
Barbara Russo
SwSE - Software and Systems Engineering research group

1

Search Based Software Engineering and
Evolutionary Testing

2

• Phil McMinn Search-Based Software Testing:
Past, Present and Future, 2009

• Joachim Wegener, Oliver Bühler Evaluation of
Different Fitness Functions for the
Evolutionary Testing of an Autonomous
Parking System, 2004

References

3

• Finding the optimal inputs for testing is a key
issue that can be NP-hard

• Search based techniques can be leverage to find
good inputs

4

What is SBSE

Techniques to search large spaces guided by a
fitness function that captures properties of the

software artefacts we seek for

5

Place n queens on a board so that there is no
attack

Example - the search

The Eight Queens Problem

The Eight Queens Problem

The Eight Queens Problem
Perfect !

The Eight Queens Problem
Perfect !

Score 0

10

The Eight Queens Problem

10

The Eight Queens Problem

The Eight Queens Problem

Two
Attacks

Score -2

The Eight Queens Problem

The Eight Queens Problem

The Eight Queens Problem

The Eight Queens Problem
Three

Attacks

Score -3

Generate a solution
Place
8 queens
on the
Board …

… so that
there are
no
attacks

Scale up: Generate a solution
Place
44 queens
on the
Board …

… so that
there are
no
attacks

Scale up: Generate a solution
Place
400 queens
on the
Board …

… so that
there are
no
attacks

18

• Baseline for any search activity
• Inputs are generated at random until the goal of

the test is fulfilled
• Random search is very poor at finding solutions

when those solutions occupy a very small part
of the overall search space

Random search

19

20

• Random search is not effective in finding test input
when they are in small parts of the input space

• Test data may be found faster and more reliably if
the search is given some guidance

• This guidance can be provided by a fitness
function
• It scores different points in the search space

with respect to their ‘goodness’ or their
suitability for solving the problem

Random search vs guided search

21

• A plot of a fitness function is referred to as the
fitness landscape

Fitness landscape

22

Checking vs Generating

Task One:
• Write a method to determine which is the

better of two placements of N queens

Task Two:
• Write a method to construct a board

placement with N non attacking queens

22

Checking vs Generating

Task One:
• Write a method to determine which is the

better of two placements of N queens

Task Two:
• Write a method to construct a board

placement with N non attacking queens

Which seems
easier to you?

23

Checking vs Generating

Search Based Software Engineering
• Write a method to determine which is the better

of two solutions

Conventional Software Engineering
• Write a method to construct a perfect solution

24

Checking vs Generating

Search Based Software Engineering
• Write a method to determine which is the better

of two solutions

Conventional Software Engineering
• Write a method to construct a perfect solution

25

Checking vs Generating

Search Based Software Engineering
• Write a fitness function (also said cost function)

to determine which is the better of two
solutions

Conventional Software Engineering
• Write a method to construct a perfect solution

26

Checking vs Generating

Search Based Software Engineering
• Write a fitness function to guide a search of a

solution

Conventional Software Engineering
• Write a method to construct a perfect solution

27

Checking vs Generating

Search Based Software Engineering
• Write a fitness function to guide automated

search

Conventional Software Engineering
• Write a method to construct a perfect solution

28

Search Based Software Engineering
• Write a fitness function to guide automated

search of placements of N queens

Conventional Software Engineering
• Write a method to construct a board

placement with N non attacking queens

For the eight queens problem

29

• Representation should be easy:
• We always represent Software Engineering

problems with data structures

• Fitness function is often easy:
• We often define metrics

The two SBSE ingredients

30

Uncertainty: identify a suitable fitness function

Major issue

31

We have plenty of search algorithm
• Genetic Algorithms,
• Hill climbing,
• Simulated Annealing,
• Random,
• Tabu Search,
• Estimation of Distribution Algorithms,
• Particle Swarm Optimization,
• Ant Colonies,
• Greedy

32

Hill Climbing - local search
one solution at a time
make moves only in the local
neighborhood of those solutions

Hill Climbing - local search

Hill Climbing - local search

35

36

bP = null;

while(searching()){
p = selectNext();
if(p.isBetter(bP))
 bP = p;

}

Bunch Hill Climbing Algorithm

37

• Hill climbing performs local search by finding
one solution at a time and moving only in the
local neighborhood of the solution

• Genetic Algorithms perform of global search,
sampling many points in the search space at
once

Local vs global search

Evolutionary Algorithms

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

39

40

How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

40

How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

Population

A finite set of strings,
arrays, …: the genome

 1 1 1 0 0 1 1 1

1 0 0 1 1 1 1 0

1 0 1 0 0 1 1 0

 1 1 0 1 1 1 1 1

1 0 1 0 0 1 1 0

 1 0 0 1 1 0 0 1

1 0 1 0 0 1 1 0

 1 0 0 1 1 0 0 1

40

How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

 1 0 0 1 1 0 0 1

Selection operator:
selects individuals for
the reproduction

1 0 1 0 0 1 1 0

 1 0 0 1 1 0 0 1

40

How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

1 1 1 0 0 1 1 0

 1 0 0 1 1 1 1 1

1 1

1 0

Crossover operator:
produces new individuals
from two parents,
exchanging parts of
their chromosomes

40

How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

Mutation operator:
randomly modifies an
individual's genome

1 1 1 0 0 1 1 0

 1 0 0 1 1 1 1 1

1 1

1 0

1 1 1 0 0 11 1 1 1 0 1

41

• Chromosome (individual)
• Population
• Fitness function
• Selection
• Crossover
• Mutation
• Crossover

Ingredients and actions

42

• A chromosome contains information about a
solution that represents

• The most used way of encoding is a binary
string

Encoding a chromosome

Chromosome 1101100100110110

43

• Binary encoding
• Arrays of Bits

• Permutation encoding
• Permutations of arrays of natural numbers

• Value Encoding
• Arrays of values

• Tree encoding
• Trees (e.g., control flow model)

https://www.obitko.com/tutorials/genetic-algorithms/
crossover-mutation.php

Encoding

44

• Generating offsprings from existing genomes

Crossover

45

Single point crossover - one crossover point is selected, binary string from
beginning of chromosome to the crossover point is copied from one parent, the
rest is copied from the second parent
Two point crossover - two crossover point are selected, binary string from
beginning of chromosome to the first crossover point is copied from one parent,
the part from the first to the second crossover point is copied from the second
parent and the rest is copied from the first parent
Uniform crossover - bits are randomly copied from the first or from the second
parent
Arithmetic crossover - some arithmetic operation is performed to make a new
offspring

https://www.obi tko.com/tutor ials/genet ic-
algorithms/crossover-mutation.php

Crossover on Bits

one-point
crossover

Crossover
arithmetic
crossover

one-point
crossover

Crossover
arithmetic
crossover

one-point
crossover

Crossover
arithmetic
crossover

one-point
crossover

Crossover

0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5

arithmetic
crossover

one-point
crossover

Crossover

0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5

arithmetic
crossover

Child 1=α ·x+(1-α)·y Child 2=α ·y+(1-α)·x

one-point
crossover

Crossover

0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5

arithmetic
crossover

Child 1=α ·x+(1-α)·y Child 2=α ·y+(1-α)·x

one-point
crossover

Crossover

0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5

0.27 0.37 0.47 0.57 0.67

arithmetic
crossover

0.43 0.53 0.56 0.73 0.83

Child 1=α ·x+(1-α)·y Child 2=α ·y+(1-α)·x

47

• Mutate existing genomes
• Goal:

• Try to avoid local minima/maxima by
preventing the population of chromosomes from
becoming too similar to each other, thus
slowing or even stopping convergence to the
global optimum

• Introduce diversity into the sampled population

Mutation

48

• Mutation according to a given probability
• This probability should be set low:

• If it is set too high, the search will turn into a
random search

Mutation on Bits

49

• Bit flips at random positions
• Example:

• The probability of a mutation of a bit is 1/L, where
L is the length of the binary vector

Bit string mutation

49

• Bit flips at random positions
• Example:

• The probability of a mutation of a bit is 1/L, where
L is the length of the binary vector

Bit string mutation

1 1 1 0 0 1

1 1 1 1 0 1

50

• Mutation on real numbers: adding/subtracting a
small number to selected entries

• Cross-over on trees: combine two parts of the
parents tree at cross-over point

Other cases

51

• Using selection alone will tend to fill the
population with copies of the best individual
from the population

• Using selection and crossover operators will
tend to cause the algorithms to converge on a
good but sub-optimal solution (e.g., no
diversity)

Effects of Genetic Operators

52

• Using mutation alone induces a random walk
through the search space

• Using selection and mutation creates a parallel,
noise-tolerant, hill climbing algorithm (e.g., no
inheritance)

Effects of Genetic Operators

Genetic Algorithms: pseudocode
Initialize population P[0];
generation=0;
while(generation <
max_number_of_generations)

 Evaluate P[generation];
 generation=generation+1;
 Select P[generation] from
P[generation-1];

 Crossover P[generation];
 Mutate P[generation];
end while

54

• Randomly initialize population(t)
• Determine fitness of population(t)
• Repeat

• Select parents from population(t)
• Perform crossover on parents creating population(t+1)
• Perform mutation of population(t+1)
• Determine fitness of population(t+1)

• until best individual is good enough

The algorithm

55

• Evolutionary testing aims at improving the
effectiveness and efficiency of the testing
process by

transforming testing objectives into search
problems and applying evolutionary computation

in order to solve them

Evolutionary Testing

56

• Search space: input domain(s) of the system
under test (SUT)

• Test objective needs to be defined numerically
and transformed in a fitness function

• Fitness is computed by monitoring program
execution results (output, performance, etc.)

• Iterative procedure

Evolutionary Testing: HowTo

• Different test goals = different fitness functions

Testing

58

• Two assumptions in order to use search based
algorithm in testing

• Representation. Candidate solutions must be
capable of being encoded as sequences of
elements

• Fitness function. The fitness function guides the
search by evaluating candidate solutions. The
fitness function is problem-specific

Two assumptions

59

• Start with a set of randomly generated test input
data

• Then execute on test data to gather information
• Monitored values are used to compute the

fitness
• Evolution towards a testing objective, indicated

in the fitness function

Evolutionary Testing: HowTo

Genome encoding
I1 I2 I3 … … In

Tx1 <24.5> <11.3> <abc> … … <ghi>

… … … … … … …
Tx5 <7.6> <4.7> <def> … … <xza>

Typical Parameter Settings

❑ dim pop = 70
❑ n gen =500
❑ P mutation=0.01

61

More Details

[Wegener, 97]

CrossOver

62

• Aim
• Generate a set of test data to cover structural

properties
• Fitness function a normalized combination of

• Approach level: fitness is number of control nodes in a
path and dependent from a target one not covered by test
execution with a given input

• Branch distance. At the node at which the test
execution diverges from the target branch at some
approach level, the branch distance is computed.

Example: Structural Testing

Example: Coverage-oriented
approaches

individual 1

Individual 1: fitness=2 (2 branches)
Individual 2: fitness=3 (3 branches)

• Fitness of individual for
different coverage criteria
• % of covered statements
• % of covered branches
• Path coverage: % executed paths

• Good results, better than
random testing

Individual: path to same target

Example: Coverage-oriented
approaches

individual 1 individual 2

Individual 1: fitness=2 (2 branches)
Individual 2: fitness=3 (3 branches)

• Fitness of individual for
different coverage criteria
• % of covered statements
• % of covered branches
• Path coverage: % executed paths

• Good results, better than
random testing

Individual: path to same target

64

Example: Control-Oriented

Fitness function:
True conditions
not executed

Fitness landscape

65

Example

Target

Code of interest

66

δ = branch
distance: how
distant is the input I
to the value that makes
the predicate θ TRUE

67

[1] int foo (int a, int b, int c, int d, float e) {
[2] if (a == 0) {
[3] return 0;
[4] }
[5] int x = 0;
[6] if ((a==b) II ((c == d) && bug(a))) {
[7] x=1;
[8] }
[9] e = 1/x;
[10] return e;
[11] }

bug(a) = TRUE if !a==0 else 0

Exercise

How many control nodes does T(0,0,0,0,0) execute if the
target node is the output of the true branch of predicate
at line [6]? Approach distance? Branch distance of (1,0,0,0,0)

68

Distance-Oriented

Target

▪ Identify relevant branching statements
from the CFG

▪ Approximation level: distance from the
target

▪ branch_distance: condition distance when
a critical node is taken

▪ Objective function:

tancebranch_dis
dependent
executed

×

Fitness landscape

68

Distance-Oriented

Target

ex/dep=0

▪ Identify relevant branching statements
from the CFG

▪ Approximation level: distance from the
target

▪ branch_distance: condition distance when
a critical node is taken

▪ Objective function:

tancebranch_dis
dependent
executed

×

Fitness landscape

68

Distance-Oriented

Target

ex/dep=0

ex/dep=0.33

▪ Identify relevant branching statements
from the CFG

▪ Approximation level: distance from the
target

▪ branch_distance: condition distance when
a critical node is taken

▪ Objective function:

tancebranch_dis
dependent
executed

×

Fitness landscape

68

Distance-Oriented

Target

ex/dep=0

ex/dep=0.33

ex/dep=0.67

▪ Identify relevant branching statements
from the CFG

▪ Approximation level: distance from the
target

▪ branch_distance: condition distance when
a critical node is taken

▪ Objective function:

tancebranch_dis
dependent
executed

×

Fitness landscape

69

Distance-Oriented [Wegener]

Target

dep-ex=3

dep-ex=2

dep-ex=1

▪ Objective function:

▪ m_branch_distance:
branch_distance normalized in the
interval [0,1]

istancem_branch_d)1executeddependent(+−−

Barbara Russo
SwSE - Software and Systems Engineering

70

Multi-objective search

71

• Optimization means search in the space to
minimize or maximize one or more fitness
functions
• Objective of the search can be single or multiple

Objectives of the search

72

• Formally, it can be expressed as:

• where m is the number of objectives and x is a
solution in the feasible solution space X, i.e.,

 (n is the number of decision
variables of the problem)

argmin{f1(x); f2(x); . . . ; fm(x)}

x ∈ X ⊂ Rn

Objective function
considering a
minimization
scenario

73

• Two components of a search algorithm:
• The representation, i.e., how can be structured and

changed
• The objective function, i.e., how each single can be

formulated to distinguish between the good and bad
solutions

• A solution dominates if and only if is
not worse than for all the objectives and
better for at least one objective

x

fi

x1 x2 x1
x2

Solutions

74

• For a solution , if there is no solution in X
dominating , then is Pareto optimal

• Pareto optimal set: the set of all Pareto
optimal solutions
• Its image in the objective space is the Pareto

front

x ∈ X
x x

Pareto front with multiple
objectives

75

• Budget: number of evaluations and time
• Reasonable convergence: the best solution

found does not change for some number of
iterations under a search budget

Search budget

76

• Goal: to search for a set of solutions that can well
represent the Pareto front

• Widely used with population-based algorithms (e.g.,
evolutionary algorithms)

• Examples
• NSGA-II: Pareto dominance relation
• As long as they assume no clear preferences exist and seek to approximate the Pareto front:

• MOEA/D: in combination with multiple weight vectors are used;
• AdaW : with weights that are changed during the search
• IBEA : a single dominance-preserving indicator
• NGA: most used in requirements prioritization

Pareto search

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast and elitist multiobjective genetic algorithm: Nsga-ii,”
IEEE Transactions on Evolutionary Computation, vol. 6,
no. 2, pp. 182–197, 2002.

D. E. Goldberg, Genetic algorithms. Pearson Education
India, 2006.

77

• Goal: convert the problem into a single-
objective one through aggregating the objective
functions

• For example, given a weight vector
 the multi-objective problem

can be converted into finding the best fitness of
a weighted sum:

[w1, w2, . . . , wm]

argmin{w1 f1(x) + w2 f2(x) + . . . + wm fm(x)}

Weighted search

78

• Weights can be unbalanced
• For instance: ‘‘the project profit is three times
• more important than the cost’’, the weight for
• the profit and cost objectives can thus be 0.75

and 0.25, respectively

Preference

79

• The objectives to be optimized must be used
directly to assess the quality of a search
algorithm for the SBSE problem

• For example, a higher testing coverage (a
search objective) may not necessarily detect
more bugs

Quantify objectives of the search

80

• bi-objective minimization scenario
Search process

