
Barbara Russo
SwSE - Software and Systems Engineering Research Group

1

Basic Principles of analysis and
testing software

2

• As in any engineering discipline, techniques of
software analysis and testing follow few key
principles

• Principles aim at distinguishing one technique
from another and determining the scope and
the limits of the technique itself

Basic principles of analysis and
testing

3

Better to fail every time than sometimes

Sensitivity

4

• Sensitivity requires techniques of abstraction:
system behaviour cannot be related to specific
circumstances

Sensitivity

5

• Run-time exceptions help detect errors in a
systematic way

• ArrayIndexOutOfBoundException:
• It checks that the number of entries of an array

does not exceed the available length of an array.
• In languages like C, this is not checked and the

array can be overwritten (wrapping) or the input
can be cut with no notice to the execution thread

Example in Java

6

• ConcurrentModificationException:
• When one or more thread is iterating over a

collection, in between, one thread changes the
structure of the collection (race condition)

• These changes can lead to unexpected behaviour
that might cause a failure

Example in Java

7

• Fail fast iterator
• while iterating through the collection, instantly

throws ConcurrentModificationException if
there is any structural modification of the
collection

• Thus, when a concurrent modification occurs,
the iterator fails quickly and cleanly, rather
than risking arbitrary, non-deterministic
behaviour at an undetermined time in the future

Solution: Fail fast

8

/*	import	what	you	need*/	
public	class	FailFastExample{	
				public	static	void	main(String[]	args){	
								Map<String,String>	premiumPhone	=	new	HashMap<String,String>();	
								premiumPhone.put("Apple",	"iPhone");	
								premiumPhone.put("HTC",	"HTC	one");	
								premiumPhone.put("Samsung","S5");	
								Iterator	iterator	=	premiumPhone.keySet().iterator();							
								while	(iterator.hasNext()){	
												System.out.println(premiumPhone.get(iterator.next()));	
												premiumPhone.put("Sony",	"Xperia	Z");	
								}				

				}	}

Example

9

iPhone
Exception in thread "main"
java.util.ConcurrentModificationException
 at java.util.HashMap$HashIterator.nextEntry(Unknown Source)
 at java.util.HashMap$KeyIterator.next(Unknown Source)
 at FailFastExample.main(FailFastExample.java:xx)

Output

10

• Fail Safe Iterator makes copy of the internal
data structure (object) and iterates over the
copied data structure

• Any structural modification affects the copied
data structure

• Thus, original data structure remains
structurally unchanged

Solution: Fail safe

11

/*	import	what	you	need*/	
public class FailSafeExample{
 public static void main(String[] args{

ConcurrentHashMap<String,String> premiumPhone = new
ConcurrentHashMap<String,String>();

 premiumPhone.put("Apple", "iPhone");
 premiumPhone.put("HTC", "HTC one");
 premiumPhone.put("Samsung","S5");
 Iterator iterator = premiumPhone.keySet().iterator();
 while (iterator.hasNext()) {
 System.out.println(premiumPhone.get(iterator.next()));
 premiumPhone.put("Sony", "Xperia Z"); }
}

Example

12

• iPhone
• HTC one
• S5

Output

13

• No ConcurrentModificationException throws
by the fail safe iterator

• Two issues associated with Fail Safe Iterator
are :
• Overhead of maintaining the copied data

structure i.e memory
• It does not guarantee that the data being read is

the data currently in the original data structure

Fail safe

14

Differences

Fail Fast Iterator Fail Safe Iterator

Throw
ConcurrentModification
Exception

Yes No

Clone object No Yes

Memory Overhead No Yes

Examples HashMap,Vector,ArrayList,
HashSet

CopyOnWriteArrayList,
ConcurrentHashMap

15

Making intention explicit

Redundancy

16

• From information theory: redundancy means
dependency between transmissions.
• Solution: create guards against transmission errors

• In software, redundancy means consistency
between intended and actual system behaviour
• Solution: create guards for artefacts consistency,

making intention explicit

Redundancy

17

• Dependency among parts of code by using a
variable
• A variable is defined and then used elsewhere

• Type declaration is a form a redundancy
• Type declaration constraints the way a variable

is used in other part of the code
• The compiler checks the correct use of the

variable against its declared type

Examples

18

Making the problem easier (substituting
principle) or reducing the class under test

Restriction

19

• Verifying properties can be infeasible
• Substituting a property with one that can be

easier verified

Substituting principle

20

• In complex system, a direct verification can be
infeasible

• Often this happens when properties are related
to specific human judgements, but not only

Substituting principle

21

• Substituting a property Q with another one Q’
that can be easier verified

• Examples:
• Constraining the class of programs to verify
• Separate human judgment from objective

verification
• Exploiting programming language’s feature:

serialization

Substituting principle

22

• A weaker spec may be easier to check:
• It is impossible (in general) to show that

pointers are used correctly, but the simple Java
requirement that pointers are initialised (not
null) before use is simple to enforce

Example - weaker specs

23

static void questionable(){
 int k;

for(int i=0; i<10;i++){
 if(someCondition(i)){

 k=0;
}

}
}

Example - compiler verification

24

• Compilers cannot be sure that k will ever be
initialised: it depends on the condition

• Make the problem easier: modern Java
compilers do not allow this code

Example

25

• Smoke testing: preliminary testing to reveal
simple failures severe enough to, for example,
reject a prospective software release.

Example - smoke testing

26

• “Race condition": interference between writing
data in one process and reading or writing
related data in another process (e.g., an array
accessed by different threads)

• To avoid race conditions: testing the integrity
of shared data
• It is difficult as it is checked at run time
• Substitution principle: adhere to a protocol of

serialisation

Example - serialization

27

• When group of objects or states can be
transmitted as one entity and then at arrival
reconstructed into the original distinct objects

Serialisation

28

• An object can be represented as a sequence of
bytes that includes the object's data as well as
information about the object's type and its types
of data

Example: Java object serialisation

29

• After a serialised object has been written into
some kind of memory, it can be read from it
and deserialised: the type information and bytes
that represent the object and its data can be
used to recreate the object in memory

• The serialized object is not modified while is
dispatched, thus the deserialized object
preserves the integrity of the original object

30

• The ObjectOutputStream class contains the
method
public final void writeObject(Object x)
throws IOException

• The method serialises an Object and sends it to
the output stream

Java object serialisation

31

• Similarly, the ObjectInputStream class contains
the method for deserialising an object:
public final Object readObject() throws
IOException, ClassNotFoundException

• This method retrieves the next Object out of the
stream and deserialises it

Java object serialisation

32

32

It	serializes	the	
object

32

It	serializes	the	
object

It	deserializes	the	
object

33

Divide and conquer: typical engineering
principle

Partition

34

• Divide testing into: unit testing, integration
testing, subsystem and system testing to focus
on different types of faults at different stages
• At each stage, take advantage of the result of

the previous stage

Example

35

• Divide input into classes of equivalent
expected output

• Then we use test criteria to identify
representatives in classes to test a program

Example - partition

36

User
Queries

Numerical
Data

Output
Format

Requests

Responses
To Prompts

Command Key Input

Mouse Picks On Menu
Partitioning Is Based
On Input Conditions

Equivalence partitioning

37

Setting goals and methods to achieve such goals
Making information accessible

Visibility

38

• Models are simpler than the reality as they
represent reality with a limited number of
factors

• They help factorise the reality and perform
program analysis and testing simply and fast

• They highlight specific characteristics of the
SUT

Models

39

• CFG keeps information of next instruction to
be executed and neglects variable values

1 boolean z = FALSE;

2 if(z && y<=2){

3 z=FALSE;

4 y++;

5 }

Some paths are infeasible

Example - Control Flow Graphs

40

Apply lessons learned from experience in process
improvement and techniques

Feedback

41

• Development projects provide information to
improve the next
• Checklists are built on the basis of errors

revealed in the past
• Error taxonomies can help in building better

test selection criteria
• Design guidelines can avoid common pitfalls

Examples - learning from
experience

42

• Iterative testing in eXtreme programming
• Prototyping
• Data mining

Examples

