. The set of constraints over variables V is denoted C(V); they are used
for read and write operations in process activities.

Definition 1 (DPN). A tuple N = (P, T, F, `, A, V, guard) is a Petri net with
data (DPN), where:
– (P, T, F, `) is a Petri net with two non-empty disjoint sets of places P and

transitions T , a flow relation F : (P × T) ∪ (T × P) → N and a labeling
function ` : T → A ∪ {τ}, where A is a finite set of activity labels and τ is
a special symbol denoting silent transitions;

1 Booleans and strings can be encoded as integers, as commonly done [3, 17].

4 A. Gianola et al.

– V is a set of typed process variables; and
– guard : T → C(V r ∪ V w) is a guard assignment; for t ∈ T with `(t) = τ we

assume that guard(t) does not use variables in V w.

Transition guards serve to simultaneously read and write variables. For in-
stance, a transition with guard (xr > 3) can only be taken if the current value
of variable x is greater than 3 (the superscript r indicates that the guard is on
the current, or read, variable). On the other hand, a guard (xw > 1) ∧ (xr < 4)
requires that the current value of x is smaller than 4 and, at the same time, it
non-deterministically writes to x a new value that is greater than 1 (superscripts
w refer to written values). Note that transition guards with disjunctions can be
simulated by employing multiple transitions between the same places.

As customary, given x ∈ P ∪ T , we use •x := {y | F (y, x) > 0} to denote
the preset of x and x• := {y | F (x, y) > 0} to denote the postset of x. In order
to refer to the variables read and written by a transition t, we use the notations
read(t) = {v | vr ∈ Var(guard(t))} and write(t) = {v | vw ∈ Var(guard(t))}.

To represent the current values of variables, we consider a state variable
assignment, i.e., a (possibly partial) function α that assigns a value (of the right
type) to each variable in V . We denote by dom(α) the domain of α. A state in a
DPN N is a pair (M,α) constituted by a marking M : P → N for the underlying
Petri net (P, T, F, `), plus a total state variable assignment α. Therefore, a state
simultaneously accounts for the control flow progress and for the current values
of all variables in V , as specified by α.

We fix one state (MI , α0) as initial, where MI is the initial marking of the
underlying Petri net and α0 specifies the initial value of all variables in V .
Similarly, we denote the final marking as MF , and call final any state of the
form (MF , αF) for some αF .

A transition variable assignment is a partial function β with dom(β) ⊆
V r ∪V w that assigns a value to annotated variables, namely β(x) ∈ D(type(x)),
with x ∈ V r ∪ V w. Transition variable assignments are used to specify how
variables change as the result of activity executions (cf. Def. 2).

We now define when a Petri net transition may fire from a given state.

Definition 2 (Transition firing). A transition t ∈ T is enabled in state
(M,α) if there exists a transition variable assignment β such that:

– dom(β) = Var(guard(t)): β is defined for the variables in the guard;
– β(vr) = α(v) for every v ∈ read(t), i.e., β is as α for read variables;
– β |= guard(t), i.e., β satisfies the guard; and
– M(p) ≥ F (p, t) for every p ∈ •t.

An enabled transition may fire, producing a new state (M ′, α′), s.t. M ′(p) =
M(p) − F (p, t) + F (t, p) for every p ∈ P , and α′(v) = β(vw) for every v ∈
write(t), and α′(v) = α(v) for every v 6∈ write(t). A pair (t, β) as above is

called (valid) transition firing, and we denote its firing by (M,α) (t,β)−−−→ (M ′, α′).

Informally, a transition firing between the current state (M,α) and the next
state (M ′, α′) is a couple (t, β) where: i) t ∈ T is a transition that is enabled in

Approximating Multi-Perspective Trace Alignment Using Trace Encodings 5

the ‘token game’ sense of standard Petri nets; ii) β is a function connecting the
values of the read variables (matching the values assigned by α in the current
state) to the values of the write variables (matching the values assigned by α′ in
the next state); iii) β satisfies the guard associated to t.

Based on this single-step transition firing, we say that a state (M ′, α′) is
reachable in a DPN with initial state (MI , α0) iff there exists a sequence of valid

transition firings of the form f = 〈(t1, β1), . . . , (tn, βn)〉 such that (MI , α0) (t1,β1)−−−−→
. . . (tn,βn)−−−−−→ (M ′, α′). Moreover, such a sequence f is called a process run of N if

(MI , α0) f−→ (MF , αF) for some αF , i.e., if the run leads to a final state. As in [3,
17], we restrict to DPNs where a final state is reachable. We denote the set of
transition firings of N by F(N), and the set of process runs by Runs(N).

Example 1. LetN be as shown below (with initial marking [p0] and final marking
[p3]). Runs(N) contains, e.g., 〈(a, {xw 7→ 12}), (b, {yw 7→ 1}), (c, {xr 7→ 12})〉
and 〈(a, {xw 7→ 1}), (b, {yw 7→ 1}), (d, {xr 7→ 1})〉, for α0 = {x, y 7→ 0}.

p0
a

xw ≥ 0 p1
b

yw > 0 p2 c

xr ≥ 10

p3
e

yw = 5 ∧ xr ≤ 20

d

xr < 10

Given a set S, we denote S∗ as the set of sequences of elements from S, and
M(S) as the set of multisets over S. For a set A of activity labels, an event
is a pair (b, α) for b ∈ A and α a (typically partial) state variable assignment,
associating values to variables in V .

Definition 3 (Log trace, event log). Given a set E of events, a log trace
e ∈ E∗ is a sequence of events in E and an event log L ∈ M(E∗) is a multiset
of log traces from E.

Conformance checking aims at constructing an alignment of a given log trace
e wrt the DPN N , by matching events in the log trace against transitions firings
in a process run. Since not every event can typically be put in correspondence
with a transition firing, a “skip” symbol � is used. Let E� = E ∪ {�} and,
given N , the extended set of transition firings F� = F(N) ∪ {�}.

Given a DPN N and a set E of events as above, a pair (e, f) ∈ E� × F� \
{(�,�)} is called move. A move (e, f) is a log move if e ∈ E and f =�; a model
move if e =� and f ∈ F(N); and synchronous move if (e, f) ∈ E × F(N).

For a sequence of moves γ = (e1, f1), . . . , (en, fn), the log projection γ|L of γ
is the maximal subsequence of e1, . . . , en in E∗, and the model projection γ|M of
γ is the maximal subsequence of f1, . . . , fn in F(N)∗ (i.e., without � symbols).

Definition 4 (Alignment). Given N , a sequence of legal moves γ is an align-
ment of a log trace e if γ|L = e, and it is complete if γ|M ∈ Runs(N).

Example 2. The sequences γ1 and γ2 below are possible complete alignments of
the log trace e = 〈(a, {x 7→ 2}), (b, {y 7→ 1}), (d, ∅)〉 wrt the DPN from Ex. 1:

γ1 = a x 7→ 2
a xw 7→ 2

b y 7→ 1
b yw 7→ 1

d
d γ2 = a x 7→ 2

a xw 7→ 12
b y 7→ 1
b yw 7→ 1

d
�
�
c

6 A. Gianola et al.

We denote by Align(N , e) the set of complete alignments for a log trace e
wrt N . A cost function is a mapping κ : MovesN → R+ that assigns a cost to
every move. It is naturally extended to alignments as follows.

Definition 5 (Cost). Given N , e and γ = (e1, f1), . . . , (en, fn) ∈ Align(N , e),
the cost of γ is obtained by summing up the costs of its moves, that is, κ(γ) =∑n
i=1 κ(ei, fi). Moreover, γ is optimal for e if κ(γ) is minimal among all com-

plete alignments for e, namely there is no γ′ ∈ Align(N , e) with κ(γ′) < κ(γ).

For instance, using the standard cost function from [3, Def. 6] and the align-
ments in Example 2, we would have κ(γ1) = 0 and κ(γ2) = 3. We denote the
cost of an optimal alignment for e wrt N by κoptN (e).

3 Trace-Based Conformance Checking

In this section, we develop notions to perform (approximated) conformance
checking on the basis of trace classes rather than the model itself.

Abstract Trace. In order to simulate the conformance checking procedure, we
first extract a set of abstract traces that are representative for the given DPN.
To that end, we use the following definitions, for a DPN with data variables V .
A variable range assignment ι is a (possibly partial) function from the set of
data variables V to intervals, such that for all v ∈ V , ι(v) is of the form [l, u],
]l, u], [l, u[, or]l, u[, for l, u numeric values in dom(v). Then, given the set T of
transitions, an abstract event is a pair (t, ι), where t ∈ T and ι is a variable range
assignment, and an abstract trace is a sequence of abstract events.

A trace e = 〈e1, . . . , en〉 matches an abstract trace f = 〈f1, . . . , fm〉 if m = n
(same length); and for all 1 ≤ i ≤ n, if ei = (l, α) with corresponding fi = (t, ι),
it holds that l = `(t), i.e., they have the same label; and dom(α) = dom(ι), and
for all v ∈ dom(α), the value α(v) is in the interval ι(v). Finally, a finite set of
abstract traces T is representative for a DPN N up to length k if for every trace
e with |e| ≤ k and κoptN (e) = 0, the trace e matches some ea ∈ T .

Our approach exploits that for a given log trace and DPN, the length of a
process run in an optimal alignment can be bounded upfront. More precisely:

Lemma 1 ([5, Lem. 2]). Given a log trace e of length n and a DPN N , there
is a computable function maxlen(N , n) s.t. e has an optimal alignment γ wrt
the standard cost function s.t. γ|M has length at most maxlen(N , n).

Let a trace e correspond to a process run f if, for 〈f1, . . . , fn〉 the subsequence
of non-silent transitions in f , e = 〈e1, . . . , en〉, and for all i, 1 ≤ i ≤ n, if fi =
(t, β) then ei = (l, α) such that `(t) = l and α(v) = β(vw) for all v ∈ dom(β).

Using this notion, we get the following useful corollary of Lemma 1:

Theorem 1. Let a set of abstract traces T be representative for a DPN N up
to maxlen(N , n). Then, for every trace e with |e| ≤ n, there is an optimal
alignment γ such that T has an abstract trace ea that corresponds to γ|M .

Approximating Multi-Perspective Trace Alignment Using Trace Encodings 7

This means that, in order to find the process run associated with an optimal
alignment for a given log trace, it suffices to consider abstract traces in a set of
representative abstract traces T .

Computing representative sets of abstract traces. We now show one concrete
method to compute a representative set T for a DPN N .
1. For a given k, we enumerate all transition sequences of N from the initial to

a final marking that have length at most k, and select from these the subset
T ′ of sequences which correspond to actual process runs. This filtering can
be done, e.g., by checking with an SMT encoding (as done in CoCoMoT)
whether the sequence of transitions is satisfiable.

2. For every sequence 〈t1, . . . , tn〉 in T ′ and 1 ≤ i ≤ n, we define a trace
range substitution ιi as follows. First, a variable v ∈ V is in dom(ιi) iff
v ∈ write(ti). For such v, let j (s.t. i < j ≤ n) be the smallest number
such that either j = n, or v ∈ write(tj+1). Thus, the value of v written
in ti persists until instant j. All guards in ti, . . . , tj are, by construction,
conjunctions of variable-to-constant comparisons. Let L be the greatest lower
bound set for v, and U the smallest upper bound set for v in ti, . . . , tj ; if no
respective bound occurs, L = −∞ or U = ∞. We fix ιi(v) to either [L,U],
[L,U [,]L,U] or]L,U [, depending on whether L and U are included or not.
Finally, T consists of all 〈(t1, ι1) . . . , (tn, ιn)〉 such that 〈t1, . . . , tn〉 is in T ′.

It can be checked that the set T constructed in this way is indeed a representative
set of abstract traces.

Example 3. For N as in Example 1, a representative set of abstract traces up
to length 4 consists of 〈(a, x 7→ [0, 10[), (b, y 7→]0,∞[), (d, ∅), (e, y 7→ [5, 5])〉,
〈(a, x 7→ [10,∞[), (b, y 7→]0,∞[), (c, ∅)〉, 〈(a, x 7→ [0, 10[), (b, y 7→]0,∞[), (d, ∅)〉,
and 〈(a, x 7→ [10, 20]), (b, y 7→]0,∞[), (c, ∅), (e, y 7→ [5, 5])〉.

Measuring the Distance between Two Traces. In conformance checking,
one usually measures the distance between a trace and a model run. Here, we
approximate such a cost by taking the distance between two traces:

Definition 6. For log traces e = 〈e1, . . . , em〉 and e′ = 〈e′1, . . . , e′n〉, the trace
distance δ(e|i, e′|j) is recursively defined for all 0≤ i≤m and 0 ≤ j ≤ n:

δ(ε, ε) = 0 δ(e|i+1, ε) = QL(ei+1) + δ(e|i, ε) δ(ε, e′|j+1) = QL(e′j+1) + δ(ε, e′|j)

δ(e|i+1, e
′|j+1) = min


Q=(ei+1, e

′
j+1) + δ(e|i, e′|j)

QL(ei+1) + δ(e|i, e′|j+1)
QL(e′j+1) + δ(e|i+1, e

′|j)

Here Q= and QL are two penalty functions, the former for synchronous moves
and the latter for asynchronous moves in one of the logs. These penalties can
be instantiated in different ways. We adapt the standard cost function [17, 3] to
two traces and set

QL(b, α) = 1 Q=((b, α), (b′, α′)) =

{
|{v ∈ dom(α) | α(v) 6= α′(v)}| if b= b′

∞, otherwise

8 A. Gianola et al.

For instance, for the log trace e = 〈(a, {x 7→ 2}), (b, {y 7→ 1}), (d, ∅)〉 from
Example 2 and e′ = 〈(a, {x 7→ 12}), (b, {y 7→ 1}), (c, ∅)〉 (matching the process
run of γ2), we have δ(e, e) = 0 and δ(e, e′) = 3.

4 Approximating Alignments with Trace Encodings

In this section, we introduce an encoding approach for abstract traces (Sec-
tion 4.1) and then a kNN-based method to obtain an approximate solution of
the trace alignment problem (Section 4.2).

4.1 Encodings for Abstract Traces

To have a lossy representation of abstract traces, we use an encoding E : T → Rn
with n ∈ N that transforms each abstract trace into a vector of the n-dimensional
Euclidean space Rn. We call the resulting set of vectors E(T) behavior encoding
space. The literature provides encoding functions to represent strings [6], which
we can directly employ for representing the control-flow dimension of the abstract
traces. For example, the boolean encoding represents a trace through a vector
of boolean values each indicating if a specific activity label is present or not in
the trace. The frequency-based encoding, instead of boolean values, represents
the control flow in a trace with the frequency of each activity label in the trace.
Another way of encoding a trace is by taking into account also information about
the order in which events occur in it, as in the simple index encoding. Here, each
dimension corresponds to a position in the trace and its value is a numeric code
representing the activity label occurring in that position.

A more complex control-flow encoding is obtained by associating each di-
mension in Rn to a different sub-trace of size p (i.e., p-grams). Each feature of
this encoding represents how frequently and “compactly” a sub-trace appears
in the trace of interest. For simplicity, we consider 2-grams, but the following
can be easily generalized to p-grams. Given an abstract trace ea, we employ a
simplified version of the encoding from [14] to transform ea into a vector in Rn in
two steps. First, we identify all 2-grams occurring in all the abstract traces in T .
Then, we construct a vector in Rn where each dimension of the vector is a real
number representing the frequency and the compactness of a specific 2-gram.
E.g., for the 2-gram ab, this value is given by Eab(ea) =

∑
1≤i≤|ea|−1 λ

i[Λi]ab,

where [Λi]ab → 0, 1 indicates the occurrences of ab at distance i in ea, and
λ ∈]0, 1] is a parameter that represents the penalty provided for less compact
2-grams. Lower values of λ correspond to a higher distance between the numeric
representation of more compact 2-grams wrt less compact ones (if λ is equal to
1 the compactness has no influence on the feature values of this encoding).

Example 4. Table 1 shows the 2-gram encodings of some traces over the activity
labels A = {a,b, c}. Trace cb has only one non-zero dimension Ecb(cb) = λ; trace
caa has two non-zero dimensions: Eca(caa) = λ+ λ2 (ca occurs once with c and
a at distance 1, i.e., caa, and once with c and a at distance 2, i.e., caa), and
Eaa(caa) = λ (a is repeated after a single step in the trace only once, i.e., caa).

Approximating Multi-Perspective Trace Alignment Using Trace Encodings 9

aa ab ac ba bb bc ca cb cc

caba λ2 λ 0 λ 0 0 λ+ λ3 λ2 0
caa λ 0 0 0 0 0 λ+ λ2 0 0
cb 0 0 0 0 0 0 0 λ 0

Table 1. encoding of traces caba, caa and cb.

In addition to control-flow, abstract traces include variable range assignments
from the set of data variables V linked to each activity. For instance, if variable
Amount ∈ [10, 20[triggers activity b after a in ea, then, the abstract event
corresponding to b contains interval [10, 20[for variable Amount. All the possible
intervals for a variable (derived from all the abstract traces for a given DPN)
have to be transformed into specific values to apply existing methods for trace
encoding like the ones in [12]. To do so, we encode each variable v of each
abstract event ei using a feature space of interval features that are boolean
features composed of v and a possible interval I. In this way, for each abstract
event ei, we have a set of interval features with values Dei,v,I given by:

Dei,v,I =

{
1 if ι(v) ⊆ I,
0 otherwise

(1)

where ι(v) is the variable range assignment in ei. As an example, given a
set of possible intervals for variable Amount {[0, 10[, [10, 20[, [10, 30[}, an ab-
stract event ei = (l, Amount = [16, 24]) is encoded by three boolean features:
Dei,Amount:[0,10[= 0, Dei,Amount:[10,20[= 0, and Dei,Amount:[10,30[= 1.

We use these boolean features as “event attributes” of each abstract event in
an abstract trace. In this way, we can directly apply existing trace encodings [12]
to abstract traces. These encodings can include control flow features (that can
range from a simple boolean encoding to more complex encodings like the one
based on p-grams), and data-flow features (derived from the interval features
introduced above). We point out here that the choice of the encoding is part
of the analysis. The analyst can select the information that is more relevant
for computing the alignments depending on the specific process and the specific
context in which the alignments are computed. The encoded abstract traces in
the behavior encoding space E(T) are used to identify the top-k alignments of
a (concrete) log trace e as described in the next section.

4.2 Approximating Alignment Computation using kNN

In the alignment problem, we assume to have a set of (abstract) traces ea ∈ T
and a set of non-conforming (concrete) log traces e. The trace alignment task
consists in searching the model trace e∗a ∈ T that is the closest to each log trace
according to a given distance/cost function δE : Rn × Rn → R.

When in the alignment task, together with the control-flow also other per-
spectives available in event logs like timestamps and data payloads are taken
into consideration, this multi-perspective trace alignment becomes a challenging
problem. However, if we use encodings to represent model and log traces, we can
select the most relevant information needed to compute the alignments and, at

10 A. Gianola et al.

the same time, reduce the time needed to perform the task. The log traces and
the data space including the possible model traces (i.e., the possible alignments)
can be explored, once a log trace to be aligned is given, by using k-nearest neigh-
bors (kNN) algorithms. By using trace encoding, we can compute the encodings
of the log trace E(e) and of all the possible model traces E(ea), and compute
their distance using a distance function δE(ea, e) := 〈E(ea), E(e)〉. Then, the
trace alignment problem is solved by computing the approximate alignment for
an observed log trace e as min argea

δE(ea, e). In particular, the approximate
alignment(s) can be computed using kNN algorithms that find the k nearest
data points to a query x from a set X of data points according to a distance
function. By casting the trace alignment problem to a kNN problem, we can
find the best k alignments of a log trace e in the space of the model traces. This
can be done by using ad-hoc data structures like Ball-Tree and KD-Tree [13]
to retrieve the k-neighborhood of e by pre-ordering (indexing) the space of the
(embedded) model traces wrt a distance function δE .

kNN algorithms, being unsupervised, give to all features in E(ea) the same
weight. However, since control-flow is, in general, represented by a lower number
of features wrt the data flow, an equal distribution of the weights would penalize
the control-flow, which is, instead, crucial for the alignment task. Moreover, since
each variable is divided into interval features to represent the data-flow of the
abstract trace, based on the possible intervals for that variable, a variable having
a higher number of possible intervals would have a higher weight.

To overcome this problem, it is possible to use weighted kNN algorithms
and force a different distribution of weights. This can be done in two steps.
First, we separate E(ea) into EA(ea) and EV (ea) containing the control-flow
and the data-flow features for trace ea respectively. Then, we fix a parame-
ter s ∈ [0, 1] and assign weights s and 1 − s, to EA(ea) and EV (ea). In this
way, if, for instance, s = 0.4, we can assign weight 0.4 to the entire set of
control flow features and weight 0.6 to the entire set of data features. Sec-
ondly, to avoid that a data variable having more possible intervals in EV (ea)
gets a higher weight, we uniformly distribute the weight 1 − s over the data
variables and not over the interval features. For instance, if we have two data
variables Amount and Point with possible intervals Amount ∈ {[0, 10[, [10, 20[,
[10, 30[} and Point ∈ {[0, 5[, [5, 10[}, respectively, weight 1 − s = 0.6 is uni-
formly distributed over the two data variables and, then, the resulting weights
(0.3 for each data variable) are distributed over the corresponding interval fea-
tures, leading the weight distribution (0.1, 0.1, 0.1, 0.15, 0.15) over the interval
features (Amount : [0, 10[, Amount : [10, 20[, Amount : [10, 30[, Point : [0, 5[,
and Point : [5, 10[). Therefore, each interval feature for a data variable v1 having
more possible intervals gets a lower weight, but the sum of the weights of all the
interval features of each data variable is the same. In this way, considering all
the features l1, ..., lp from EA(ea) and v1, ..., vq from EV (ea), we define a variable
weight w = (wl1 , ..., wlp , wv1 , ..., wvq), where

∑
w = 1,

∑
(wl1 , ..., wlp) = s, and∑

(wv1 , ..., wvq) = 1−s. In the kNN algorithm, we multiply the features in E(ea)
by w to normalize them.

Approximating Multi-Perspective Trace Alignment Using Trace Encodings 11

The computation of approximate alignments is more efficient than the com-
putation of optimal alignments. However, this computational gain comes with
a loss in precision. It is well-known that the generation of precise encodings for
graph data with loops is NP-complete [6]. To keep the information preserved at
most, we investigate different encodings recently provided by the process mining
community, as well as the proposed simplified p-grams encoding, in next section.

5 Experimentation

In this section, we report on experiments that contrast our approximate, encoding-
based approach with precise conformance checking techniques. As outlined in the
introduction, we performed two experiments to that end. (a) First, we compare
our encoding-based approach with the state-of-the-art data-aware conformance
checker CoCoMoT [3]: here, for a given trace, we compare the best-matching
model run as computed by CoCoMoT, with the best-matching abstract trace
as estimated by our approximate approach (recall that every model run corre-
sponds to a unique abstract trace). (b) Second, we consider the situation where
the process behaviors are specified by a set of traces that plays the role of a
reference log. Here, for a given trace, we compare the best-matching trace from
the reference log according to the distance function from [17], with the best-
matching trace as estimated by our approximate approach. This second setting
can be of interest if no DPN is available; but the experiment also helps to study
specifically how well encodings can emulate the distance function.

Consequently, for stage (1) of our approach, process behaviors were repre-
sented as follows: (1a) We represented all behaviors of a DPN with variable-
to-constant comparisons by a complete set T of abstract traces, as described
in Section 3. (1b) We took as T a plain set of traces. Then, we (2) applied
the trace encodings discussed in Section 4.1 to obtain the behavior encoding
space, and (3) compared the returned approximate alignments with the optimal
ones. The implementation we used for the experiments is publicly available at
https://github.com/jonghyeonk/Multi-Trace-Alignment.

Datasets. For (1a), we used a DPN modeling a road fine management pro-
cess [10, Fig. 13] that was mined automatically and where all guards are variable-
to-constant comparisons. With the proposed abstract trace, we generated a rep-
resentative set T with 639 abstract traces, as well as a test set L of 1,885 log
traces with random values which comply with the DPN to a varying degree.

For (1b), we considered the Sepsis [15] event log, which represents the path-
way of patients with symptoms of sepsis in a Dutch hospital. Here, we took T
as all traces in the above dataset. As test set, we generated a log L consist-
ing of 30 non-compliant log traces by modifying 10 traces in T based on three
types of deviations: (i) modification of an activity label, (ii) modification of a
categorical feature (‘Diagnosis’), and (iii) modification of a numerical feature
(‘CRP’) obtained by multiplying the original value by 10. Statistics of the trace
representations T are summarized in Table 2.

12 A. Gianola et al.

Road Fines Sepsis

of abstract traces 639 # of events 3,422 # of traces 1,079 # of events 15,214
of activities 9 trace length 1∼6 # of activities 16 trace length 3∼185
of data variables 5 # of data variables 2

Table 2. Descriptive statistics of the trace representations T for the datasets.

Experiment Setup. For (1a) the Road Fines experiment, for each trace e
in the test set L, we computed the optimal alignment γ and the associated
process run γ|M using CoCoMoT, as well as its (unique) matching abstract trace
ea. Then, we compared ea with the result of the encoding-based approach. To
compute γ|M , we used the default settings of CoCoMoT, including its heuristic
to determine maxlen(N , |e|), which was obtained as |e| + m, where m is the
length of the shortest trace accepted by N .

For (1b) the Sepsis experiment, for each trace e in the test set L, we computed
the trace e′ in T such that δ(e, e′) is minimal according to the trace distance
(Definition 6), and compared it with the result of the encoding-based approach.

Experimental Settings. For both experiments, we used the same settings: we
set the split parameter s for feature weights to 0.5, selected the top k alignments
with k = {k(10%), k(20%), k(30%)} (k is the percentage of abstract traces returned)
using a kNN algorithm,2 and used three standard distance metrics (Cosine,
Manhattan, Euclidean) with the following five encodings [12, 14]:

– aggregate: the control-flow is represented using numerical features indicating
the frequency of each activity label. Similarly, for categorical data variables,
we use numerical features indicating the frequency of each possible categori-
cal value. For numerical data variables, instead, we use the average, standard
deviation, max, min, and sum of the values;

– boolean: the numerical data variables are represented as in the aggregate
encoding. The control-flow and the categorical data variables are, instead,
represented through boolean features (true/false) indicating whether a cer-
tain activity label or a certain categorical value is present in the trace;

– complexindex : this is the complex-index encoding introduced in [12]. The
control flow is represented using the simple-index encoding, i.e., each control-
flow feature corresponds to a position in the trace and the value of the
feature is the activity occurring in that position of the trace. Similarly, for
each data variable, we have different features representing that data variable
in different positions of the trace and the value of the feature is the value
of the data variable if the variable is numeric and, if the variable is instead
categorical, a code representing its categorical value;

– laststate: this encoding represents the control-flow with the simple-index
encoding and the data variables using the latest payload of a trace, i.e., data

2 We used a function provided by the sklearn Python library, using the parameter
auto for the selection of the algorithm, which makes the function able to select the
most appropriate algorithm based on the input.

Approximating Multi-Perspective Trace Alignment Using Trace Encodings 13

0.33

0.618
0.666 0.693

0.536

0.683

0.794

0.869

0.00

0.25

0.50

0.75

1.00

2 10 20 30
k (%)

P
re

ci
si

on

Method

approximate alignment (classic kNN)
approximate alignment (weighted kNN)

Fig. 1. Performance improvement on the Road Fines experiment after integrating the
variable weight function (for complexindex encoding and Euclidean distance)

variables are treated as static features without taking into consideration their
evolution over time;

– p-gram+aggregate: we used the encoding based on p-grams introduced in
Section 4.1 with p = 2 and λ = 0.7. We integrated in this encoding the data
perspective in the same way as done in the aggregate encoding.
In the evaluation, we measure (i) whether among the top-k alignments re-

turned by the kNN algorithm, there is the optimal alignment returned by Co-
CoMoT (precision), (ii) how similar the top-k alignments returned by the ap-
proximate method are wrt the optimal alignment returned by CoCoMoT (simi-
larity), and (iii) the execution times (time). For computing precision, we count
the number of true positives TP , i.e., how many times the top-k alignments
include the optimal alignment returned by CoCoMoT, and the number of false
positives FP , i.e., how many times the top-k alignments do not include the
optimal alignment returned by CoCoMoT. Then, the precision is computed as:
Precision = TP/(TP + FP). For similarity, we calculate the average Euclidean
distance dist between the top-k alignments and the optimal alignment returned
by CoCoMoT and we compute the similarity score as: similarity = 1 − dist.
We computed the execution times (in seconds) by running the alignment tools
on an Intel Core i9-12900H CPU with 2.5 GHz, 40GB RAM, with MS Windows
11, and measuring the total time needed to align all log traces.

Experimental Results. Tables 3 and 4 show the precision of the approximate
method achieved by varying three parameters (encoding method, distance met-
ric, and k) for the Road Fines experiment and the Sepsis experiment. The results
show that, as expected, when k increases, the top-k alignments are more likely
to include the optimal trace or abstract trace. In the cases in which the precision
is higher for lower values of k, the approximate approach results to be more ef-
fective. Regarding the encoding methods, complexindex and p-grams+aggregate
have a higher precision overall wrt the other encodings. This was expected since
the aggregate and boolean encodings are less rich in the representation of the

14 A. Gianola et al.

Encoding method Distance metric k (%) Precision (ref = CoCoMot) Time (sec)

aggregate Cosine (10% / 20% / 30%) (0.613 / 0.740 / 0.803) (0.08 / 0.09 / 0.10)
aggregate Euclidean (10% / 20% / 30%) (0.195 / 0.501 / 0.551) (0.19 / 0.13 / 0.17)
aggregate Manhattan (10% / 20% / 30%) (0.195 / 0.518 / 0.555) (0.14 / 0.21 / 0.16)

boolean Cosine (10% / 20% / 30%) (0.580 / 0.712 / 0.756) (0.08 / 0.17 / 0.10)
boolean Euclidean (10% / 20% / 30%) (0.597 / 0.725 / 0.808) (0.13 / 0.19 / 0.13)
boolean Manhattan (10% / 20% / 30%) (0.596 / 0.729 / 0.828) (0.16 / 0.15 / 0.16)

complexindex Cosine (10% / 20% / 30%) (0.683 / 0.775 / 0.838) (0.28 / 0.24 / 0.27)
complexindex Euclidean (10% / 20% / 30%) (0.683 / 0.794 / 0.869) (0.36 / 0.33 / 0.37)
complexindex Manhattan (10% / 20% / 30%) (0.481 / 0.790 / 0.862) (0.70 / 0.73 / 0.67)

laststate Cosine (10% / 20% / 30%) (0.420 / 0.688 / 0.800) (0.08 / 0.08 / 0.17)
laststate Euclidean (10% / 20% / 30%) (0.494 / 0.712 / 0.845) (0.12 / 0.13 / 0.14)
laststate Manhattan (10% / 20% / 30%) (0.510 / 0.734 / 0.882) (0.16 / 0.18 / 0.16)

p-gram+aggregate Cosine (10% / 20% / 30%) (0.705 / 0.776 / 0.817) (0.07 / 0.08 / 0.08)
p-gram+aggregate Euclidean (10% / 20% / 30%) (0.715 / 0.776 / 0.853) (0.11 / 0.12 / 0.12)
p-gram+aggregate Manhattan (10% / 20% / 30%) (0.719 / 0.798 / 0.898) (0.12 / 0.14 / 0.18)

Table 3. Precision of approximate trace alignment with different parameters in the
Road Fines experiment. For each k, the best precision is highlighted in bold.

Encoding method Distance metric k (%) Precision (ref = CoCoMot) Time (sec)

aggregate Cosine (10% / 20% / 30%) (0.813 / 0.833 / 0.841) (0.01 / 0.01 / 0.01)
aggregate Euclidean (10% / 20% / 30%) (0.888 / 0.898 / 0.906) (0.02 / 0.02 / 0.02)
aggregate Manhattan (10% / 20% / 30%) (0.888 / 0.898 / 0.906) (0.02 / 0.03 / 0.02)

boolean Cosine (10% / 20% / 30%) (0.776 / 0.800 / 0.808) (0.01 / 0.01 / 0.02)
boolean Euclidean (10% / 20% / 30%) (0.854 / 0.864 / 0.873) (0.02 / 0.02 / 0.02)
boolean Manhattan (10% / 20% / 30%) (0.852 / 0.864 / 0.873) (0.02 / 0.02 / 0.03)

complexindex Cosine (10% / 20% / 30%) (0.816 / 0.816 / 0.888) (0.04 / 0.04 / 0.04)
complexindex Euclidean (10% / 20% / 30%) (0.891 / 0.931 / 0.949) (0.05 / 0.04 / 0.05)
complexindex Manhattan (10% / 20% / 30%) (0.924 / 0.938 / 0.951) (0.08 / 0.07 / 0.07)

laststate Cosine (10% / 20% / 30%) (0.822 / 0.822 / 0.822) (0.01 / 0.01 / 0.01)
laststate Euclidean (10% / 20% / 30%) (0.857 / 0.923 / 0.924) (0.01 / 0.01 / 0.02)
laststate Manhattan (10% / 20% / 30%) (0.855 / 0.923 / 0.924) (0.02 / 0.02 / 0.02)

p-gram+aggregate Cosine (10% / 20% / 30%) (0.864 / 0.881 / 0.891) (0.01 / 0.01 / 0.01)
p-gram+aggregate Euclidean (10% / 20% / 30%) (0.914 / 0.926 / 0.939) (0.02 / 0.02 / 0.02)
p-gram+aggregate Manhattan (10% / 20% / 30%) (0.914 / 0.926 / 0.939) (0.04 / 0.03 / 0.03)

Table 4. Precision of approximate trace alignment with different parameters in Sepsis
experiment. For each k, the best precision is highlighted in bold.

control flow information and the laststate reflects less accurately the data flow.
Figure 1 highlights the effectiveness of the variable weight function we have
introduced to guide the kNN algorithms in finding the top k alignments.

Concerning the similarity measure, Tables 5 and 6 report the average simi-
larity between the top k alignments returned by the approximate approach with
k ∈ {1, 3, 5, 10} and the optimal abstract trace returned by CoCoMoT (for Road
Fines), or the closest trace (for Sepsis). As the number of traces is much lower
wrt the number of traces used in Tables 3 and 4 (k(10%) = 64 and k(10%) = 108
for Road Fines and Sepsis, respectively), the precision becomes much lower.
However, even if the optimal alignment could not be easily identified, the high
similarity values shown in Table 5 indicate that the approximate approach re-
turns alignments that are very close to the optimal one. For Sepsis, where we
do not perform trace alignment wrt a DPN, the similarity is lower. This is due
to the fact that, in this case, the alignment task is more challenging since the
returned alignments are concrete traces whereas, in the Road Fines case, the
alignment returned is an abstract trace, i.e., a class of traces. However, as shown
in Table 4, when a larger number of possible alignments are returned, this issue
does not affect the precision of the approximate approach.

Approximating Multi-Perspective Trace Alignment Using Trace Encodings 15

Encoding method Distance metric k Similarity (ref = CoCoMot) Time (sec)

aggregate Cosine (1 / 3 / 5 / 10) (0.971 / 0.971 / 0.971 / 0.973) (0.07 / 0.07 / 0.07 / 0.07)
aggregate Euclidean (1 / 3 / 5 / 10) (0.963 / 0.963 / 0.963 / 0.960) (0.11 / 0.12 / 0.12 / 0.12)
aggregate Manhattan (1 / 3 / 5 / 10) (0.933 / 0.938 / 0.942 / 0.948) (0.18 / 0.13 / 0.16 / 0.14)

boolean Cosine (1 / 3 / 5 / 10) (0.978 / 0.978 / 0.978 / 0.977) (0.06 / 0.07 / 0.08 / 0.08)
boolean Euclidean (1 / 3 / 5 / 10) (0.978 / 0.978 / 0.978 / 0.977) (0.16 / 0.12 / 0.12 / 0.17)
boolean Manhattan (1 / 3 / 5 / 10) (0.978 / 0.978 / 0.978 / 0.977) (0.13 / 0.13 / 0.14 / 0.14)

complexindex Cosine (1 / 3 / 5 / 10) (0.991 / 0.991 / 0.991 / 0.990) (0.22 / 0.25 / 0.25 / 0.25)
complexindex Euclidean (1 / 3 / 5 / 10) (0.991 / 0.991 / 0.991 / 0.990) (0.37 / 0.31 / 0.35 / 0.35)
complexindex Manhattan (1 / 3 / 5 / 10) (0.978 / 0.979 / 0.980 / 0.981) (0.68 / 0.68 / 0.70 / 0.64)

laststate Cosine (1 / 3 / 5 / 10) (0.985 / 0.985 / 0.984 / 0.984) (0.07 / 0.07 / 0.07 / 0.07)
laststate Euclidean (1 / 3 / 5 / 10) (0.985 / 0.985 / 0.984 / 0.984) (0.17 / 0.12 / 0.12 / 0.17)
laststate Manhattan (1 / 3 / 5 / 10) (0.985 / 0.985 / 0.984 / 0.984) (0.13 / 0.18 / 0.13 / 0.14)

p-gram+aggregate Cosine (1 / 3 / 5 / 10) (0.996 / 0.996 / 0.996 / 0.995) (0.06 / 0.07 / 0.06 / 0.07)
p-gram+aggregate Euclidean (1 / 3 / 5 / 10) (0.996 / 0.996 / 0.996 / 0.995) (0.10 / 0.10 / 0.15 / 0.11)
p-gram+aggregate Manhattan (1 / 3 / 5 / 10) (0.996 / 0.996 / 0.996 / 0.995) (0.15 / 0.12 / 0.13 / 0.12)

Table 5. Similarity between the approximate trace alignment and the CoCoMoT align-
ment with different parameters in the Road Fines experiment.

Encoding method Distance metric k Similarity (ref = CoCoMot) Time (sec)

aggregate Cosine (1 / 3 / 5 / 10) (0.609 / 0.610 / 0.609 / 0.608) (0.01 / 0.01 / 0.01 / 0.01)
aggregate Euclidean (1 / 3 / 5 / 10) (0.608 / 0.608 / 0.608 / 0.608) (0.02 / 0.02 / 0.02 / 0.02)
aggregate Manhattan (1 / 3 / 5 / 10) (0.608 / 0.608 / 0.608 / 0.608) (0.02 / 0.02 / 0.02 / 0.02)

boolean Cosine (1 / 3 / 5 / 10) (0.606 / 0.606 / 0.607 / 0.606) (0.01 / 0.01 / 0.01 / 0.01)
boolean Euclidean (1 / 3 / 5 / 10) (0.606 / 0.606 / 0.606 / 0.607) (0.02 / 0.02 / 0.01 / 0.02)
boolean Manhattan (1 / 3 / 5 / 10) (0.606 / 0.606 / 0.606 / 0.606) (0.02 / 0.02 / 0.02 / 0.02)

complexindex Cosine (1 / 3 / 5 / 10) (0.620 / 0.620 / 0.620 / 0.620) (0.04 / 0.04 / 0.04 / 0.04)
complexindex Euclidean (1 / 3 / 5 / 10) (0.619 / 0.620 / 0.620 / 0.620) (0.04 / 0.04 / 0.04 / 0.04)
complexindex Manhattan (1 / 3 / 5 / 10) (0.619 / 0.620 / 0.620 / 0.621) (0.05 / 0.05 / 0.05 / 0.05)

laststate Cosine (1 / 3 / 5 / 10) (0.603 / 0.602 / 0.601 / 0.602) (0.01 / 0.01 / 0.01 / 0.01)
laststate Euclidean (1 / 3 / 5 / 10) (0.603 / 0.601 / 0.600 / 0.600) (0.02 / 0.02 / 0.02 / 0.02)
laststate Manhattan (1 / 3 / 5 / 10) (0.603 / 0.601 / 0.600 / 0.601) (0.01 / 0.02 / 0.02 / 0.02)

p-gram+aggregate Cosine (1 / 3 / 5 / 10) (0.604 / 0.607 / 0.607 / 0.607) (0.01 / 0.01 / 0.01 / 0.01)
p-gram+aggregate Euclidean (1 / 3 / 5 / 10) (0.605 / 0.607 / 0.607 / 0.607) (0.03 / 0.02 / 0.02 / 0.02)
p-gram+aggregate Manhattan (1 / 3 / 5 / 10) (0.605 / 0.607 / 0.606 / 0.607) (0.02 / 0.02 / 0.02 / 0.02)

Table 6. Similarity of approximate trace alignment in respect to the CoCoMoT align-
ment with different parameters on the Sepsis event log.

For what concerns the execution times, the approximate approach is, on av-
erage, 100 times faster than CoCoMoT while producing alignments that are very
similar to the optimal one. For instance, the alignment task for the Road Fines
experiment has been completed in 22.02 seconds using CoCoMot, but it has been
completed in 0.18 seconds using the approximate approach with the p-grams +
aggregate encoding, Manhattan distance and k(%) = 30%. We also highlight
that, although the precision is high only when k is sufficiently large, the fact
that the approximate approach can return a fraction of the input log that likely
contains the optimal alignment can render this approach useful as a sampling
method, in combination with an optimal approach: the approximation technique
can be applied as a preprocessor to find a set of candidates C for optimal align-
ments. Afterwards, less performant but optimal tools like CoCoMoT [3] can be
applied only to this limited set of candidates (either using trace distances or
incorporating the information from C into the DPN).

6 Related Work

A few papers provide extensions over the computation of control-flow alignments
so that also the data dimension is considered. The approach in [9] first takes into

16 A. Gianola et al.

account the control-flow and, after it has been aligned, aligns case attributes.
The one in [8] is similar, but makes use of DPNs as process models, where
the data-perspective is taken into consideration by augmenting the computed
alignment with write operations over process variables via MILP solving. An
improvement of this is obtained in [16, 17], where in a faster A*-based technique
the process and data dimensions are considered at the same time. Another recent
notable approach is the one we use as baseline in this paper, i.e., the one from
[3], where a very general multi-perspective conformance checking problem based
on an abstract notion of cost function is solved via state-of-the-art SMT solv-
ing. Differently from our approach, all the above techniques compute optimal
alignments.

As the current approaches for alignment computation have the main prob-
lem of the complexity both in space and time, various approximate solutions for
control-flow alignment have been proposed. In [1], the authors provide a statis-
tical approach to conformance checking that employs trace sampling from the
event log and result approximation in order to derive conformance results in an
efficient manner. This solution is orthogonal to our technique since, instead of
sampling the log, we take abstractions from the model. Moreover, general ap-
proximation schemes for alignment have been proposed in [19]. The work casts
a recursive strategy to solve the alignment problem by splitting ILP models into
small pieces. The same authors present in [20] a technique to decrease both in
execution time and memory the computation of alignments via the reduction
of the given process model and the event log. A decomposition-based method
is proposed in [7] for an approximation of the alignments with good precision
and low execution time. Recently, an approximate alignment approach based
on process trees has been proposed [18]. The approach splits the problem of
alignments into smaller sub-problems along the tree hierarchy and solves them
individually and in parallel. The approximate approaches presented so far con-
sider the alignment problem at the control-flow level, while there is no existing
work for handling the multi-perspective approximate alignment problem.

7 Conclusion

In this paper, we showed how trace encoding methods can be used to com-
pute multi-perspective trace alignments. By opportunely selecting the encoding
methods, the analyst can choose the relevant information for computing the
alignments. This also makes the alignment task faster. Our experiments show
that the approximate approach is 100 times faster than CoCoMoT. The results
are accurate in terms of precision (identification of the optimal alignment) and
similarity between the approximate and the optimal alignments. In future work,
we want to extend this approach to probabilistic trace alignment both in the
standard conformance checking scenario, in which a log trace is aligned with a
DPN, and in the case in which a trace is aligned wrt a log of “happy paths”. In
the latter, the probability of a path can be computed using clustering methods,
more precisely by taking the density of the cluster to which the path belongs.

Approximating Multi-Perspective Trace Alignment Using Trace Encodings 17

References

1. Bauer, M., van der Aa, H., Weidlich, M.: Sampling and approximation techniques
for efficient process conformance checking. Inf. Syst. 104, 101666 (2022)

2. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

3. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: Cocomot: conformance
checking of multi-perspective processes via SMT. In: Proc. of BPM 2021 (2021)

4. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: Conformance checking
with uncertainty via SMT. In: Proc. of BPM 2022 (2022)

5. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: Data-
aware conformance checking with SMT. Information Systems 117 (2023).
https://doi.org/10.1016/j.is.2023.102230

6. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient
alternatives. In: Proc. of COLT 2003 (2003)

7. Lee, W.L.J., Verbeek, H., Munoz-Gama, J., van der Aalst, W.M., Sepúlveda, M.:
Recomposing conformance: Closing the circle on decomposed alignment-based con-
formance checking in process mining. Information Sciences 466, 55–91 (2018)

8. de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: discovering de-
cisions in processes using alignments. In: Proc. 13th SAC. ACM (2013)

9. de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and resource-aware
conformance checking of business processes. In: Proc. BIS 2012 (2012)

10. de Leoni, M., Felli, P., Montali, M.: A holistic approach for soundness verification
of decision-aware process models. In: Proc. 37th ER (2018)

11. de Leoni, M., Felli, P., Montali, M.: Integrating BPMN and DMN: modeling and
analysis. J. Data Semant. 10(1), 165–188 (2021)

12. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business pro-
cesses. In: Proc. BPM 2015 (2015)

13. Liu, T., Moore, A.W., Gray, A., Cardie, C.: New algorithms for efficient high-
dimensional nonparametric classification. J. Mach. Learn. Res. 7(6) (2006)

14. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.J.C.H.: Text
classification using string kernels. J. Mach. Learn. Res. 2 (2002)

15. Mannhardt, F.: Sepsis cases - event log (2016),
https://data.4tu.nl/articles/dataset/Sepsis Cases - Event Log/12707639/1

16. Mannhardt, F.: Multi-perspective Process Mining. Ph.D. thesis, Technical Univer-
sity of Eindhoven (2018)

17. Mannhardt, F., de Leoni, M., Reijers, H., van der Aalst, W.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

18. Schuster, D., van Zelst, S., van der Aalst, W.M.: Alignment approximation for
process trees. In: Proc. ICPM 2020. pp. 247–259. Springer (2021)

19. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior
of large structured process models. In: Proc. BPM 2016 (2016)

20. Taymouri, F., Carmona, J.: Model and event log reductions to boost the compu-
tation of alignments. In: Proc. Data-Driven Process Discovery and Analysis: 6th
IFIP WG 2.6 International Symposium. pp. 1–21. Springer (2018)

