
Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

1

Verification and Validation

2

• Software is not perfect as it is created by
human beings

• Verification and Validation are processes that
use techniques and methods to ensure the final
product quality

• Testing is one of these processes

Verification and Validation

3

• What is Validation?
• What is Verification?

• Are they synonyms? Is there any difference?

• Mentimeters www.menti.com
(www.mentimeter.com)

Verification and Validation

4

• Are they synonyms?
• Is there any difference?

• Verification is:

• Validation is:

Verification and Validation

No
Yes

5

• Check the consistency of an implementation
with a specification

• It checks “How” i.e., the process of building
• Are we building the product right?" (B. Boehm)

• Example: A music player plays (it does play)
the music when I press Play

Verification

6

• Check the degree at which a software system
fulfills user/customer’s requirements

• It checks “What”, i.e., the product itself
• Are we building the right product ? (B. Boehm)

• Example: A music player plays a song (it does
not show a video) when I press Play

Validation

7

• Requirements are goals of a software system
• Specifications are solutions to achieve such

goals

• Validation: Software that matches requirements ⇒
useful software

• Verification: Software that matches specifications
⇒ dependable software

Usefulness vs. dependability

8

• Requirement (goal)
• an application must be used in any circumstance

• Specification (solution)
• an application is mobile

Example

9

• Requirement (goal)
• a music player plays a list of songs of an author

• Specification (solution)
• a music player reproduces an author’s playlist

from iTunes

Example

10

• Dependability is the degree at which a software
system complies with its specifications

Dependability

11

• Unit tests cover 75% of code
• Methods have been implemented to cover 95%

of the specifications
• Classes cover 60% of the data structures

Examples

12

• Go to:

• menti.com

Make your own example

13

Verification and validation activities

Do	you	know	
any	of	them?

What	do	
they	have	in	
common?

14

• What is what (Ver or Val)?
• Acceptance test (with customer): negotiated with the

customer. It defines the input and the output of each
software feature

• alpha test (acceptance test with user): performed by
users in a controlled environment. Evaluate the
operational profile as defined by the organisation

• beta test (acceptance test with user): performed by
users in a their own environment. Capture real
operational profiles

Exercise

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

15

Testing as a verification process

16

• Pezzè & Young, Software Testing and Analysis:
Process, Principles and Techniques,Wiley,
2007. University Shelf ST 233 P522, Chap.1-4,
5-6 8-12 17, access from unibz library 15-
Textbook Collection ST 233

• Chapter 1

Readings

17

• Software analysis and review are verification
processes to examine a software artifact and to
approve it

• Software testing is a verification process that
detects differences between existing and
required conditions and to evaluate the features
of the software item

IEEE definition

Types of Verification process

Tools and Techniques for Software Testing - Barbara Russo
SwSE - Software and Systems Engineering group

18

What is the relation between
testing and dependability?

19

• Testing aims at verifying four software
dependability properties:
• Correctness: consistency with specification
• Reliability: statistical approximation to correctness;

probability that a system deviates from the expected
behavior

Goal of testing

20

• Robustness: being able to maintain operations
under exceptional circumstances of not full-
functionality

• Safety: robustness in case of hazardous behavior
(e.g., attacks)

Goal of testing

21

Relations

Source: Mauro Pezze’ and Michal Young

22

• Reliability: built
according to central
scheduling and
practice

• Robustness, safety:
degraded function
when possible; never
signal conflicting
greens
• Blinking red / blinking

yellow is better than no
lights;

• No lights is better than
conflicting greens

Source: Mauro Pezze’ and Michal Young

23

• Testing is a process
• Different testing techniques can be used all

along the process

Testing techniques

24

• Pay attention testing does not question
specifications!!! Thus, it can be affected by
specifications that do not have:
• Consistency: Specification vs specification, no

conflicts
• No ambiguity: open to interpretations,

uncertainty
• Adherence to standards: consistency with

benchmarks

Specification Self-consistency

25

• Application specification:
• Show list of ongoing auctions by vocal

command
• Testing specifications:

• At the vocal command “Show auctions,” a list
of auctions X1, …,Xn that are ongoing is
displayed on the screen

• At the vocal command “Show,” the question
“what?” is replayed

Application vs. testing specs

What	is	
different?

What	is	the	
requirement?

26

• How can we check whether our software
satisfies any of the dependability properties?

• Can we use a “proof”?
• For example, correctness: given a set of

specifications and a program we want to find
some logical procedure (e.g., a proof) to say
that the program satisfies the specifications

Checking dependability

27

Some problems cannot be solved by any computer
program (Alan Turing)

Undecidability of problems

28

Given a program P and an input I, it is not
decidable whether P will eventually halt when it
runs with that input I or it runs forever

The halting problem

29

• Undecidability implies that given a program P
and a set of verification techniques, we do not
know whether the techniques can verify the
program in finite time

• ... and even when it is feasible it might be very
expensive

Verifying a program

30

• Thus, verification is inaccurate and can be
expensive

• => E.g., modern testing uses automation

Inaccuracy of verification

31

• Thus, techniques for verification are inaccurate
when checking dependability properties:

• A verification technique has optimistic or
pessimistic inaccuracy

• Verification starting point: specify the
technique and the dependability property

Inaccuracy of verification

32

• A technique that verifies a dependability
property can return TRUE on programs that
do not have the property (FALSE
POSITIVE)

Optimistic Inaccuracy

33

• Testing is optimistic as it returns that a program
is correct even if no finite number of tests can
guarantee correctness

• Positive: a program is correct

Example

34

• Pessimistic inaccuracy: technique that verifies a
property S can return FALSE on programs
that have the property (FALSE NEGATIVE)

Pessimistic Inaccuracy

35

• Old test cases can have pessimistic inaccuracy
for robustness/safety as they may return FALSE
on newer versions of the system although they
are robust/safe (e.g., the newer versions have
implemented new specifications that include
hazard)

Example

36

Accuracy: confusion matrix

Pred.
TRUE

Pred.
FALSE

TRUE TP FN

FALSE FP TN

Predicted	by	the	technique

Truth

37

• As the exception expectation is placed around
the whole test method, this might not actually
test what is intended to be tested

@Test(expected = FooException.class)
public void testWithExceptions() {
 foo.prepareToDoStuff();
 foo.doStuff();
}

Examples - false positive

