
Barbara Russo 
SwSE - Software and Systems Engineering research group

�1

Coverage Testing



�2

• One way to judge a test suite is to ask how 
thoroughly it exercises the program  

• This is called coverage 

Coverage



Barbara Russo
�3

1		int	foo	(int	a,	int	b,	int	c,	int	d,	float	e)	{	

2						if	(a	==	0)	{	
3										return	0;	

4						}	

5						int	x	=	0;	
6						if	((a==b)	||	((c	==	d)	&&	bug(a)	))	{	

7											x=1;	

8						}	
9						e	=	1/x;	

10				return	e;	

11	}

Example text

bug(): if a=1 it returns true  

and false if a!=1. 



Barbara	Russo �4

• Coverage is a measure of the completeness of 
the set of test cases 
• Method coverage 
• Statement coverage 
• Branch coverage 
• Condition coverage

Coverage



Barbara	Russo �5

• Measure: percentage of methods that have been 
executed at least once by test cases 

• Tests should call 100% of the methods 
• It seems irresponsible to deliver methods in the 

product when testing never used these methods 
• you need to ensure you have 100% method 

coverage

Method coverage



Barbara	Russo �6

• There is only one method  
• int foo (int a, int b, int c, int d, float e)  
• for a=0 foo returns 0 no matter the values of the 

other parameters 
• calling foo with input (0,0,0,0,0) we attain 

100% method coverage in our example

Test Case 1



Barbara	Russo �7

• Measure: percentage of statements that have 
been executed by test cases 
• Achieve 100% statement coverage. Count the 

number of statements and cover all of them with 
a test

Statement coverage



Barbara	Russo �8

• With Test Case 1, we executed the program 
statements on lines 1-4 out of 11 lines of code 

• As a result, we had 42% (5/12) statement 
coverage from Test Case 1

Example



Barbara	Russo �9

• We can attain 100% statement coverage by one 
additional test case,  

• Test Case 2: foo(1, 1, 1, 1,1), expected return 
value of 1.  

• we have now executed the program statements 
on lines 5-11

Example



Barbara	Russo �10

• Measure: percentage of the decision points 
have been evaluated as both true and false in 
test cases.  

• Two decision points – one on line 2 and the 
other on line 6 

• 2 if (a == 0) {} 
• 6 if ((a==b) OR ((c == d) AND bug(a) )) {}

Branch Coverage



Barbara	Russo �11

• For decision/branch coverage, we evaluate an 
entire Boolean expression as one true-or-false 
predicate 

• We need to ensure that each of these predicates 
(compound or single) is tested as both true and 
false



Barbara	Russo �12

Line	#	 Predicate True False

3 (a	==	0)	 Test	Case	1	foo(0,	
0,	0,	0,	0)	return	0

Test	Case	2	
foo(1,	1,	1,	1,	1)	
return	1

7 (	(a==b)	OR		
((c	==	d)	AND	bug(a)	)	)

Test	Case	2	foo(1,	
1,	1,	1,	1)	return	1



Barbara	Russo �13

• With TewstCase1 and TestCase2 we have 
executed three of the four necessary conditions  
• we have achieved 75% branch coverage so far 

• TestCase3 foo(1, 2, 1, 2, 1) return ?? 
• in calculating the output, we discover a division 

by 0 that can cause future failures! 
• That was due to a local variable that we could 

not control before!

TestCase3



Barbara	Russo �14

Line	#	 Predicate True False

3 (a	==	0)	 Test	Case	1	foo(0,	
0,	0,	0,	0)	return	0

Test	Case	2	
foo(1,	1,	1,	1,	1)	
return	1

7 ((a==b)	OR		
((c	==	d)	AND	bug(a)	))

Test	Case	2	foo(1,	
1,	1,	1,	1)	return	1

TestCase3 foo(1, 
2, 1, 2, 1) 
division by zero!



Barbara	Russo �15

• Measure: percentage of Boolean sub-
expressions of the program that have been 
evaluated as both true or false outcome in test 
cases 
• applies to compound predicates 

• Condition coverage measures the outcome of 
each of these sub-expressions independently of 
each other

Condition Coverage



Barbara	Russo �16

Predicate True False

(a==b) Test	Case	2	foo(1,	1,	
1,1,	1)	return	1

Test	Case	3	foo(1,	2,	1,	2,	
1)	division	by	zero!

(c==d) Test	Case	3	foo(1,	2,	1,	2,	
1)	division	by	zero!

bug(a)

Only	the	50%	coverage!



Barbara	Russo �17

• We examine our available information on the 
bug method and determine that is should return  
true when a=1 

• foo(1, 2, 1, 1, 1), expected return value 1

TestCase4



Barbara	Russo �18

Predicate True False

(a==b) Test	Case	2	foo(1,	1,	
1,1,	1)	return	1

Test	Case	3	foo(1,	2,	1,	2,	
1)	division	by	zero!

(c==d) Test	Case	4	foo(1,	2,	
1,1,	1)	return	1	

Test	Case	3	foo(1,	2,	1,	2,	
1)	division	by	zero!

bug(a) Test	Case	4	foo(1,	2,	
1,1,	1)	return	1



Barbara	Russo �19

• To finalize our condition coverage, we must 
force bug(a) to be false  

• We again examine our bug() method, which 
informs us that it should return a false value if 
fed any integer a different from 1 

• So we create Test Case 5, foo(3, 2, 1, 1, 1), 
expected return value “division by zero”.

TestCase5



�20

• We could have (2,2,1,1,1). The input would 
have been fine but we would never reach the 
AND condition. Thus, we must make the 
(a==b) false to be sure to test the AND 
condition for FALSE.  

• The same applies for (c==d): we need to have it 
TRUE to be sure that FALSE is due to the 
bug(a) condition. 

Note



Barbara Russo
�21

Predicate True False

(a==b) Test	Case	2	foo(1,	1,	
1,1,	1)	return	1

Test	Case	3	foo(1,	2,	1,	2,	
1)	division	by	zero!

(c==d) Test	Case	4	foo(1,	2,	
1,1,	1)	return	1	

Test	Case	3	foo(1,	2,	1,	2,	
1)	division	by	zero!

bug(a) Test	Case	4	foo(1,	2,	
1,1,	1)	return	1

Test	Case	5	foo(3,	2,	1,1,	
1)	division	by	zero!

01/04/14

Traceability matrix



�22

• Path coverage is every possible combination of 
branches — every path through the program — 
taken by some test case 

• McCabe complexity is used to determine how 
many complete execution paths (i.e. test built 
on them) a tester need to consider 

• As with code coverage this is a measure that 
approximates exhaustiveness

Path coverage



�23

• It is an Eclipse plug-in 
• In the node build and sub-node plugins of the 

POM file include  

JaCoCo

<plugin> 
<groupId>org.jacoco</groupId> 
<artifactId>jacoco-maven-plugin</artifactId> 
<version>0.8.2</version> 
<executions> 

<execution> 
<goals> 

<goal>prepare-agent</goal> 
</goals> 

   </execution> 
<!-- attached to Maven test phase --> 
 <execution> 
  <id>report</id> 
  <phase>test</phase> 
  <goals> 
   <goal>report</goal> 
  </goals> 
 </execution> 

</executions> 
</plugin>



�24

public class Hailstone { 
  public static void main(String[] args) { 
    int n = 3; 
    while (n != 1) { 
        if (n % 2 == 0) { 
            n = n / 2; 
        } else { 
            n = 3 * n + 1; 
        } 
    } 
  } 
}

Exercise



�25

• Run this class with JaCoCo code coverage 
highlighting turned on, by choosing Run → 
Coverage As → Java Application. 

• By changing the initial value of n, you can 
observe how JaCoCo highlights different lines 
of code differently. 

When n=3 initially, what color is the line n = n/2 after execution? 

When n=16 initially, what color is the line n = 3 * n + 1 after execution? 

What initial value of n would make the line while (n != 1) yellow after execution?


