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Basic Principles of analysis and 
testing software
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• As in any engineering discipline, techniques of 
software analysis and testing follow few key 
principles  

• Principles aim at distinguishing one technique 
from another and determining the scope and 
the limits of the technique itself

Basic principles of analysis and 
testing
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Better to fail every time than sometimes

Sensitivity
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• Sensitivity requires techniques of abstraction: 
system behaviour cannot be related to specific 
circumstances

Sensitivity
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• Run-time exceptions help detect errors in a 
systematic way  

• ArrayIndexOutOfBoundException:  
• It checks that the number of entries of an array 

does not exceed the available length of an array.  
• In languages like C, this is not checked and the 

array can be overwritten (wrapping) or the input 
can be cut with no notice to the execution thread

Example in Java
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• ConcurrentModificationException:  
• When one or more thread is iterating over a 

collection, in between, one thread changes the 
structure of the collection  (race condition) 

• These changes can lead to unexpected behaviour 
that might cause a failure

Example in Java
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• Fail fast iterator  
• while iterating through the collection, instantly 

throws ConcurrentModificationException if 
there is any structural modification  of the 
collection  

• Thus, when a concurrent modification occurs, 
the iterator fails quickly and cleanly, rather 
than risking arbitrary, non-deterministic 
behaviour at an undetermined time in the future

Solution: Fail fast
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/*	import	what	you	need*/	
public	class	FailFastExample{	
				public	static	void	main(String[]	args){	
								Map<String,String>	premiumPhone	=	new	HashMap<String,String>();	
								premiumPhone.put("Apple",	"iPhone");	
								premiumPhone.put("HTC",	"HTC	one");	
								premiumPhone.put("Samsung","S5");	
								Iterator	iterator	=	premiumPhone.keySet().iterator();							
								while	(iterator.hasNext()){	
												System.out.println(premiumPhone.get(iterator.next()));	
												premiumPhone.put("Sony",	"Xperia	Z");	
								}				

				}	}

Example
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iPhone  
Exception in thread "main" 
java.util.ConcurrentModificationException 
        at java.util.HashMap$HashIterator.nextEntry(Unknown Source) 
        at java.util.HashMap$KeyIterator.next(Unknown Source) 
        at FailFastExample.main(FailFastExample.java:xx)

Output
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• Fail Safe Iterator makes copy of the internal 
data structure (object) and iterates over the 
copied data structure 

• Any structural modification affects the copied 
data structure  

• Thus, original data structure remains  
structurally unchanged

Solution: Fail safe
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/*	import	what	you	need*/	
public class FailSafeExample{
    public static void main(String[] args{ 

ConcurrentHashMap<String,String> premiumPhone =  new                
ConcurrentHashMap<String,String>();

        premiumPhone.put("Apple", "iPhone");
        premiumPhone.put("HTC", "HTC one");
        premiumPhone.put("Samsung","S5");        
        Iterator iterator = premiumPhone.keySet().iterator();
        while (iterator.hasNext()) {
            System.out.println(premiumPhone.get(iterator.next()));
            premiumPhone.put("Sony", "Xperia Z");        }
}  

Example
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• iPhone  
• HTC one  
• S5

Output
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• No ConcurrentModificationException throws 
by the fail safe iterator 

• Two  issues associated with Fail Safe Iterator 
are : 
• Overhead of maintaining the copied data 

structure i.e memory 
• It does not guarantee that the data being read is 

the data currently in the original data structure

Fail safe
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Differences

Fail Fast Iterator Fail Safe Iterator

Throw 
ConcurrentModification 
Exception

Yes No

Clone object No Yes

Memory Overhead No Yes

Examples HashMap,Vector,ArrayList, 
HashSet

CopyOnWriteArrayList, 
ConcurrentHashMap
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Making intention explicit

Redundancy
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• From information theory: redundancy means 
dependency between transmissions.  
• Solution: create guards against transmission errors 

• In software, redundancy means consistency 
between intended and actual system behaviour 
• Solution: create guards for artefacts consistency, 

making intention explicit

Redundancy
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• Dependency among parts of code by using a 
variable  
• A variable is defined and then used elsewhere 

• Type declaration is a form a redundancy  
• Type declaration constraints the way a variable 

is used in other part of the code 
• The compiler checks the correct use of the 

variable against its declared type

Examples
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Making the problem easier (substituting 
principle) or reducing the class under test

Restriction
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• Verifying properties can be infeasible 
• Substituting a property with one that can be 

easier verified 

Substituting principle
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• In complex system, a direct verification can be 
infeasible 

• Often this happens when properties are related 
to specific human judgements, but not only

Substituting principle
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• Substituting a property Q with another one Q’ 
that can be easier verified 

• Examples: 
• Constraining the class of programs to verify 
• Separate human judgment from objective 

verification 
• Exploiting programming language’s feature: 

serialization

Substituting principle
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• A weaker spec may be easier to check:  
• It is impossible (in general) to show that 

pointers are used correctly, but the simple Java 
requirement that pointers are initialised (not 
null) before use is simple to enforce

Example - weaker specs
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static void questionable(){
    int k; 

for(int i=0; i<10;i++){ 
    if(someCondition(i)){ 

    k=0; 
} 

} 
} 

Example - compiler verification
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• Compilers cannot be sure that k will ever be 
initialised: it depends on the condition 

• Make the problem easier: modern Java  
compilers do not allow this code

Example
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• Smoke testing: preliminary testing to reveal 
simple failures severe enough to, for example, 
reject a prospective software release.

Example - smoke testing
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• “Race condition": interference between writing 
data in one process and reading or writing 
related data in another process (e.g., an array 
accessed by different threads) 

• To avoid race conditions: testing the integrity 
of shared data  
• It is difficult as it is checked at run time 
• Substitution principle: adhere to a protocol of 

serialisation

Example - serialization
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• When group of objects or states can be 
transmitted as one entity and then at arrival 
reconstructed into the original distinct objects

Serialisation
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• An object can be represented as a sequence of 
bytes that includes the object's data as well as 
information about the object's type and its types 
of data

Example: Java object serialisation
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• After a serialised object has been written into 
some kind of memory, it can be read from it 
and deserialised: the type information and bytes 
that represent the object and its data can be 
used to recreate the object in memory 

• The serialized object is not modified while is 
dispatched, thus the deserialized object 
preserves the integrity of the original object 
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• The ObjectOutputStream class contains the 
method 
public final void writeObject(Object x) 
throws IOException 

•  The method serialises an Object and sends it to 
the output stream

Java object serialisation
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• Similarly, the ObjectInputStream class contains 
the method for deserialising an object: 
public final Object readObject() throws 
IOException, ClassNotFoundException 

• This method retrieves the next Object out of the 
stream and deserialises it

Java object serialisation
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It	serializes	the	
object
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It	serializes	the	
object

It	deserializes	the	
object
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Divide and conquer: typical engineering 
principle

Partition



34

• Divide testing into: unit testing,  integration 
testing, subsystem and system testing to focus 
on different types of faults at different stages  
• At each stage, take  advantage of the result of 

the previous stage

Example
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• Divide input into classes of equivalent 
expected output  

• Then we use test criteria to identify 
representatives in classes to test a program

Example - partition
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User 
Queries

Numerical 
Data

Output 
Format 

Requests

Responses 
To Prompts

Command Key Input

Mouse Picks On Menu
Partitioning Is Based 
On Input Conditions

Equivalence partitioning
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Setting goals and methods to achieve such goals  
Making information accessible 

Visibility
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• Models are simpler than the reality as they 
represent reality with a limited number of 
factors 

• They help factorise the reality and perform 
program analysis and testing simply and fast 

• They highlight specific characteristics of the 
SUT

Models



39

• CFG keeps information of next instruction to 
be executed and neglects variable values 

1 boolean z = FALSE;

2 if(z && y<=2){

3   z=FALSE;

4   y++;

5 }

Some paths are infeasible

Example - Control Flow Graphs
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Apply lessons learned from experience in process 
improvement and techniques

Feedback
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• Development projects provide information to 
improve the next 
• Checklists are built on the basis of errors 

revealed in the past 
• Error taxonomies can help in building better 

test selection criteria 
• Design guidelines can avoid common pitfalls

Examples - learning from 
experience
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• Iterative testing in eXtreme programming 
• Prototyping 
• Data mining

Examples


