
Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

1

Testing techniques

2

• Software testing is a verification process that
detects differences between existing and
required conditions and to evaluate the
features of the software item

Testing

3

• Understanding your system’s behaviour under
different types of stimuli (input)

• In some cases the output (behaviour) is clear/
certain in other it might not
• For example you might not know what will be

the output for a given input of a non-
deterministic mathematical computation

• Testing increases the knowledge you have of your
system (in terms of input and behaviour)!

What is testing

are we building the product right?

4

• We want
• to know when software is good enough to

release
• to deliver software with few known bugs

• but
• it is very hard to ensure quality in software
• residual defect rate after shipping can be high

Why testing is hard

5

• 1 - 10 defects/kloc (typical)
• 0.1 - 1 defects/kloc (high quality: Java libraries)
• 0.01 - 0.1 defects/kloc (very best: NASA)
• You may think not so bad, but

1Mloc with 1 defect/kloc means
1000 bugs are missed!

Residual defect rate

6

• Input space is generally too big to be covered
exhaustively

• Imagine exhaustively testing a 32-bit multiply
operation, a*b: there are 2^64 test cases!

Exhaustive testing is infeasible

7

• Other engineering disciplines can test small
random samples (e.g. 1% of hard drives
manufactured) and infer defect rate for whole
lot

• Many tricks to speed up time (e.g. opening a
refrigerator 1000 times in 24 hours instead of
10 years)

Statistical testing doesn’t work for
software

8

• Overflow bugs (like Ariane 5) happen abruptly
• Pentium FDVI division bug affected

approximately 1 in 9 billion divisions (Byte
magazine)

• Arianne 5 https://www.youtube.com/watch?v=gp_D8r-2hwk
• Ian Sommeriville https://www.youtube.com/watch?v=W3YJeoYgozw

The failure of the Ariane 501 was caused by the complete loss of guidance and altitude information 37 seconds after start
of the main engine ignition sequence (30 seconds after lift-off). This loss of information was due to specification and
design errors in the software of the inertial reference system.
The internal SRI* software exception was caused during execution of a data conversion from 64-bit floating point to 16-bit
signed integer value. The floating point number which was converted had a value greater than what could be represented
by a 16-bit signed integer.

Failure rates are not uniform for
software

9

• What was the failure for Ariane 5?
• What was the bug in Ariane 5 software?
• Which characteristic had the backup software?
• Which facility was missing in Ariane 5?
• What was the engineering principle used for the

development of Ariane 5?
• What was the reason not to test Ariane 5?
• What was the problem related to development

process?

Questions

10

• Identify test specifications
• Define the testing process; for example:

• Acceptance tests
• Fitnesse tests
• Unit tests
• Tegression tests and so on

• Design test cases

How to test

11

• Software Specification:
• show the list of ongoing auctions by vocal

command
• Testing:

• Define testing specification:
• at the vocal command “Show auctions’ list” a list

of ongoing auctions is displayed on the screen
• at the vocal command “Show” a question

“what?” replayed

Testing - example: An auction
system

12

• Choose a testing stage
• Unit testing

• Choose a testing harness
• JUnit

• Choose a pass/fail criterion
• assertion + oracle

• Execute the test

Testing - example: An auction
system

13

• A test case is a choice of Inputs, Execution
Conditions and Pass / Fail Criterion

Test Case

14

• Test specification: at the vocal command
“Show” a question “what?” replayed

• I: “Show”
• EC: unde vocal command
• P/F C:

• when “Show -> What?” then PASS
• when “Show -> a list of auctions is displayed?”

then FAIL

Example - test case

15

• Input space may be big and complex!
• Arbitrary testing is not convincing: “just try it

and see if it works”
• Exhaustive testing is clearly infeasible — even

a simple int -> int function requires billions of
runs to test all inputs

• Random testing is less likely to discover bugs

Straightforward testing does not
work

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

16

One convenient solution

17

• We want to pick a set of tests that is small
enough to run quickly, yet large enough to
validate the program

• To do this, divide the input space into
subdomains, each consisting of a set of inputs

• The subdomains completely cover the input
space, so that every input lies in at least one
subdomain

Partitioning the input space

18

• Then we choose one input set from each
subdomain

• Partition the input space into sets of similar
inputs

• Then use one representative of each set

Test selection with partition

19

• This approach makes the best use of limited
testing resources by choosing dissimilar test
cases, and forcing the testing to explore parts of
the input space that random testing might not
reach

Test selection with partition

20

• Input space is very large, but program is
relatively small or simple

When it is worth to apply

21

• multiply : BigInteger x BigInteger ->BigInteger
• partition BigInteger into:

• BigNeg, SmallNeg, -1, 0, 1, SmallPos, BigPos
• Pick a value from each class

• -265, -9 -1, 0, 1, 9, 265
• Test the 7 x 7 = 49 combinations

Examples - multiply

22

• max : int x, int -> int
• Partition into:

• a < b, a = b, a > b
• Pick value from each class

• (1, 2), (1, 1), (2, 1)

Example - max

23

• Test the multiplication

• max : int X int -> int
• abs() : int x -> |x|

g(x,y)=abs(x)*max(y,x)
• How many combinations?

Exercise menti.com

24

• intersect : Set x Set -> Set
• Partition Set into:

• ∅, singleton, many
• Partition whole input space into:

• this = that, this ⊆ that, this ⊇ that, this ∩ that ≠ ∅, this ∩ that =
∅

• Pick values that cover both partitions
• {},{} {},{2} {},{2,3,4}
• {5},{} {5},{2} {4},{2,3,4}
• {2,3},{} {2,3},{2} {1,2},{2,3}

Example - intersect

25

• Include classes at boundaries of the input space
• zero, min/max values, empty set, empty string,

null
• Why? because bugs often occur at boundaries:

• off-by-one bugs (for loops)
• forget to handle empty containers
• overflow errors in arithmetic

Boundary testing

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

26

Types of testing - depend on the
access to information

27

• White box testing and black box testing

Types of testing

Input

Expected Behaviour (If Any)

Input

Expected Behaviour (If Any)

Input

Expected Behaviour (If Any)

Featuren

Feature2
Feature1

…

internal
values

associations’
values

public
values

28

• The type of testing (White or Black) that you
can perform depends on the accessibility to the
information about your system or software

• The more you know about the internal structure
of software/system the greater amount of
techniques you can apply

Type of testing

29

• Goal: Understanding the behaviour without
being biased by the specific implementation
• Testers do not see how software has been

implemented
• Exercise different public features or services

of software/system under different
environmental settings (e.g., portability for OS)
or hardware/software configurations

Black-box (functional) testing

30

• The solutions of an equation of second order

0=ax2+bx+c

• are two x1,2; the function is
(a,b,c) => x1,2

• How many combinations of a,b,c to check the
number and type of solutions? menti.com

Understanding the behaviour

31

Is it always true? a=0

a!=0 => a=1

How many outputs? Let’s see the behaviours: b2-4ac>0,
b2-4ac=0, b2-4ac<0 => (1,1,0), {(1,0,0), (1,4,1)}, (1,1,1)

Solution

32

• Goal: Understanding the behaviour of a
specific implementation

• Exercise the internal structure

White-box testing

33

• Exercise independent execution paths within a
module or unit

• Exercise logical decisions on both true and
false

• Execute loops at their boundaries and
• Exercise internal data structures to ensure their

validity

With WBT

34

Execution paths

35

choose	values	and	follow	the	
execution	path

36

Exercise independent execution
paths

What	is	the	input	for	
red	path?

A D

B

C

E

Return

Assign
If

Assign

Assign

If

37

Exercise logical decisions on both
true and false What	is	the	input	for	

red	decision	points?

T

T

F

F

Return

Assign
If

Assign

Assign

If

38

Execute loops at their boundaries
and within their operational bounds

39

Input: argStr =Your Output: argBuffer=Your
Input: argStr = ‘ ’You Output: argBuffer=You
Input: argStr = I am Output: argBuffer= I am

Execute loops at their boundaries

last ch argBuf cldx

‘	‘ ‘	‘ - 0

‘	‘ Y Y 1

Y o o 2

o u u 3

u

last ch argBuf cldx

I I I 0

I ‘	’ ‘	’ 1

‘	’ a a 2

a m m 3

m

last ch argBuf cldx

Y Y Y 0

Y o o 1

o u u 2

u r r 3

r

case	II	and	III:	check	
boundaries	and	within	

operational	bounds!

40

Exercise internal data structures to
ensure their validity

What	is	the	value	of	
“dummy”	here?

