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Performance testing



Modern (online) systems may 
underperform as they are 
overloaded 
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• Performance testing is the process of 
determining the speed, responsiveness and 
stability of a computer, network, software 
program or device under a workload 

• Performance testing can involve quantitative 
tests done in a lab, or occur in the production 
environment in limited scenarios 

wikipedia

Performance testing

Open	question:	how	to	test	in	
in-production	environments?
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Example of performance testing: 
Load Testing 



„
“Load testing is the process of 
assessing the behavior of a 
system under load in order to 
detect load-related problems”
Jiang et al., 2015

Load Driver SUT Performance 
Monitor

Throughput

Load Intensity

Load 
Specification

Non-functional 
testing



?
What is load?
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„
Load

Amount of computational work being performed 
by a software system



„
Load

Amount of concurrent users
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• The workload specification Model consists of: 
• An Application Model, specifying allowed sequences of service 

invocations and SUT-specific details for generating valid requests 
• A set of Behavior Models, each providing a probabilistic 

representation of user sessions in terms of invoked services and 
think times between subsequent invocations as Markov Chains 

• A Behavior Mix, specified as probabilities (frequencies)  for the 
individual Behavior Models to occur during workload generation 

• A Workload Intensity that includes a function which specifies the 
(possibly varying) number of concurrent users during the workload 
generation execution

Workload specification



A tool to design and execute load 
tests and detect any performance 
degradation in pipelines of in-
production systems
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• Loads frequencies, Request logs, traces, and 
response times of the service interfaces  

• The data is enriched by various contextual 
information, e.g.,  marketing campaigns, 
public holidays, or sports events 

Monitoring data



ContinuITy
Load Test Generation & Execution
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Load Test Generation & Execution

Henning Schulz, Tobias Angerstein, and André van Hoorn:  
Towards automating representative load testing in continuous 
software engineering.  

In Proceedings of the ACM/SPEC International Conference on 
Performance Engineering (ICPE 2018) Companion (7th International 
Workshop on Load Testing and Benchmarking of Software Systems, LTB 
2018), pages 123–126. ACM, 2018
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Load test automation 
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• Identify deployment configuration(s) for which 
the system performs best for all workloads 

• Characterize systems‘ resilience over workload 
• Analyse individual service failure or 

degradation 
• Reveal attacks  
• Monitor the performance in a transition to 

microservices

What is it for?
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• It collects the operational profile of a microservice system  
• It automatically runs a series of experiments with given usage 

profiles and probability of use (R scripts) 
• It runs experiments according to templates that control time, number of 

agents, and single operation max response (Faban) 
• It sets the goals of testing (e.g., resource config) and collects data 

for each experiment or multi-experiment (Benchflow) 
• It identifies failing services (baseline threshold R scripts) 
• It computes a total metric of performance on non-failing services for 

each system configuration (CPU, memory, replicas) over workloads (via R 
scripts) 

• It visualizes into interactive graphs (R shop, R shiny, and R plottly)

What it does?

Avritzer and Russo: Operational Profile Data for Continuous Dependability Assessment in DevOps
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• Automatically runs a 
series of experiments 
with given usage 
profiles and 
probability of use

What it does
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BenchFlow Automation Framework
G
eneration
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• Usage profiles (WebDriver.java) 

• Configuration file.xml

Experiment execution design 
(faban)

 <!-- The rampup, steadystate, and rampdown of the driver --> 
    <fa:runControl unit="time"> 
      <fa:rampUp>60</fa:rampUp> 
      <fa:steadyState>1800</fa:steadyState> 
      <fa:rampDown>0</fa:rampDown> 
    </fa:runControl>

<!-- The number of agents, or host:agents pairs  
separated by space -->  

<agents>10</agents>



What it does

• Service failures over 
time 

• Total performance of 
system in use 

• Per (micro)service 
performance time series 

• Performance 
degradation under an 
attack
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Total system 
performance - under 
different sys resources



Service 
failure

No attack
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Service 
failure

No attack

https://pptam.shinyapps.io/PPTAM_EXT/

Service 
failures

Under 
attack

Total system 
performance - under 
different sys resources
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 Monitoring cockpit Cockpit

https://pptam.shinyapps.io/PPTAM_EXT/

https://pptam.shinyapps.io/PPTAM_EXT/
https://pptam.shinyapps.io/PPTAM_EXT/
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Case studies
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• In a microservice architecture, services are 
fine-grained and the protocols are lightweight 
rendering each micro service loosely coupled 
with the others 

• Microservice architectures often use containers 
to enforce service independence

Microservice architecture
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• There are characteristics that are shared by  microservice 
architectures:  
• Data is organized in a decentralized way: each service 

manages its own data makes it independently 
deployable  

• Teams that build systems with microservices 
extensively use infrastructure automation techniques 
(like continuous integration or continuous delivery)

Before starting a transition …

Data	independently	
deployable

Automation
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• Challenge: assess performance of 
architectural deployment alternatives 
(e.g., number of replicas, CPU/memory 
allocation, technology stack) under fuzzy 
requirements

Quantitative Assessment of 
Deployment Alternatives

Alberto Avritzer, Vincenzo Ferme, Andrea Janes, Barbara Russo, 
Henning Schulz, and André van Hoorn:  
A Quantitative Approach for the Assessment of 
Microservice Architecture Deployment 
Alternatives by Automated Performance Testing.  

In Proceedings of the 12th European Conference on Software 
Architecture (ECSA). LNCS, Springer, 2018 (Accepted)
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• Approach 
• Use operational data to generate and weigh load 

tests 
• Measure baseline requirements 
• Design a metric that allows quantitative 

comparison of deployment alternatives 

Quantitative Assessment of 
Deployment Alternatives
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Overview of Approach

Production



30

Overview of Approach

Observed load situations 
Time

Lo
ad

 L
ev

el

Production



30

Overview of Approach

Observed load situations 
Time

Lo
ad

 L
ev

el

Production Empirical distribution of load situations 

Load intensity

R
el

. F
re

q.

1



30

Overview of Approach

Observed load situations 
Time

Lo
ad

 L
ev

el

Production

Sampled load tests

Empirical distribution of load situations 

Load intensity

R
el

. F
re

q.

1

Empirical Distribution of Load situations 
Sampled load  intensities

Ag
gr

. R
el

. F
re

q.

2



30

Overview of Approach

Observed load situations 
Time

Lo
ad

 L
ev

el

Production

Baseline test
Sampled load tests

Scalability criteria

Deployment conf.

Empirical distribution of load situations 

Load intensity

R
el

. F
re

q.

1

Empirical Distribution of Load situations 
Sampled load  intensities

Ag
gr

. R
el

. F
re

q.

2
0.12 0.14 0.20 0.16 0.11

Test results

3



30

Overview of Approach

Observed load situations 
Time

Lo
ad

 L
ev

el

Production

Baseline test
Sampled load tests

Scalability criteria

Deployment conf.

Empirical distribution of load situations 

Load intensity

R
el

. F
re

q.

1

Empirical Distribution of Load situations 
Sampled load  intensities

Ag
gr

. R
el

. F
re

q.

2
0.12 0.14 0.20 0.16 0.11

Test results

3

Domain Metric

0.73
4



System Under Test
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Experiments

Scal = avg + 3σ
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Workload intensities
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Deployment Config.

12 configurations

Replicas

CPURAM

3
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Experiment Results: Computation 
of Domain Metric (1/2)

Custom Op. Mix

Users Aggr. Rel. Freq.

50 0.10582

100 0.18519

150 0.22222

200 0.22222

250 0.20370

300 0.06085

Aggr. Rel. Freq. Contrib. to Domain Metric

Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica

API Scalability 
Criteria

GET / PASS

GET /cart PASS

POST /item FAIL



33

Experiment Results: Computation 
of Domain Metric (1/2)

Custom Op. Mix

Users Aggr. Rel. Freq.

50 0.10582

100 0.18519

150 0.22222

200 0.22222

250 0.20370

300 0.06085

Aggr. Rel. Freq. Contrib. to Domain Metric

Max: 0.20370

Actual: 0.13580

Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica

API Scalability 
Criteria

GET / PASS

GET /cart PASS

POST /item FAIL



34

Experiment Results: Computation 
of Domain Metric (2/2)

Users Contribution

50 0.10582
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Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica
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Experiment Results: Single-Metric 
Comparison of Alternatives



35

Experiment Results: Single-Metric 
Comparison of Alternatives



35

Experiment Results: Single-Metric 
Comparison of Alternatives



36

Experiment Results: Visual 
Comparison of Alternatives
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Experiment Results: Visual 
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Extensions/Application
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• We have tested it on an online demo-platform
• We have extended it to monitor performce 

degradation under attacks by incorporating 
Mirai

Extensions/Application
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• We have tested it on an online demo-platform
• We have extended it to monitor performce 

degradation under attacks by incorporating 
Mirai

• We have designed it for monitoring 
performance degradation during a transition to 
microservices 

Extensions/Application
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Bare-metal versus 
virtualization 
environment 



System Under Test



• 2 VM one for SUT and one for Test 

• SUT: docker containers each for on micro 
service, one for DB

Experiment settings
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• The containerized bare metal machines:  
• Load driver server - 32 GB RAM, 24 cores (2 

threads each) at 2300 MHz and SUT server - 896 
GB RAM, 80 cores (2 threads each) at 2300 
MHz 

• Both machines use magnetic disks with 15 000 
rpm and are connected using a shared 10 Gbit/ s 
network infrastructure

Bare-metal
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• The containerized deployment in virtual machines:  
• Load driver server - 4 GB RAM, 1 core at 2600MHz 

and SUT server - 8 GB RAM, 4 cores at 2600 MHz 
with SSDs  

• Both machines use an EMCVNC 5400 series network 
attached storage solution12  and are connected using a 
shared 10 Gbit/ s network infrastructure 

• We replicated with SUT server - 16 GB RAM, 8 cores 

Virtual
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Virtual Bare metal

Virtual more resources 
for SUT

Experiments - results
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Virtual Bare metal

Virtual more resources 
for SUT

Experiments - results
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Bare-metal versus 
virtualization 
environment 
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Bare-metal versus 
virtualization 
environment 

Monitor performance 
degradation under 

attacks



System Under Test
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• Mirai is a malware that has been used to turn 
networked devices (cameras) running Linux into 
remotely controlled bots 

• We use an academic version of it to attack the system 
in controlled experiments  

• It can perform different types of attack. By now, we 
have explored http, syn, ack

Mirai BotNet
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• Attack with simple http requests (GET and 
POST to home - increase the load) 

• Compute the metric with and without attack to 
understand:  
• the resilience of a system  
• the early prediction of an attack

Experiments with Mirai
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Virtual – no attack Virtual - attack

Experiments - results
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• After few piloting attacks (5-10-20 mins) 

• Duration of attack: 20 minutes (1200 seconds); 
• Protocol used: HTTP; 
• IP address to attack: the IP address of the SUT, i.e., 

the 
• Machine with Sock Shop installed; 
• Number of threads: 256.

Attack design
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Bare-metal versus 
virtualization 
environment 

Monitor performance 
degradation under 

attacks
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Bare-metal versus 
virtualization 
environment 

Monitoring 
performance 

degradation during a 
transition to 

microservices

Monitor performance 
degradation under 

attacks
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• Identify one capability in the monolith  to 
transform it into  microservice(s)

Dehghani’s approach to transition
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• Decouple it from the monolith into an external 
service 

• Maintain the old monolith with all its existing 
functionalities 

• Work incrementally: build, test, and deploy  

Z. Dehghani, “How to break a Monolith into Microservices,” April 2018, Fowler’s page

Dehghani’s approach to transition
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• Some aspects are new: 
• one has to decide on a communication 

infrastructure 
• Other aspects that are valid when developing a 

monolith have to be reconsidered  
• For instance, how to keep communication 

between services minimal (as communication is 
costly and might impede scalability)

Transition uncertainty
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• It  requires the  team  to  acquire  new  
knowledge  and  to  learn  how  to apply it 

• New software design patterns for microservice 
architectures: 
• API Gateway pattern to organize how clients 

can access individual services 

F.  Pacheco, Microservice Patterns and Best Practices: Explore Patterns Like CQRS and 
Event Sourcing to Create Scalable, Maintainable, and Testable Microservices, Packt 
Publishing, 2018

Transition uncertainty
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• A transition to microservices may or may not 
end up with the same or better performing 
system 

• It depends on the ability of the developers to 
design microservices and the capability of the 
microservices architecture to represent the 
system

Transition uncertainty
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Main steps
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• Compute the operational profile of a monolith
• Apply PPTAM to collect individual service - 

individual experiment - individual workload 
time series 

• Monitoring performance degradation over 
time against baseline and experiments’ 
average performance

Main steps
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• Compute the operational profile of a monolith
• Apply PPTAM to collect individual service - 

individual experiment - individual workload 
time series 

• Monitoring performance degradation over 
time against baseline and experiments’ 
average performance

• Analytic extension: visualize such analysis (R 
shiny)

Main steps
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• If the new architecture performs under a 
given threshold, developers stop and 
rethink of the architecture or rethink the 
used patterns to guarantee that the new 
system - while having all advantages of a 
microservice architecture - does not fall 
short in terms of performance

Application to a transition


