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• Finding the optimal inputs for testing is a key 
issue that can be NP-hard 

• Search based techniques can be leverage to find 
good inputs 
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What is SBSE

Techniques to search large spaces guided by a 
fitness function that captures properties of the 

software artefacts we seek for 
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Place n queens on a board so that there is no 
attack

Example - the search



The Eight Queens Problem



The Eight Queens Problem



The Eight Queens Problem
Perfect !



The Eight Queens Problem
Perfect ! 

Score 0
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The Eight Queens Problem
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The Eight Queens Problem



The Eight Queens Problem

Two 
Attacks 

Score -2



The Eight Queens Problem



The Eight Queens Problem



The Eight Queens Problem



The Eight Queens Problem
Three 

Attacks 

Score -3



Generate a solution
Place  
8 queens 
on the  
Board …

… so that  
there are 
no  
attacks



Scale up: Generate a solution
Place  
44 queens 
on the  
Board …

… so that  
there are 
no  
attacks



Scale up: Generate a solution
Place  
400 queens 
on the  
Board …

… so that  
there are 
no  
attacks
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• Baseline for any search activity 
• Inputs are generated at random until the goal of 

the test is fulfilled 
• Random search is very poor at finding solutions 

when those solutions occupy a very small part 
of the overall search space

Random search
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• Random search is not effective in finding test input 
when they are in small parts of the input space 

• Test data may be found faster and more reliably if 
the search is given some guidance 

• This guidance can be provided by a fitness 
function 
• It scores different points in the search space 

with respect to their ‘goodness’ or their 
suitability for solving the problem 

Random search vs guided search
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• A plot of a fitness function  is referred to as the 
fitness landscape

Fitness landscape
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Checking vs Generating

Task One: 
• Write a method to determine which is the 

better of two placements of N queens 

Task Two: 
• Write a method to construct a board 

placement with N non attacking queens
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Checking vs Generating

Task One: 
• Write a method to determine which is the 

better of two placements of N queens 

Task Two: 
• Write a method to construct a board 

placement with N non attacking queens

Which seems 
easier to you?
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Checking vs Generating

Search Based Software Engineering 
• Write a method to determine which is the better 

of two solutions 

Conventional Software Engineering 
• Write a method to construct a perfect solution



24

Checking vs Generating

Search Based Software Engineering 
• Write a method to determine which is the better 

of two solutions 

Conventional Software Engineering 
• Write a method to construct a perfect solution
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Checking vs Generating

Search Based Software Engineering 
• Write a fitness function (also said cost function) 

to determine which is the better of two 
solutions 

Conventional Software Engineering 
• Write a method to construct a perfect solution
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Checking vs Generating

Search Based Software Engineering 
• Write a fitness function to guide a search of a 

solution 

Conventional Software Engineering 
• Write a method to construct a perfect solution
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Checking vs Generating

Search Based Software Engineering 
• Write a fitness function to guide automated 

search 

Conventional Software Engineering 
• Write a method to construct a perfect solution
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Search Based Software Engineering 
• Write a fitness function to guide automated 

search of placements of N queens 

Conventional Software Engineering 
• Write a method to construct a board 

placement with N non attacking queens

For the eight queens problem
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• Representation should be easy: 
• We always represent Software Engineering 

problems with data structures 

• Fitness function is often easy: 
• We often define metrics

The two SBSE ingredients
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Uncertainty: identify a suitable fitness function

Major issue
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We have plenty of search algorithm 
• Genetic Algorithms,  
• Hill climbing,  
• Simulated Annealing,  
• Random,  
• Tabu Search,  
• Estimation of Distribution Algorithms,  
• Particle Swarm Optimization,  
• Ant Colonies,  
• Greedy
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Hill Climbing - local search
one solution at a time  
make  moves only in the local  
neighborhood of those solutions



Hill Climbing - local search



Hill Climbing - local search
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bP = null; 

while(searching()){  
p = selectNext(); 
if(p.isBetter(bP)) 
   bP = p; 

}  

Bunch Hill Climbing Algorithm
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• Hill climbing performs local search by finding 
one solution at a time and moving only in the 
local neighborhood of the solution 

• Genetic Algorithms perform of global search, 
sampling many points in the search space at  
once

Local vs global search



Evolutionary Algorithms

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?
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How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?
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How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

Population

A finite set of strings,  
arrays, …: the genome

 1 1 1 0 0 1 1 1  

1 0 0 1 1 1 1 0 

1 0 1 0 0 1 1 0

 1 1 0 1 1 1 1 1

1 0 1 0 0 1 1 0

 1 0 0 1 1 0 0 1

1 0 1 0 0 1 1 0

 1 0 0 1 1 0 0 1
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How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

 1 0 0 1 1 0 0 1

Selection operator:  
selects individuals for  
the reproduction

1 0 1 0 0 1 1 0

 1 0 0 1 1 0 0 1
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How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

1 1 1 0 0 1 1 0

 1 0 0 1 1 1 1 1

1 1

1 0

Crossover operator:  
produces new individuals 
from two parents,  
exchanging parts of  
their chromosomes
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How does a GA work?

Selection

Insertion

Recombination

Mutation

Fitness evaluation

End?

Mutation operator:    
randomly modifies  an   
individual's genome

1 1 1 0 0 1 1 0

 1 0 0 1 1 1 1 1

1 1

1 0

1 1 1 0 0 11 1 1 1 0 1
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• Chromosome (individual) 
• Population 
• Fitness function 
• Selection 
• Crossover 
• Mutation  
• Crossover

Ingredients and actions
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• A chromosome contains information about a 
solution that represents 

• The most used way of encoding is a binary 
string

Encoding a chromosome

Chromosome 1101100100110110
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• Binary encoding 
• Arrays of Bits 

• Permutation encoding 
• Permutations of arrays of natural numbers 

• Value Encoding 
• Arrays of values 

• Tree encoding  
• Trees (e.g., control flow model) 

https://www.obitko.com/tutorials/genetic-algorithms/
crossover-mutation.php

Encoding
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• Generating offsprings from existing genomes

Crossover
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Single point crossover - one crossover point is selected, binary string from 
beginning of chromosome to the crossover point is copied from one parent, the 
rest is copied from the second parent 
Two point crossover - two crossover point are selected, binary string from 
beginning of chromosome to the first crossover point is copied from one parent, 
the part from the first to the second crossover point is copied from the second 
parent and the rest is copied from the first parent 
Uniform crossover - bits are randomly copied from the first or from the second 
parent 
Arithmetic crossover - some arithmetic operation is performed to make a new 
offspring 

https://www.obi tko.com/tutor ials/genet ic-
algorithms/crossover-mutation.php

Crossover on Bits



one-point 
crossover  

Crossover 
arithmetic 
crossover



one-point 
crossover  

Crossover 
arithmetic 
crossover



one-point 
crossover  

Crossover 
arithmetic 
crossover



one-point 
crossover  

Crossover 

0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5

arithmetic 
crossover



one-point 
crossover  

Crossover 

0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5

arithmetic 
crossover

Child 1=α ·x+(1-α)·y Child 2=α ·y+(1-α)·x



one-point 
crossover  

Crossover 

0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5

arithmetic 
crossover

Child 1=α ·x+(1-α)·y Child 2=α ·y+(1-α)·x



one-point 
crossover  

Crossover 

0.6 0.7 0.8 0.9 1.0

0.1 0.2 0.3 0.4 0.5

0.27 0.37 0.47 0.57 0.67

arithmetic 
crossover

0.43 0.53 0.56 0.73 0.83

Child 1=α ·x+(1-α)·y Child 2=α ·y+(1-α)·x
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• Mutate existing genomes 
• Goal:  

• Try to avoid local minima/maxima by 
preventing the population of chromosomes from 
becoming too similar to each other, thus 
slowing or even stopping convergence to the 
global optimum 

• Introduce diversity into the sampled population 

Mutation
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• Mutation according to a given probability  
• This probability should be set low: 

• If it is set too high, the search will turn into a 
random search

Mutation on Bits
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• Bit flips at random positions 
• Example: 

• The probability of a mutation of a bit is 1/L, where 
L is the length of the binary vector

Bit string mutation
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• Bit flips at random positions 
• Example: 

• The probability of a mutation of a bit is 1/L, where 
L is the length of the binary vector

Bit string mutation

1 1 1 0 0 1

1 1 1 1 0 1
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• Mutation on real numbers: adding/subtracting a 
small number to selected entries  

• Cross-over on trees: combine two parts of the 
parents tree at cross-over point

Other cases
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• Using selection alone will tend to fill the 
population with copies of the best individual 
from the population 

• Using selection and crossover operators will 
tend to cause the algorithms to converge on a 
good but sub-optimal solution (e.g., no 
diversity)

Effects of Genetic Operators
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• Using mutation alone induces a random walk 
through the search space  

• Using selection and mutation creates a parallel, 
noise-tolerant, hill climbing algorithm (e.g., no 
inheritance)

Effects of Genetic Operators



Genetic Algorithms: pseudocode
Initialize population P[0]; 
generation=0;  
while(generation < 
max_number_of_generations) 

    Evaluate P[generation];  
     generation=generation+1; 
     Select P[generation] from 
P[generation-1];  

     Crossover P[generation]; 
     Mutate P[generation];  
end while
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• Randomly initialize population(t) 
• Determine fitness of population(t) 
• Repeat 

• Select parents from population(t) 
• Perform crossover on parents creating population(t+1) 
• Perform mutation of population(t+1) 
• Determine fitness of population(t+1) 

• until best individual is good enough

The algorithm
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• Evolutionary testing aims at improving the 
effectiveness and efficiency of the testing 
process by  

transforming testing objectives into search 
problems and applying evolutionary computation 

in order to solve them

Evolutionary Testing
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• Search space: input domain(s) of the system 
under test (SUT) 

• Test objective needs to be defined numerically 
and transformed in a fitness function 

• Fitness is computed by monitoring program 
execution results (output, performance, etc.) 

• Iterative procedure

Evolutionary Testing: HowTo



• Different test goals = different fitness functions

Testing 
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• Two assumptions in order to use search based 
algorithm in testing  

• Representation. Candidate solutions must be 
capable of being encoded as sequences of 
elements 

• Fitness function. The fitness function guides the 
search by evaluating candidate solutions. The 
fitness function is problem-specific

Two assumptions
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• Start with a set of randomly generated test input 
data  

• Then execute on test data to gather information 
• Monitored values are used to compute the 

fitness  
• Evolution towards a testing objective, indicated 

in the fitness function

Evolutionary Testing: HowTo



Genome encoding
I1 I2 I3 … … In

Tx1 <24.5> <11.3> <abc> … … <ghi>

… … … … … … …
Tx5 <7.6> <4.7> <def> … … <xza>

Typical Parameter Settings 

❑ dim pop = 70 
❑ n gen =500 
❑ P mutation=0.01
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More Details

[Wegener, 97]

CrossOver
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• Aim 
• Generate a set of test data to cover structural 

properties  
• Fitness function a normalized combination of 

• Approach level: fitness is number of control nodes in a 
path and dependent from a target one not covered by test 
execution with a given input 

• Branch distance. At the node at which the test 
execution diverges from the target branch at some 
approach level, the branch distance is computed.

Example: Structural Testing



Example: Coverage-oriented 
approaches

individual 1

Individual 1: fitness=2  (2 branches) 
Individual 2: fitness=3  (3 branches)

• Fitness of individual for 
different coverage criteria 
• % of covered statements 
• % of covered branches 
• Path coverage: % executed paths 

• Good results, better than 
random testing

Individual: path to same target



Example: Coverage-oriented 
approaches

individual 1 individual 2

Individual 1: fitness=2  (2 branches) 
Individual 2: fitness=3  (3 branches)

• Fitness of individual for 
different coverage criteria 
• % of covered statements 
• % of covered branches 
• Path coverage: % executed paths 

• Good results, better than 
random testing

Individual: path to same target
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Example: Control-Oriented

Fitness function:  
True conditions  
not executed

Fitness landscape
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Example

Target

Code of interest
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δ = branch  
distance: how  
distant is the input I  
to the value that makes  
the predicate θ TRUE
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[1] int foo (int a, int b, int c, int d, float e) {
[2]    if (a == 0) {
[3]         return 0;
[4]     }
[5]     int x = 0;
[6]     if ( (a==b) II ( (c == d) && bug(a) ) ) {
[7]         x=1;
[8]     }
[9]     e = 1/x;
[10]     return e;
[11] }

bug(a) = TRUE if !a==0 else 0

Exercise

How many control nodes does T(0,0,0,0,0) execute if the 
target node is the output of the true branch of predicate 
at line [6]? Approach distance? Branch distance of (1,0,0,0,0)
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Distance-Oriented

Target

▪ Identify relevant branching statements 
from the CFG 

▪ Approximation level: distance from the 
target  

▪ branch_distance: condition distance when 
a critical node is taken 

▪ Objective function:

tancebranch_dis
dependent
executed

×

Fitness landscape
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Distance-Oriented

Target

ex/dep=0

▪ Identify relevant branching statements 
from the CFG 

▪ Approximation level: distance from the 
target  

▪ branch_distance: condition distance when 
a critical node is taken 

▪ Objective function:

tancebranch_dis
dependent
executed

×

Fitness landscape
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Distance-Oriented

Target

ex/dep=0

ex/dep=0.33

▪ Identify relevant branching statements 
from the CFG 

▪ Approximation level: distance from the 
target  

▪ branch_distance: condition distance when 
a critical node is taken 

▪ Objective function:

tancebranch_dis
dependent
executed

×

Fitness landscape
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Distance-Oriented

Target

ex/dep=0

ex/dep=0.33

ex/dep=0.67

▪ Identify relevant branching statements 
from the CFG 

▪ Approximation level: distance from the 
target  

▪ branch_distance: condition distance when 
a critical node is taken 

▪ Objective function:

tancebranch_dis
dependent
executed

×

Fitness landscape
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Distance-Oriented [Wegener]

Target

dep-ex=3

dep-ex=2

dep-ex=1

▪ Objective function: 

▪ m_branch_distance: 
branch_distance normalized in the 
interval [0,1]

istancem_branch_d)1executeddependent( +−−
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Multi-objective search
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• Optimization means search in the space to 
minimize or maximize one or more fitness 
functions 
• Objective of the search can be single or multiple

Objectives of the search
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• Formally, it can be expressed as: 
 

• where m is the number of objectives and x is a 
solution in the feasible solution space X, i.e.,  

 (n is the number of decision 
variables of the problem)

argmin{f1(x); f2(x); . . . ; fm(x)}

x ∈ X ⊂ Rn

Objective function
considering a 
minimization 
scenario
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• Two components of a search algorithm:  
• The representation, i.e., how  can be structured and 

changed 
• The objective function, i.e., how each single  can be 

formulated to distinguish between the good and bad 
solutions 

• A solution  dominates  if and only if  is 
not worse than  for all the objectives and 
better for at least one objective

x

fi

x1 x2 x1
x2

Solutions
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• For a solution , if there is no solution in X 
dominating , then  is Pareto optimal 

• Pareto optimal set: the set of all Pareto 
optimal solutions  
• Its image in the objective space is the Pareto 

front

x ∈ X
x x

Pareto front with multiple 
objectives
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• Budget: number of evaluations and time 
• Reasonable convergence: the best solution 

found does not change for some number of 
iterations under a search budget

Search budget
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• Goal: to search for a set of solutions that can well 
represent the Pareto front 

• Widely used with population-based algorithms (e.g., 
evolutionary algorithms) 

• Examples 
• NSGA-II: Pareto dominance relation 
• As long as they assume no clear preferences exist and seek to approximate the Pareto front: 

• MOEA/D: in combination with multiple weight vectors are used;  
• AdaW : with weights that are changed during the search  
• IBEA : a single dominance-preserving indicator  
• NGA: most used in requirements prioritization

Pareto search

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A 
fast and elitist multiobjective genetic algorithm: Nsga-ii,” 
IEEE Transactions on Evolutionary Computation, vol. 6, 
no. 2, pp. 182–197, 2002.

D. E. Goldberg, Genetic algorithms. Pearson Education 
India, 2006.
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• Goal: convert the problem into a single-
objective one through aggregating the objective 
functions 

• For example, given a weight vector 
 the multi-objective problem 

can be converted into finding the best fitness of 
a weighted sum: 

[w1, w2, . . . , wm]

argmin{w1 f1(x) + w2 f2(x) + . . . + wm fm(x)}

Weighted search
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• Weights can be unbalanced 
• For instance:   ‘‘the project profit is three times 
• more important than the cost’’, the weight for 
• the profit and cost objectives can thus be 0.75 

and 0.25, respectively

Preference
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• The objectives to be optimized must be used 
directly to assess the quality of a search 
algorithm for the SBSE problem 

• For example, a higher testing coverage (a 
search objective) may not necessarily detect 
more bugs 

Quantify objectives of the search
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• bi-objective minimization scenario
Search process


