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Verification and Validation
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• Software is not perfect as it is created by 
human beings 

• Verification and Validation are processes that 
use techniques and methods to ensure the final 
product quality 

• Testing is one of these processes

Verification and Validation
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• What is Validation? 
• What is Verification? 

• Are they synonyms? Is there any difference?  

• Mentimeters www.menti.com 
(www.mentimeter.com)

Verification and Validation



4

• Are they synonyms? 
•  Is there any difference? 

• Verification is: 

• Validation is:

Verification and Validation

No
Yes
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• Check the consistency of an implementation 
with a specification 

• It checks “How” i.e., the process of building 
• Are we building the product right?" (B. Boehm) 

• Example: A music player plays (it does play) 
the music when I press Play

Verification
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• Check the degree at which a software system 
fulfills user/customer’s requirements 

• It checks “What”, i.e., the product itself 
•  Are we building the right product ? (B. Boehm) 

• Example: A music player plays a song (it does 
not show a video) when I press Play

Validation
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• Requirements are goals of a software system 
• Specifications are solutions to achieve such 

goals 

• Validation: Software that matches requirements ⇒ 
useful  software 

• Verification: Software that matches specifications 
⇒ dependable software

Usefulness vs. dependability
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• Requirement (goal)  
• an application must be used in any circumstance  

• Specification (solution)  
• an application is mobile 

Example
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• Requirement (goal) 
• a music player plays a list of songs of an author 

• Specification (solution) 
• a music player reproduces an author’s playlist 

from iTunes

Example
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• Dependability is the degree at which a software 
system complies with its specifications 

Dependability
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• Unit tests cover 75% of code 
• Methods have been implemented to cover 95% 

of the specifications 
• Classes cover 60% of the data structures

Examples
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• Go to: 

• menti.com

Make your own example
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Verification and validation activities

Do	you	know	
any	of	them?

What	do	
they	have	in	
common?
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• What is what (Ver or Val)? 
• Acceptance test (with customer): negotiated with the 

customer. It defines the input and the output of each 
software feature  

• alpha test (acceptance test with user): performed by 
users in a controlled environment. Evaluate the 
operational profile as defined by the organisation 

• beta test (acceptance test with user): performed by 
users in a their own environment. Capture real 
operational profiles

Exercise
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Testing as a verification process
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• Pezzè & Young, Software Testing and Analysis: 
Process, Principles and Techniques,Wiley, 
2007. University Shelf ST 233 P522, Chap.1-4, 
5-6 8-12 17, access from unibz library 15-
Textbook Collection ST 233 

• Chapter 1

Readings
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• Software analysis and review are verification 
processes to examine a software artifact and to 
approve it  

• Software testing is a verification process that 
detects differences between existing and 
required conditions and to evaluate the features 
of the software item 

IEEE definition

Types of Verification process
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What is the relation between 
testing and dependability?
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• Testing aims at verifying four software 
dependability properties: 
• Correctness: consistency with specification 
• Reliability: statistical approximation to correctness; 

probability that a system deviates from the expected 
behavior

Goal of testing
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• Robustness: being able to maintain operations 
under exceptional circumstances of not full-
functionality 

• Safety: robustness in case of hazardous behavior 
(e.g., attacks)

Goal of testing
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Relations

Source: Mauro Pezze’ and Michal Young
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• Reliability: built 
according to central 
scheduling and 
practice 

• Robustness, safety: 
degraded function 
when possible; never 
signal conflicting 
greens 
• Blinking red / blinking 

yellow is better than no 
lights;  

• No lights is better than 
conflicting greens

Source: Mauro Pezze’ and Michal Young
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• Testing is a process 
• Different testing techniques can be used all 

along the process

Testing techniques
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• Pay attention testing does not question 
specifications!!! Thus, it can be affected by 
specifications that do not have:  
• Consistency: Specification vs specification, no 

conflicts 
• No ambiguity: open to interpretations, 

uncertainty 
• Adherence to standards: consistency with 

benchmarks

Specification Self-consistency
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• Application specification: 
• Show list of ongoing auctions by vocal 

command 
• Testing specifications: 

• At the vocal command “Show auctions,” a list 
of auctions X1, …,Xn that are ongoing is 
displayed on the screen 

• At the vocal command “Show,” the question 
“what?” is replayed

Application vs. testing specs

What	is	
different?

What	is	the	
requirement?
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• How can we check whether our software 
satisfies any of the dependability properties? 

• Can we use a “proof”? 
• For example, correctness: given a set of 

specifications and a program we want to find 
some logical procedure (e.g., a proof) to say 
that the program satisfies the specifications

Checking dependability
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Some problems cannot be solved by any computer 
program (Alan Turing)

Undecidability of problems
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Given a program P and an input I, it is not 
decidable whether P will eventually halt when it 
runs with that input I or it runs forever

The halting problem
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• Undecidability implies that given a program P 
and a set of verification techniques, we do not 
know whether the techniques can verify the 
program in finite time 

• ... and even when it is feasible it might be very 
expensive

Verifying a program
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• Thus, verification is inaccurate and can be 
expensive 

• => E.g., modern testing uses automation

Inaccuracy of verification
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• Thus, techniques for verification are inaccurate 
when checking dependability properties: 

• A verification technique has optimistic or 
pessimistic inaccuracy 

• Verification starting point: specify the 
technique and the dependability property

Inaccuracy of verification
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• A technique that verifies a dependability 
property can return TRUE on programs that 
do not have the property (FALSE 
POSITIVE)

Optimistic Inaccuracy 
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• Testing is optimistic as it returns that a program 
is correct even if no finite number of tests can 
guarantee correctness 

• Positive: a program is correct

Example
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• Pessimistic inaccuracy: technique that verifies a 
property S can return FALSE on programs 
that have the property (FALSE NEGATIVE)

Pessimistic Inaccuracy



35

• Old test cases can have pessimistic inaccuracy 
for robustness/safety as they may return FALSE 
on newer versions of the system although they 
are robust/safe (e.g., the newer versions have 
implemented new specifications that include 
hazard)  

Example
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Accuracy: confusion matrix

Pred. 
TRUE

Pred. 
FALSE

TRUE TP FN

FALSE FP TN

Predicted	by	the	technique

Truth
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• As the exception expectation is placed around 
the whole test method, this might not actually 
test what is intended to be tested 

@Test(expected = FooException.class) 
public void testWithExceptions() { 
 foo.prepareToDoStuff(); 
 foo.doStuff(); 
}

Examples - false positive


