
Barbara Russo
SwSE - Software and Systems Engineering research group

1

Test Case Design: Specifications
and adequacy

2

Testing is the process of executing a program
with the intent of finding errors
 Glen Myers

“The Art of Software Testing”

Goal of testing

3

Software testing is the process of analysing a
software item to detect the differences between
existing and required conditions and to evaluate
the features of the software item
 IEEE definition

Testing

4

Program testing can be used to show the
presence of bugs, but never to show their

absence!
 Dijkstra, 1969

Limits of software testing

Cmpe 310 Winter 2001 5

• If a failure is observed, then the software is a
failure software, but

• If no failure has been observed, we cannot say
that the software is correct

• Exhaustive testing is not feasible, but we can
compute the probability that no failures occur
in a given interval of time
—> software reliability

Limits of software testing

6

Beware of bugs in the above code; I have only
proved it correct, not tried it

 Knuth, 1977

• We need to test for confidence not for proof of
correctness

Limits of software testing

7

Limits of software testing

if we execute one test per
millisecond, it would take
too much to test this
program!!

Loop < 20X

5

4321

8

• When does testing start? When does it complete?
• What techniques should be applied during

software development to get acceptable quality at
acceptable cost?

• How can we assess the readiness of a product to
release?

• How can we control the quality of a product to
release?

Basic questions

9

• How do we design tests?

Tests are defined in terms of their adequacy
against certain criteria and according to

specifications

Test Case Design

10

• It is impossible to find a set of tests that
ensures the correctness of a product

• We can only determine whether test sets are
not adequate for a given criterion we set

Test completeness and adequacy

11

• A test suite is inadeguate to guard against
faults in:
• Specifications. If in the specifications, we give

different permissions to different actors of a system
and a test suite does not check that the permissions
are different

• Statements. If the quality concerns statements’
coverage and a test suite does not cover all the
executable statements (except infeasible statements)

Examples - Inadequacy redundancy

11

• A test suite is inadeguate to guard against
faults in:
• Specifications. If in the specifications, we give

different permissions to different actors of a system
and a test suite does not check that the permissions
are different

• Statements. If the quality concerns statements’
coverage and a test suite does not cover all the
executable statements (except infeasible statements)

Examples - Inadequacy redundancy

Adequacy
criterion

11

• A test suite is inadeguate to guard against
faults in:
• Specifications. If in the specifications, we give

different permissions to different actors of a system
and a test suite does not check that the permissions
are different

• Statements. If the quality concerns statements’
coverage and a test suite does not cover all the
executable statements (except infeasible statements)

Examples - Inadequacy redundancy

Adequacy
criterion

Adequacy
criterion

12

• A test case is a choice of 1) Inputs, 2)
Execution Conditions and 3) Pass / Fail
Criterion

• Example “Permission”.
• I: {read, write},
• EC: under a certain domain environment,
• PF C:{when owner ->TRUE, when guest -> FALSE}

Test Case

Why not expected
output?

13

• Input: all kind of stimuli that contribute to a
specific behaviour

• Output oracle: given against expected output or
other peculiar way to determine that an output
is correct (e.g., 100% coverage)

Test Case

Not only expected
output

14

• T Output value (input values)

• TFileNotFoundException(0, “Hello”, 0.3)
• T3(0, “Home”, 3)
• T(3,4)(1, “Home”, “Layout”)

Test case - notation

15

[1] int foo (int a, int b, int c, int d, float e) {
[2] if (a == 0) {
[3] return 0;
[4] }
[5] int x = 0;
[6] if ((a==b) II ((c == d) && bug(a))) {
[7] x=1;
[8] }
[9] e = 1/x;
[10] return e;
[11] }

bug(a) = TRUE if !a==0 else 0

Exercise - create test cases
What is the input space
for the test case?
Partition the space

Partitioning

16

Exercise - create test cases
What	do	we	test?	
What	is	the	input	space	for	
the	test	case?	Partition	the	
space

17

• A good test case has a high probability of
finding an as-yet undiscovered error

• A successful test case is one that uncovers an
as-yet undiscovered error

Test Case
Search in the space of
the input values

18

• A specification to be satisfied by one or more
test cases.

• Examples:
• TC specification: A system has multiple actors.

• TC Input: {owner, guest, administrator}
• TC specification: Word processor must open

one or more files;
• TC 1 Input: one file; TC2 Input: 2 files

Test Case Specification

What is the corresponding functionality
specification?

19

• It may also describe some aspects of input and
output. Example:
• TC specification: Word processor requires

some recovery policy while opening files

Test Case Specification

What is the difference with software
specification? What in this case?

20

• It depends on types of testing
• Functional testing (Black-box testing).
• Structural testing (White-box)
• Fault based testing
• Fault-seeding testing

How to derive Test Case
Specifications

21

• Test Case specification can be derived
• from product specification, which in turn can

include description of input and output, or
• from any system observable behaviour

Functional Testing (Black-box
testing)

22

Exercise

23

• Read the specifications and discuss the input
space. Define your input test cases

Exercise

24

• Observation: a DB system requires robust
failure recovery in case of power loss TC
specification: Removing power at certain
critical point in processing queries

• Finite State Machine: If the system is
described as a control flow graph, a test case
specification can be a selection of feasible
execution paths

Examples

This will turn to
be useful in SBT

25

• Test cases are derived from the structure of the
code. Example: statement coverage

1. public	static	void	String	collapseSpaces(String	argStr){	

2. 					char	last	=	argSrt.charAt(0);	

3. 					StringBuffer	argBuf	=	new	StringBuffer();	

4. 					for(int	cldx=0;	cldx<argStr.length(),	clds++){	

5. 												char	ch	=	argStr.charAt(cldx);	

6. 												if(ch!=	'	'	||	last!=	'	'){	

7. 																		argBuf.append(ch)	

8. 																		last=ch;	

9. 													}	

10.					}	

11.}

Structural Testing (White-box
Testing)

26

• Test case specification for general rules:
Example: Empty string must be tested

• Test case specification for conditions:
Example: test the two conditions of the if
-clause separately

Structural Testing (White-box
Testing)

27

• Test cases are derived from reported faults
• Example

• Reported: Race condition experienced in multi
threads

• Test case specification: test for synchronisation
in multi threads

Fault-base Testing

28

Exercise

Deadlock: Error
condition of the
system due to two
programs or tools
waiting of each
other signal

29

• Fault seeding testing
• Mutation Testing

Example of fault-base Testing

30

• Fault-seeding testing is fault-base testing that
deliberately seeds faults and define test case
specifications to test them

Fault Seeding Testing

31

• Let S is the total number of seeded faults, and
s(t) is the number of seeded faults that have
been discovered at time t.
• s(t)/S is the seed-discovery effectiveness of

testing to time t.

Fault Seeding Testing

32

• Inserting faults into software involves the
obvious risk of leaving them there

• Thus, faults injected are "typical" faults
• Not awakes a powerful technique to discover

as-yet undiscovered faults

Issues

33

package it.unibz;

import java.io.*;
/**
 * This is the class we use to try shell commands. The class has a logic
error
 * @author Barbara Russo
 */
public class Dates {
 /**
 * @param month the month number in a year
 * @return the length of a month in a year, no bissextile
 */
 public static int daysInMonth (int month) {
 if ((month == 9) || (month == 4) || (month == 6) || (month == 11))
{
 return 30;
 }
 else if (month == 2)
 return 28;
 else return 31;
 }
 public static void main (String[] args) {
 int someMonth, someDay;
 int laterMonth, laterDay;
 int aMonth;
 someMonth = Integer.parseInt(args[0]);
 someDay = Integer.parseInt(args[1]);
 laterMonth = Integer.parseInt(args[2]);
 laterDay = Integer.parseInt(args[3]);
 /* Used to record what day in the year the first day */
 /* of someMonth and laterMonth are. */
 int someDayInYear = 0;
 int laterDayInYear = 0;
 for (aMonth = 1; aMonth < someMonth; aMonth = aMonth + 1) {
 someDayInYear = someDayInYear + daysInMonth(aMonth);
 }
 for (aMonth = 1; aMonth < laterMonth; aMonth = aMonth + 1) {
 laterDayInYear = laterDayInYear + daysInMonth(aMonth);
 }
 /* The answer */
 int daysBetween = 0;
 System.out.println("The difference in days between " +
 someMonth + "/" + someDay + " and " +
 laterMonth + "/" + laterDay + " is: ");
 daysBetween = laterDayInYear - someDayInYear;
 daysBetween = daysBetween + laterDay - someDay;
 System.out.println(daysBetween);

 }
}

1.	Injects	fault	and	
pass	this	code	to	
another	group	

2.	Design	test	cases	to	
discover	the	seeded	
faults	

3.	Compute	the	seed-
discovery	effectiveness

34

• Fault mutation is a fault-base testing technique that
mutates the original code

• Each atomic change is called mutant. Each mutant
injects one fault
• It creates a test case per mutant
• If a mutant fails any test, then it is said to be

killed
• All mutants that are not killed are said to remain

live at this point

Mutation Testing

35

Example of Mutation Operators

Mutation	Operator	 Original	Code Mutated	Code

Add	1 q=0 q=1

Replace	Variable r=x r=y

Replace	Operator q=q+1 q=q-1

They seem naive, tell when this
changes are critical

Barbara Russo
SwSE - Software and Systems Engineering research group

36

Test Case Adequacy

37

• Ideally, adequacy means that test cases show
correctness of a product

• In practice, we can only approximate the
problem by setting a set of adequacy criteria
and we can only discuss whether a set of test
cases is inadequate against such criteria

• If this happens, we can extend the test cases

Test Case Adequacy

38

• Adequacy criterion: a predicate that is TRUE/
FALSE on a pair <Program, Test Suite>
• Example: a test suite exercises all executable

statements

Test Case Adequacy

39

• Test obligation: a partial test specification that
checks an adequacy criterion
• Example: Execute executable statements within

loops
• An adequacy criterion can be checked by one

or more test obligations
• Example: Execute all executable statements

Test obligation

40

• A test suite (i.e. a set of test cases) satisfies an
adequacy criterion if
• all its test cases succeed and
• for every test obligation of an adequacy

criterion, there exists at least a test case that
satisfies it

Test Suite

41

• The adequacy degree is the level of adequacy a
test suite achieves against an adequacy
criterion:

• Example: percentage of statement coverage
for a pair <myProgram, myTestSuite>

• Example: ratio of killed total mutants (K/M)
measures the adequacy degree of a test suite in
mutation testing

Adequacy degree

42

• An adequacy criterion A subsumes an
adequacy criterion B if every test suite X that
satisfies A contains some test suite Y that
satisfies B (i.e. X also satisfies B)

• Example: Branch coverage subsumes
executable statement coverage

• We tend to discard adequacy criteria that are
subsumed

Test Subsumption

43

• Stronger adequacy criteria can potentially
reveal more faults

Test Subsumption

44

• Test cases are derived from the structure of the
code

1. public static void String collapseSpaces(String argStr){

2. char last = argSrt.charAt(0);

3. StringBuffer argBuf = new StringBuffer();

4. for(int cldx=0; cldx<argStr.length(), clds++){

5. char ch = argStr.charAt(cldx);

6. if(ch!= ' ' || last!= ' '){

7. argBuf.append(ch)

8. last=ch;

9. }

10. }

11.}

Structural Testing (White-box
Testing)

Various testing goals: test data
structures; test loop structures; test
a specific state of the execution; test
for extreme/default values

45

45

• Input: Your Output: Your

last ch argBuf cldx

Y Y Y 0

Y o o 1

o u u 2

u r r 3

r

45

• Input: Your Output: Your

45

• Input: Your Output: Your
• Input: ‘ ’You Output: You

last ch argBuf cldx

‘	‘ ‘	‘ - 0

‘	‘ Y Y 1

Y o o 2

o u u 3

u

45

• Input: Your Output: Your
• Input: ‘ ’You Output: You

45

• Input: Your Output: Your
• Input: ‘ ’You Output: You
• Input: I am Output: I am

last ch argBuf cldx

I I I 0

I ‘	’ ‘	’ 1

‘	’ a a 2

a m m 3

m

45

• Input: Your Output: Your
• Input: ‘ ’You Output: You
• Input: I am Output: I am
••

last ch argBuf cldx

I I I 0

I ‘	’ ‘	’ 1

‘	’ a a 2

a m m 3

m

46

Example

46

• In the code example above, we can satisfy the
statement coverage by a test case with any
string with no spaces,

Example

46

• In the code example above, we can satisfy the
statement coverage by a test case with any
string with no spaces,

• but if we want to satisfy the if condition
(branch coverage) we need to create another
test case with a string containing empty
characters (to test the true and the false of the
branch)

Example

47

• If we want to test the for loop at different
counter values, we might need to add new test
case obligations

• For example, in the above code example,
testing for argStr.length()=0 will include a new
test case for an empty string. If it is not checked
it can cause future failures

Example

48

• 100% statement coverage:
• If 100% of statements are
covered by tests then the method
is correct

Exercise in class Verification	technique

49

[1] int foo (int a, int b, int c, int d, float e) {
[2] if (a == 0) {
[3] return 0;
[4] }
[5] int x = 0;
[6] if ((a==b) II ((c == d) && bug(a))) {
[7] x=1;
[8] }
[9] e = 1/x;
[10] return e;
[11] }

bug(a) = TRUE if !a==0 else 0

Exercise

Adequacy criterion:
100% statement
coverage

Two test cases:
TC(0,0,0,0,0) and
TC(1,0,0,0,0)

50

• Do the selected Test Cases catch the error?
• Discuss accuracy of the 100% statement

coverage technique in this case: FP? FN?
• Which other coverage technique subsume the

statement one in this case?

Exercise

50

• Do the selected Test Cases catch the error?
• Discuss accuracy of the 100% statement

coverage technique in this case: FP? FN?
• Which other coverage technique subsume the

statement one in this case?

Exercise

Branch Coverage

