
Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

1

Performance testing

Modern (online) systems may
underperform as they are
overloaded

3

• Performance testing is the process of
determining the speed, responsiveness and
stability of a computer, network, software
program or device under a workload

• Performance testing can involve quantitative
tests done in a lab, or occur in the production
environment in limited scenarios

wikipedia

Performance testing

Open	question:	how	to	test	in	
in-production	environments?

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

4

Example of performance testing:
Load Testing

„
“Load testing is the process of
assessing the behavior of a
system under load in order to
detect load-related problems”
Jiang et al., 2015

Load Driver SUT Performance
Monitor

Throughput

Load Intensity

Load
Specification

Non-functional
testing

?
What is load?

6

„
Load

Amount of computational work being performed
by a software system

„
Load

Amount of concurrent users

… and Classic Problems
The Classic Load Testing Approach

Workload Specification Test Results Evaluation

Expert Load Driver Expert/Basic Rules

SUTLOAD

… and Classic Problems
The Classic Load Testing Approach

High manual effort for maintaining load tests

Workload Specification Test Results Evaluation

Expert Load Driver Expert/Basic Rules

SUTLOAD

… and Classic Problems
The Classic Load Testing Approach

There are no suitable load tests

High manual effort for maintaining load tests

Workload Specification Test Results Evaluation

Expert Load Driver Expert/Basic Rules

SUTLOAD

… and Classic Problems
The Classic Load Testing Approach

There are no suitable load tests

High manual effort for maintaining load tests

Load tests need much time to execute

Workload Specification Test Results Evaluation

Expert Load Driver Expert/Basic Rules

SUTLOAD

… and Classic Problems
The Classic Load Testing Approach

There are no suitable load tests
Complex analysis of performance regressions

High manual effort for maintaining load tests

Load tests need much time to execute

Workload Specification Test Results Evaluation

Expert Load Driver Expert/Basic Rules

SUTLOAD

… How Problems Get Worse
Load Testing in Continuous Delivery Pipelines

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

Complex analysis of performance regressions

High manual effort for maintaining load tests

Load tests need much time to execute

There are no suitable load tests

… How Problems Get Worse
Load Testing in Continuous Delivery Pipelines

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

Complex analysis of performance regressions

High manual effort for maintaining load tests

Load tests need much time to execute

There are no suitable load tests

… How Problems Get Worse
Load Testing in Continuous Delivery Pipelines

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

Fast & frequent releases
vs.

Complex analysis of performance regressions

High manual effort for maintaining load tests

Load tests need much time to execute

There are no suitable load tests

… How Problems Get Worse
Load Testing in Continuous Delivery Pipelines

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

vs.
Pipeline automation

Fast & frequent releases
vs.

Complex analysis of performance regressions

High manual effort for maintaining load tests

Load tests need much time to execute

There are no suitable load tests

… How Problems Get Worse
Load Testing in Continuous Delivery Pipelines

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

vs.
Pipeline automation

Fast & frequent releases
vs.

Complex analysis of performance regressions

High manual effort for maintaining load tests

Load tests need much time to execute

Service-focus requires multiple tests
vs.

There are no suitable load tests

… How Problems Get Worse
Load Testing in Continuous Delivery Pipelines

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

Implementation Build Performance TestingFunctional Testing

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

void	main(String[]	args)	{	
		int	foo;	
			
		//	do	something	
		bar(foo);	
	
		System.out.println(“Hi“);	
}

		main(Strin	
		int	foo;	
			
		//	do	somet	
		bar(foo);

vs.
Pipeline automation

Fast & frequent releases
vs.

Complex load tests for every release impossible
vs.

Complex analysis of performance regressions

High manual effort for maintaining load tests

Load tests need much time to execute

Service-focus requires multiple tests
vs.

There are no suitable load tests

10

• The workload specification Model consists of:
• An Application Model, specifying allowed sequences of service

invocations and SUT-specific details for generating valid requests
• A set of Behavior Models, each providing a probabilistic

representation of user sessions in terms of invoked services and
think times between subsequent invocations as Markov Chains

• A Behavior Mix, specified as probabilities (frequencies) for the
individual Behavior Models to occur during workload generation

• A Workload Intensity that includes a function which specifies the
(possibly varying) number of concurrent users during the workload
generation execution

Workload specification

A tool to design and execute load
tests and detect any performance
degradation in pipelines of in-
production systems

12

• Loads frequencies, Request logs, traces, and
response times of the service interfaces

• The data is enriched by various contextual
information, e.g., marketing campaigns,
public holidays, or sports events

Monitoring data

ContinuITy
Load Test Generation & Execution

ContinuITy
Load Test Generation & Execution

Henning Schulz, Tobias Angerstein, and André van Hoorn:
Towards automating representative load testing in continuous
software engineering.

In Proceedings of the ACM/SPEC International Conference on
Performance Engineering (ICPE 2018) Companion (7th International
Workshop on Load Testing and Benchmarking of Software Systems, LTB
2018), pages 123–126. ACM, 2018

ContinuITy

Workload Model
Evolution

Monitoring Data

Load Test Generation & Execution

Henning Schulz, Tobias Angerstein, and André van Hoorn:
Towards automating representative load testing in continuous
software engineering.

In Proceedings of the ACM/SPEC International Conference on
Performance Engineering (ICPE 2018) Companion (7th International
Workshop on Load Testing and Benchmarking of Software Systems, LTB
2018), pages 123–126. ACM, 2018

ContinuITy

Workload Model
Evolution

Monitoring Data

Load Test Generation & Execution

Henning Schulz, Tobias Angerstein, and André van Hoorn:
Towards automating representative load testing in continuous
software engineering.

In Proceedings of the ACM/SPEC International Conference on
Performance Engineering (ICPE 2018) Companion (7th International
Workshop on Load Testing and Benchmarking of Software Systems, LTB
2018), pages 123–126. ACM, 2018

ContinuITy

Workload Model
Evolution

Monitoring Data

Contextual
Information

Load Test Generation & Execution

Henning Schulz, Tobias Angerstein, and André van Hoorn:
Towards automating representative load testing in continuous
software engineering.

In Proceedings of the ACM/SPEC International Conference on
Performance Engineering (ICPE 2018) Companion (7th International
Workshop on Load Testing and Benchmarking of Software Systems, LTB
2018), pages 123–126. ACM, 2018

ContinuITy

Workload Model
Evolution

Workload Model
Selection

Monitoring Data

Contextual
Information

Load Test Generation & Execution

Henning Schulz, Tobias Angerstein, and André van Hoorn:
Towards automating representative load testing in continuous
software engineering.

In Proceedings of the ACM/SPEC International Conference on
Performance Engineering (ICPE 2018) Companion (7th International
Workshop on Load Testing and Benchmarking of Software Systems, LTB
2018), pages 123–126. ACM, 2018

ContinuITy

Workload Model
Evolution

Workload Model
Selection

Automated
ExecutionMonitoring Data

Test Result

Contextual
Information

Load Test Generation & Execution

Henning Schulz, Tobias Angerstein, and André van Hoorn:
Towards automating representative load testing in continuous
software engineering.

In Proceedings of the ACM/SPEC International Conference on
Performance Engineering (ICPE 2018) Companion (7th International
Workshop on Load Testing and Benchmarking of Software Systems, LTB
2018), pages 123–126. ACM, 2018

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

14

Load test automation

15

• Identify deployment configuration(s) for which
the system performs best for all workloads

• Characterize systems‘ resilience over workload
• Analyse individual service failure or

degradation
• Reveal attacks
• Monitor the performance in a transition to

microservices

What is it for?

PPTAM

t

λ

wallclock time
9 AM

300

BenchFlow

 Faban

Load test
template

Architect.
config.

s0

1
ϕ

i

0.015
Γk 0.042
pass/fail (ck) PASS

sn1

2.164
0.108
FAIL

...

...

δk 1.26 % 2.58 %
δk ⋅ ck 1.26 % 0.00 %
norm. test mass (si * p'(λ'))

Σ

100.00 %
74.81 %
0.142

...

...

^

Operational profile
Empirical distribution of

workload situations
Baseline & test results
per architectural config.

Domain metric
dashboard

#Workload
situations

ContinuITy

Analysis of
operational data

1
Experiment
generation

2
Experiment
execution

3
Domain metric

calculation

4
Collection of

operational data

0

λ' sampled workload situation

f'

100 200 300

0.2

R
el
at
iv
e
M
as
s

0.25

0.20

0.15

0.05

0

50 100 150 200
Workload Situations (Number of Users)

x

x

x x
x

x

x

0.10
x

250 300

x x

x

S
te

p
(I

n
te

rm
e

d
ia

te
)

A
rt

if
a

ct
T
o

o
l

Production and Performance Testing-Based Application Monitoring

17

• It collects the operational profile of a microservice system
• It automatically runs a series of experiments with given usage

profiles and probability of use (R scripts)
• It runs experiments according to templates that control time, number of

agents, and single operation max response (Faban)
• It sets the goals of testing (e.g., resource config) and collects data

for each experiment or multi-experiment (Benchflow)
• It identifies failing services (baseline threshold R scripts)
• It computes a total metric of performance on non-failing services for

each system configuration (CPU, memory, replicas) over workloads (via R
scripts)

• It visualizes into interactive graphs (R shop, R shiny, and R plottly)

What it does?

Avritzer and Russo: Operational Profile Data for Continuous Dependability Assessment in DevOps

• Collects the
operational data of
systems

• Builds the operational
profile

What it does

t

λ

wallclock time
9 AM

300

BenchFlow

 Faban

Load test
template

Architect.
config.

s0

1
ϕ

i

0.015
Γk 0.042
pass/fail (ck) PASS

sn1

2.164
0.108
FAIL

...

...

δk 1.26 % 2.58 %
δk ⋅ ck 1.26 % 0.00 %
norm. test mass (si * p'(λ'))

Σ

100.00 %
74.81 %
0.142

...

...

^

Operational profile
Empirical distribution of

workload situations
Baseline & test results
per architectural config.

Domain metric
dashboard

#Workload
situations

ContinuITy

Analysis of
operational data

1
Experiment
generation

2
Experiment
execution

3
Domain metric

calculation

4
Collection of

operational data

0

λ' sampled workload situation

f'

100 200 300

0.2

R
el
at
iv
e
M
as
s

0.25

0.20

0.15

0.05

0

50 100 150 200
Workload Situations (Number of Users)

x

x

x x
x

x

x

0.10
x

250 300

x x

x

S
te

p
(I

n
te

rm
e

d
ia

te
)

A
rt

ifa
c
t

To
o

l

50 100 150 200 250 300

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Workload situation (number of users)

fre
qu
en
cy

• Automatically runs a
series of experiments
with given usage
profiles and
probability of use

What it does

t

λ

wallclock time
9 AM

300

BenchFlow

 Faban

Load test
template

Architect.
config.

s0

1
ϕ

i

0.015
Γk 0.042
pass/fail (ck) PASS

sn1

2.164
0.108
FAIL

...

...

δk 1.26 % 2.58 %
δk ⋅ ck 1.26 % 0.00 %
norm. test mass (si * p'(λ'))

Σ

100.00 %
74.81 %
0.142

...

...

^

Operational profile
Empirical distribution of

workload situations
Baseline & test results
per architectural config.

Domain metric
dashboard

#Workload
situations

ContinuITy

Analysis of
operational data

1
Experiment
generation

2
Experiment
execution

3
Domain metric

calculation

4
Collection of

operational data

0

λ' sampled workload situation

f'

100 200 300

0.2

R
el
at
iv
e
M
as
s

0.25

0.20

0.15

0.05

0

50 100 150 200
Workload Situations (Number of Users)

x

x

x x
x

x

x

0.10
x

250 300

x x

x

S
te

p
(I

n
te

rm
e

d
ia

te
)

A
rt

ifa
c
t

To
o

l

20

BenchFlow Automation Framework
G
eneration

20

BenchFlow Automation Framework
G
enerationTest Generation

20

BenchFlow Automation Framework
G
eneration

Test Bundle

Test Generation

20

BenchFlow Automation Framework
G
eneration

Test Bundle

Test Generation Experiment Generation

Experiment Bundle

20

BenchFlow Automation Framework
G
eneration

Execution

Test Bundle

Experiment Execution

Test Generation Experiment Generation

Experiment Bundle

20

BenchFlow Automation Framework
G
eneration

Execution

Test Bundle

Failures

Experiment Execution

Test Generation Experiment Generation

Experiment Bundle

Success

20

BenchFlow Automation Framework
G
eneration

Execution
Analysis

Test Bundle

Failures

Experiment Execution

Result Analysis

Test Generation Experiment Generation

Experiment Bundle

Success

20

BenchFlow Automation Framework
G
eneration

Execution
Analysis

Test Bundle

Metrics

Failures

Experiment Execution

Result Analysis

Test Generation Experiment Generation

Experiment Bundle

Success

21

• Usage profiles (WebDriver.java)

• Configuration file.xml

Experiment execution design
(faban)

 <!-- The rampup, steadystate, and rampdown of the driver -->
 <fa:runControl unit="time">
 <fa:rampUp>60</fa:rampUp>
 <fa:steadyState>1800</fa:steadyState>
 <fa:rampDown>0</fa:rampDown>
 </fa:runControl>

<!-- The number of agents, or host:agents pairs
separated by space -->

<agents>10</agents>

What it does

• Service failures over
time

• Total performance of
system in use

• Per (micro)service
performance time series

• Performance
degradation under an
attack

t

λ

wallclock time
9 AM

300

BenchFlow

 Faban

Load test
template

Architect.
config.

s0

1
ϕ

i

0.015
Γk 0.042
pass/fail (ck) PASS

sn1

2.164
0.108
FAIL

...

...

δk 1.26 % 2.58 %
δk ⋅ ck 1.26 % 0.00 %
norm. test mass (si * p'(λ'))

Σ

100.00 %
74.81 %
0.142

...

...

^

Operational profile
Empirical distribution of

workload situations
Baseline & test results
per architectural config.

Domain metric
dashboard

#Workload
situations

ContinuITy

Analysis of
operational data

1
Experiment
generation

2
Experiment
execution

3
Domain metric

calculation

4
Collection of

operational data

0

λ' sampled workload situation

f'

100 200 300

0.2

R
el
at
iv
e
M
as
s

0.25

0.20

0.15

0.05

0

50 100 150 200
Workload Situations (Number of Users)

x

x

x x
x

x

x

0.10
x

250 300

x x

x

S
te

p
(I

n
te

rm
e

d
ia

te
)

A
rt

ifa
ct

To
o

l

https://pptam.shinyapps.io/PPTAM_EXT/

https://pptam.shinyapps.io/PPTAM_EXT/

Total system
performance - under
different sys resources

Service
failure

No attack

https://pptam.shinyapps.io/PPTAM_EXT/

Total system
performance - under
different sys resources

Service
failure

No attack

https://pptam.shinyapps.io/PPTAM_EXT/

Service
failures

Under
attack

Total system
performance - under
different sys resources

24

 Monitoring cockpit Cockpit

https://pptam.shinyapps.io/PPTAM_EXT/

https://pptam.shinyapps.io/PPTAM_EXT/
https://pptam.shinyapps.io/PPTAM_EXT/

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

25

Case studies

26

• In a microservice architecture, services are
fine-grained and the protocols are lightweight
rendering each micro service loosely coupled
with the others

• Microservice architectures often use containers
to enforce service independence

Microservice architecture

27

• There are characteristics that are shared by microservice
architectures:
• Data is organized in a decentralized way: each service

manages its own data makes it independently
deployable

• Teams that build systems with microservices
extensively use infrastructure automation techniques
(like continuous integration or continuous delivery)

Before starting a transition …

Data	independently	
deployable

Automation

28

• Challenge: assess performance of
architectural deployment alternatives
(e.g., number of replicas, CPU/memory
allocation, technology stack) under fuzzy
requirements

Quantitative Assessment of
Deployment Alternatives

Alberto Avritzer, Vincenzo Ferme, Andrea Janes, Barbara Russo,
Henning Schulz, and André van Hoorn:
A Quantitative Approach for the Assessment of
Microservice Architecture Deployment
Alternatives by Automated Performance Testing.

In Proceedings of the 12th European Conference on Software
Architecture (ECSA). LNCS, Springer, 2018 (Accepted)

29

• Approach
• Use operational data to generate and weigh load

tests
• Measure baseline requirements
• Design a metric that allows quantitative

comparison of deployment alternatives

Quantitative Assessment of
Deployment Alternatives

30

Overview of Approach

Production

30

Overview of Approach

Observed load situations
Time

Lo
ad

 L
ev

el

Production

30

Overview of Approach

Observed load situations
Time

Lo
ad

 L
ev

el

Production Empirical distribution of load situations

Load intensity

R
el

. F
re

q.

1

30

Overview of Approach

Observed load situations
Time

Lo
ad

 L
ev

el

Production

Sampled load tests

Empirical distribution of load situations

Load intensity

R
el

. F
re

q.

1

Empirical Distribution of Load situations
Sampled load intensities

Ag
gr

. R
el

. F
re

q.

2

30

Overview of Approach

Observed load situations
Time

Lo
ad

 L
ev

el

Production

Baseline test
Sampled load tests

Scalability criteria

Deployment conf.

Empirical distribution of load situations

Load intensity

R
el

. F
re

q.

1

Empirical Distribution of Load situations
Sampled load intensities

Ag
gr

. R
el

. F
re

q.

2
0.12 0.14 0.20 0.16 0.11

Test results

3

30

Overview of Approach

Observed load situations
Time

Lo
ad

 L
ev

el

Production

Baseline test
Sampled load tests

Scalability criteria

Deployment conf.

Empirical distribution of load situations

Load intensity

R
el

. F
re

q.

1

Empirical Distribution of Load situations
Sampled load intensities

Ag
gr

. R
el

. F
re

q.

2
0.12 0.14 0.20 0.16 0.11

Test results

3

Domain Metric

0.73
4

System Under Test

Avritzer and Russo: Operational Profile Data for Continuous Dependability Assessment in DevOps 32

Experiments

Production

12 microservices

Avritzer and Russo: Operational Profile Data for Continuous Dependability Assessment in DevOps 32

Experiments

Production

12 microservices

Custom Op. Mix

Sampled Load Tests

Empirical Distribution of Load intensities

6 Load Levels

50,100,150,200,250,300
Workload intensities

1,2

Avritzer and Russo: Operational Profile Data for Continuous Dependability Assessment in DevOps 32

Experiments

Scal = avg + 3σ

Production

12 microservices

Custom Op. Mix

Sampled Load Tests

Empirical Distribution of Load intensities

6 Load Levels

50,100,150,200,250,300
Workload intensities

1,2

Deployment Config.

12 configurations

Replicas

CPURAM

3

33

Experiment Results: Computation
of Domain Metric (1/2)

Custom Op. Mix

Users Aggr. Rel. Freq.

50 0.10582

100 0.18519

150 0.22222

200 0.22222

250 0.20370

300 0.06085

Aggr. Rel. Freq. Contrib. to Domain Metric

Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica

API Scalability
Criteria

GET / PASS

GET /cart PASS

POST /item FAIL

33

Experiment Results: Computation
of Domain Metric (1/2)

Custom Op. Mix

Users Aggr. Rel. Freq.

50 0.10582

100 0.18519

150 0.22222

200 0.22222

250 0.20370

300 0.06085

Aggr. Rel. Freq. Contrib. to Domain Metric

Max: 0.20370

Actual: 0.13580

Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica

API Scalability
Criteria

GET / PASS

GET /cart PASS

POST /item FAIL

34

Experiment Results: Computation
of Domain Metric (2/2)

Users Contribution

50 0.10582

100 0.18519

150 0.22222

200 0.07999

250 0.13580

300 0.04729

Contrib. to Domain Metric

Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica

34

Experiment Results: Computation
of Domain Metric (2/2)

Users Contribution

50 0.10582

100 0.18519

150 0.22222

200 0.07999

250 0.13580

300 0.04729

Contrib. to Domain Metric

Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica

Max: 1

Domain Metric
4

34

Experiment Results: Computation
of Domain Metric (2/2)

Users Contribution

50 0.10582

100 0.18519

150 0.22222

200 0.07999

250 0.13580

300 0.04729

Contrib. to Domain Metric

Deployment Configuration: 1 GB RAM, 0.25 CPU, 1 Replica

Max: 1

Domain Metric
4

0.77631
Actual:

35

Experiment Results: Single-Metric
Comparison of Alternatives

35

Experiment Results: Single-Metric
Comparison of Alternatives

35

Experiment Results: Single-Metric
Comparison of Alternatives

36

Experiment Results: Visual
Comparison of Alternatives

C
on

tri
b.

 to
 D

om
ai

n
M

et
ric

Sampled Load Tests

36

Experiment Results: Visual
Comparison of Alternatives

C
on

tri
b.

 to
 D

om
ai

n
M

et
ric

Sampled Load Tests

Max Contrib.

36

Experiment Results: Visual
Comparison of Alternatives

C
on

tri
b.

 to
 D

om
ai

n
M

et
ric

Sampled Load Tests

Max Contrib.

Depl. Conf.

37

Extensions/Application

37

• We have tested it on an online demo-platform
• We have extended it to monitor performce

degradation under attacks by incorporating
Mirai

Extensions/Application

37

• We have tested it on an online demo-platform
• We have extended it to monitor performce

degradation under attacks by incorporating
Mirai

• We have designed it for monitoring
performance degradation during a transition to
microservices

Extensions/Application

38

38

Bare-metal versus
virtualization
environment

System Under Test

• 2 VM one for SUT and one for Test

• SUT: docker containers each for on micro
service, one for DB

Experiment settings

41

• The containerized bare metal machines:
• Load driver server - 32 GB RAM, 24 cores (2

threads each) at 2300 MHz and SUT server - 896
GB RAM, 80 cores (2 threads each) at 2300
MHz

• Both machines use magnetic disks with 15 000
rpm and are connected using a shared 10 Gbit/ s
network infrastructure

Bare-metal

42

• The containerized deployment in virtual machines:
• Load driver server - 4 GB RAM, 1 core at 2600MHz

and SUT server - 8 GB RAM, 4 cores at 2600 MHz
with SSDs

• Both machines use an EMCVNC 5400 series network
attached storage solution12 and are connected using a
shared 10 Gbit/ s network infrastructure

• We replicated with SUT server - 16 GB RAM, 8 cores

Virtual

43

Virtual Bare metal

Virtual more resources
for SUT

Experiments - results

43

Virtual Bare metal

Virtual more resources
for SUT

Experiments - results

44

Bare-metal versus
virtualization
environment

44

Bare-metal versus
virtualization
environment

Monitor performance
degradation under

attacks

System Under Test

46

• Mirai is a malware that has been used to turn
networked devices (cameras) running Linux into
remotely controlled bots

• We use an academic version of it to attack the system
in controlled experiments

• It can perform different types of attack. By now, we
have explored http, syn, ack

Mirai BotNet

47

• Attack with simple http requests (GET and
POST to home - increase the load)

• Compute the metric with and without attack to
understand:
• the resilience of a system
• the early prediction of an attack

Experiments with Mirai

48

PPTAM Mirai

t

λ

wallclock time
9 AM

300

BenchFlow

 Faban

Load test
template

Architect.
config.

s0

1
ϕ

i

0.015
Γk 0.042
pass/fail (ck) PASS

sn1

2.164
0.108
FAIL

...

...

δk 1.26 % 2.58 %
δk ⋅ ck 1.26 % 0.00 %
norm. test mass (si * p'(λ'))

Σ

100.00 %
74.81 %
0.142

...

...

^

Operational profile
Empirical distribution of

workload situations
Baseline & test results
per architectural config.

Domain metric
dashboard

#Workload
situations

ContinuITy

Analysis of
operational data

1
Experiment
generation

2
Experiment
execution

3
Domain metric

calculation

4
Collection of

operational data

0

λ' sampled workload situation

f'

100 200 300

0.2

R
el
at
iv
e
M
as
s

0.25

0.20

0.15

0.05

0

50 100 150 200
Workload Situations (Number of Users)

x

x

x x
x

x

x

0.10
x

250 300

x x

x

S
te

p
(I

n
te

rm
e

d
ia

te
)

A
rt

if
a

ct
T
o

o
l

49

Virtual – no attack Virtual - attack

Experiments - results

50

• After few piloting attacks (5-10-20 mins)

• Duration of attack: 20 minutes (1200 seconds);
• Protocol used: HTTP;
• IP address to attack: the IP address of the SUT, i.e.,

the
• Machine with Sock Shop installed;
• Number of threads: 256.

Attack design

51

Bare-metal versus
virtualization
environment

Monitor performance
degradation under

attacks

51

Bare-metal versus
virtualization
environment

Monitoring
performance

degradation during a
transition to

microservices

Monitor performance
degradation under

attacks

52

• Identify one capability in the monolith to
transform it into microservice(s)

Dehghani’s approach to transition

53

• Decouple it from the monolith into an external
service

• Maintain the old monolith with all its existing
functionalities

• Work incrementally: build, test, and deploy

Z. Dehghani, “How to break a Monolith into Microservices,” April 2018, Fowler’s page

Dehghani’s approach to transition

54

• Some aspects are new:
• one has to decide on a communication

infrastructure
• Other aspects that are valid when developing a

monolith have to be reconsidered
• For instance, how to keep communication

between services minimal (as communication is
costly and might impede scalability)

Transition uncertainty

55

• It requires the team to acquire new
knowledge and to learn how to apply it

• New software design patterns for microservice
architectures:
• API Gateway pattern to organize how clients

can access individual services

F. Pacheco, Microservice Patterns and Best Practices: Explore Patterns Like CQRS and
Event Sourcing to Create Scalable, Maintainable, and Testable Microservices, Packt
Publishing, 2018

Transition uncertainty

56

• A transition to microservices may or may not
end up with the same or better performing
system

• It depends on the ability of the developers to
design microservices and the capability of the
microservices architecture to represent the
system

Transition uncertainty

57

Main steps

57

• Compute the operational profile of a monolith
• Apply PPTAM to collect individual service -

individual experiment - individual workload
time series

• Monitoring performance degradation over
time against baseline and experiments’
average performance

Main steps

57

• Compute the operational profile of a monolith
• Apply PPTAM to collect individual service -

individual experiment - individual workload
time series

• Monitoring performance degradation over
time against baseline and experiments’
average performance

• Analytic extension: visualize such analysis (R
shiny)

Main steps

58

59

• If the new architecture performs under a
given threshold, developers stop and
rethink of the architecture or rethink the
used patterns to guarantee that the new
system - while having all advantages of a
microservice architecture - does not fall
short in terms of performance

Application to a transition

