
Barbara Russo
SwSE - Software and Systems Engineering

1

Functional testing

2

• Deriving test cases from program specifications
(e.g. selecting inputs and oracles)

• Functional testing does not exploit design or
code (white-box testing)

• Functional testing is the baseline technique for
any other testing strategy

• It is independent from any implementation
(design or code)

Functional testing (Black Box
testing)

3

• Why not simply picking random input to design
test cases?

Basic approach

4

• Picking inputs according to a uniform distribution
• 👍It avoids designer bias

• The test designer can make the same logical
mistakes and bad assumptions as the program
designer

• 👍It limits costs, it does not require much
knowledge of the input

• 👍It can be automatized and produce more test cases
than partition testing

Random testing

5

• 👎It treats all inputs as equally valuable
• 👎It is not able to pick specific / critical input

values as it treats all inputs the same

Random testing

6

§ Random testing:
execute the program
with random inputs and
observe the code
coverage

§ Weakness: structures
having a low probability
of being executed are
often not covered

7

• Discuss random testing for the following code.
• How can it discover the bug?

Exercise

8

Exercise
public class SquareRoot {

 public Pair solve(double a, double b, double c){
 Pair myPair = new Pair();
 double q= b*b-4*a*c;
 System.out.println("The value of q is "+q);
 if (a!=0 && q>0){
 myPair.x = (0-b+Math.sqrt(q))/2*a;
 myPair.y =(0-b-Math.sqrt(q))/2*a;
 } else if (q==0){ // Bug
 myPair.x =(0-b)/(2*a);
 myPair.y =(0-b)/(2*a);
 }
 else {System.out.println("The solutions are imaginary numbers");}
 System.out.println("The solutions are "+ myPair.x +" and "+ myPair.y);
 return myPair;

 }

 public static void main(String[] args){
 SquareRoot mySR=new SquareRoot();
 mySR.solve(Double.parseDouble(args[0]), Double.parseDouble(args[1]),
Double.parseDouble(args[2]));
 }
}

public	class	Pair	{	
	 public	Pair(){}	
		public	Double	x;		
		public	Double	y;	

}

9

• Random test case generation is fine to test for
q > 0

• Random sampling unlikely picks a=0.0 and
b=0.0

Discussion

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 7

Systematic Partition Testing

Failure (valuable test case)
No failure

Failures are sparse
in the space of
possible inputs ...

... but dense in some
parts of the space

If we systematically test some
cases from each part, we will
include the dense parts

Functional testing is one way of
drawing pink lines to isolate
regions with likely failures

Th
e

sp
ac

e
of

 p
os

si
bl

e
in

pu
t v

al
ue

s
(th

e
ha

ys
ta

ck
)

10

11

• Functional testing uses the specification
(formal or informal) to partition the input space
• E.g., the specification of “roots” program

suggests division between cases with zero, one,
and two real roots

• Test each part, and boundaries between
parts
• No guarantees, but experience suggests failures

often lie at the boundaries

Functional testing uses partition and
boundary

12

• In principle, it divides (infinite) input into a
finite number of classes where each class can
be homogeneously associated to one output
success or failure

• Partition divides input into a finite set of classes
of program behaviour

• For example y=abs(x): Class1=X>=0
Class2=X<=0

The partition principle

13

Check point! Partition

Valid Invalid

Failure Success

Behavior
class 1

Behavior
class 2

Behavior
class 4

Behavior
class 3

behavior can be non deterministic;
it can change with the system’s state and

the environment’s changes; careful:
classes can overlapFailure and success concern testing the

specific implementation; classes can
change with system’s state and the

environment’s changes

Valid and invalid input refers to the
primary goal of the functionality

described in the specifications; careful:
invalid does not mean failure

14

• Tests are designed on representatives (input)
of classes

• Often classes and representatives are defined by
using expert opinion

Partition- selecting representatives

15

• We do not know which testing strategy would
be likelier to reveal faults:
• Repeating the same/similar test case is less

likelier to find a fault than exercising a
different test case

Partition- selecting representatives

16

Partition- selecting representatives

This is a specification.
•What is the input to consider?
•Which are the classes of
behavior?

•What is valid or invalid?
•What is success or failure?

16

• Example: split a buffer into lines of length 60
characters

Partition- selecting representatives

This is a specification.
•What is the input to consider?
•Which are the classes of
behavior?

•What is valid or invalid?
•What is success or failure?

16

• Example: split a buffer into lines of length 60
characters
• Just four test cases are available: Buffer of

length 16, 30, 40 and 100. Which test case is
more valuable?

Partition- selecting representatives

This is a specification.
•What is the input to consider?
•Which are the classes of
behavior?

•What is valid or invalid?
•What is success or failure?

17

• Random generation of test cases with uniform
distribution would avoid this specific
distribution of test cases
• but it would be likelier to find faults in buffers

with lengths greater than 60 (higher cumulative
probability)

Partition- selecting representatives

18

• 👎Limitation: selecting representatives might
be expensive

• 👍More efficient on particular regions where
fault are dense, but
• 👎Localising dense faulty input areas requires

expert judgment or advanced techniques of
search based testing

The partition principle

19

• 👍Boundary testing exercises values on the
boundary of classes

• It requires thorough knowledge of input, often
it needs manual investigation

• 👎Limitation: Expensive

Boundary testing

20

• In the example, specifications were simple, but
• 👎Direct generation of test cases from

specifications (brute force) might be complex
and produces unacceptable results

• There is a need of a systematic general
procedure

Brute force testing

Barbara Russo
SwSE - Software and Systems Engineering

21

Systematic functional testing

22

• Systematic (non-uniform):
• Try to select inputs that are especially valuable
• Usually by choosing representatives of classes

that are apt to fail often or not at all

Systematic Testing

23

Steps in systematic functional
testing

Again “Divide
and Conquer”

23

Steps in systematic functional
testing

Again “Divide
and Conquer”

24

• Goal: partitioning specifications into features
that can be tested separately
• How: Divide features by functional use as

perceived by users

Identify independent testable
features

25

User Story

user perspective

26

• Features are identified by all the inputs that
determine the execution behavior

• These inputs can have different forms, they can
be explicit or implicit in the specifications or
inputs for some program model (e.g., inputs
that trigger the states in the finite state
machine) that describes the system behavior

How to detect features?

27

• Identify independent features
• From User Stories (XP), identify implicit and

explicit input
• From the system metaphor (XP), identify

implicit form of input to augment the explicit
definition in the user stories

Independent features (XP)

28

User Story

What are the explicit
inputs?

29

• An automatic coffe machine
• What are the explicit input?
• What are the implicit input?

Exercise

30

• In a coffe machine scenario, the ingredients that
are assembled with the water

Example of input from a metaphor

31

Steps in systematic functional
testing

31

Steps in systematic functional
testing

32

• There are two practicable ways:
• Representative values of input (implicit and

explicit)
• Derived from a model: e.g., control flow graph

or finite state machine

Select the values of input

33

• Implicit and explicit parameters
• Their elementary characteristics
• The environment elements and

characteristics that effect the execution of the
feature in a given unit of work (like DBs that
are required to execute test cases)

• Categories of parameters’ values defined by
system behavior and pick a representative value

Identify inputs and their
characteristics

34

• Coffe machine parameters and
characteristics
• coffee (explicit): amount, temperature, poured
• sugar (explicit): amount, type, poured
• powder (implicit): amount
• temperature (implicit): limit, scale

• Environmental elements
• card: credit amount

Example
Parameter

Characteristics

35

• Coffe machine parameters
• coffee: amount (categories: 0, positive, # over

limit)
• temperature: scale (categories: F, C)
• temperature in Celsius: (categories: positive

more than default, default, positive less than
default, 0)

Categories Categories of
values

36

• Environmental elements
• card: credit amount (categories: 0, positive less

than needed, positive more than needed, needed)

37

Steps in systematic functional
testing

37

Steps in systematic functional
testing

38

• Test Specifications are built by combining the
input values (e.g., representative)

• Brute force combination of values might be
very expensive: 5 input variables with 6 values
each produces 6 to the 5 test cases

• Reducing the inputs space is crucial to reduce
the effort of test designing

Generate test case specifications

39

Example - acceptance testing

40

• A combination of the input values of username,
password, and status is extracted from the test
case specification
• For example “the user (brusso, 123456th,

professor) shall not log in”.
• How many combinations of input values?
• We need to trade off between coverage and

budget (e.g., testing time)

Example - acceptance testing

41

• Combinatorial testing, examples:
• Pairwise combination testing
• Category-partition testing

How to reduce input combination

42

• It generates k-ways combinations (typically
k=2) of categories with k < n: bin(n,k)

• 👍It goes blindly and does not require a specific
knowledge of the domain:
• 👎it may be still expensive and not effective on

sparse faults

Pairwise combination testing

43

• Major characteristics
• 👍It allows test designers to add constraints and

limit the number of test cases
• 👍Useful when we have enough knowledge of

the domain and its constraints (e.g, what is valid
and what is not)

• 👍It works with all kind of data structures

Category-partition testing

44

• Major characteristics
• Flatten data structures into parameter

characteristics
• Filter out combinations of values in the

generation of the test case specifications:
• First, label categories
• Then, use labels to rule out infeasible

combinations

Category-partition testing

45

• Computer Model (data structure) is
• ID key, integer used to search and retrieve

from DB, model number, number of
required slots, and number of optional
slots

Example - Flattening data Parameter

Characteristics

46

• Labels of parameter characteristics:
• [error],
• [single],
• [property: <Acronym>]

• If condition [if <Acronym>]

Category-partition testing

47

• The labelling requires expert judgment, some
characteristics might be erroneous only in
combination with other characteristics

Category-partition testing

48

• “[error]” : a category needs to be tried in
combination with non-error categories of other
characteristics only once

• “[single]” acts as “[error]” but for any type of
values (error or not).
• This is not a real constraint coming from the

domain, it is set by the designer to reduce the
number of combinations!

Category-partition testing

49

• “[property:]” qualifies categories of values

• The if condition uses the properties to identify
logical constraints between categories
• These are used to rule out combinations that are

not feasible

Category-partition testing

50

Feature: Check the computer configuration
against a reference catalogue (DB)

Example “Check configuration”
feature

51

• Parameters: Model and components
• Model: represents a specific product and

determines a set of constraints on the available
components (like screen, hard disk, processor
etc)

• Component: a logical slot which might or
might not represent a physical slot on a bus

Identify parameters

52

• Components: a collection of <component,
selection>
• A selection is a choice of a physical slot

• Environmental variable: Database of models
and components that is required to execute the
feature

Identify parameters

53

• Computer Model:
• ID key, integer used to search and retrieve

from DB, model number, number of
required slots, and number of optional
slots

Identify parameter characteristics

54

• Components <component, selection>
• number of required / optional slots with non-

empty selection, compatibility of selection and
the component (e.g., 20 gigabyte of hard disk
(selection) for the hard disk slot (component))

• External environment
• DB: number of models in DB, number of

components in DB

Identify parameter characteristics

55

• “Components”
• We first flatten the data structure Components

(<component, selection>) to characteristics:
• Compatibility of selection with component
• Compatibility of selection with model
• Matching selection and DB entry
• Compatibility of selection with another

component

Categories of values

56

• Then we select a category for Components, for
example: Compatibility of selection with the
component
• We can represent components as an array of

compatible/non-compatible selections.
• If array size is n, we have 2^n combinations of

values for the characteristic

Categories of values

C C

57

• Best would be create a test case for all
combinations of compatible and non-compatible
• Often infeasible!

• Simpler value choices: one compatible, one
incompatible, all compatible or all
incompatible, selections of slots

• It is up to the test case designers

Categories of values

58

59

Steps in systematic functional
testing

59

Steps in systematic functional
testing

60

• Turning test case specs into test cases
• Implement test cases by defining the harness to

execute them (e.g., FitNess)

Generate test case and instantiate
tests

61

• 05.TestCaseDEsignExercise3
• inject up to 3 bugs (15’)
• pass your changed code to the other group
• design TC that reveal the bugs (15’)

• 06.FunctionalTestingExercise1. For the feature:
• Define an Adequacy Criterion and
• Define a TC specification and three obligations (20’)
• Design three TCs using category partition testing (15’)
•

Exercise

62

• Read paper SBSTMcMinn
• Present the overall examples
• For the two examples reported define a Feature

(one sentence), Test Goal, Test Obligation for
which use the metrics proposed in the paper

• 5 slides

• Wednesday 07.04

Exercise - 10’ presentation

