
Profiling call changes via motif mining

Barbara Russo

Free University of Bozen-Bolzano, Italy

barbara.russo@unibz.it

ABSTRACT
Components’ interactions in software systems evolve over
time increasing in complexity and size. Developers might
have hard time to master such complexity during their main-
tenance activities incrementing the risk to make mistakes.
Understanding changes of such interactions helps developer
plan their re-factoring activities. In this study, we propose a
method to study the occurrence of motifs in call graphs and
their role in the evolution of a system. In our settings, motifs
are patterns of class calls that can arise for many reasons as,
for example, after implementing design patterns. By mining
motifs of the call graph obtained from each system’s release,
we were able to profile the evolution of 68 releases of five
open source systems and show that 1) systems have common
motifs that occur non-randomly and persistently over their
releases, 2) motifs can be used to describe the evolution of
calls, compare systems and eventually reveal releases that
underwent major changes, 3) there are no specific motif types
that include design patterns in all systems under study, but
each system has motifs that likely include them, motifs that
do not include them at all, and motifs that include a design
pattern and occur only once in every release. Some of the
findings resemble the ones for biological / physical systems
and, as such, path the way to study the evolution of call
graphs as dynamical systems (i.e., as system regulated by
analytic functions).

KEYWORDS
Call Graphs, Motifs mining, Design Patterns, Software Evo-
lution

ACM Reference Format:

Barbara Russo. 2018. Profiling call changes via motif mining. In

MSR ’18: MSR ’18: 15th International Conference on Mining

Software Repositories , May 28–29, 2018, Gothenburg, Sweden.

ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3196398.3196426

1 INTRODUCTION
In codebases that consist of hundreds of thousands if not
millions of lines of code and complex nets of interactions, the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196426

task of adding or changing a piece of code becomes a serious
challenge. During maintenance activities, a developer has to
know and respect dependencies and interactions with other
pieces of code that often someone else wrote. Consequently,
there is an increasing risk of making mistakes the more com-
plex a change is to implement in the system [1]. Many tools
have been proposed to support developers in their mainte-
nance tasks and mitigate such risk. The majority of such
approaches base their algorithms on the syntactic changes
of lines of code, which are useful to understand the changes
within individual software components like classes (e.g., [2]),
but they are less e↵ective to understand the interactions
among such components. Recently, graph theory has been
used to identify the principles regulating the evolution of com-
ponents’ dependencies [4–6]. In particular, graph theory
have been used to model software systems as com-
plex networks by means of the interactions among
their components (e.g., as call graphs) [8]. Complex
networks are graphs with non-trivial topological features (i.e.,
di↵erent from lattices or randomised graphs whose nodes
are randomly connected), which exhibit common global
traits: scale-free power law distribution of node degrees and
small-world properties (i.e., high degree of clustering and
short average path length) [9, 10]. Examples of complex net-
works can be found everywhere: in nature (e.g., biological
systems) as well as in engineering systems (e.g., electronic
circuits) [8, 9, 11–13]. In social networks, the small-world
properties give rise to the popularly-known “six degrees of
separation” for which living things in the world are six or
fewer steps away from each other. More in general (as for soft-
ware systems), such common global characteristics facilitate
information flow through networks’ nodes [4, 8].

Complex networks can be very di↵erent in their local
organisation instead. In particular, recurring sub-structures
can characterise properties of a network or a class of networks
that cannot be discovered with the above-mentioned global
analysis [9]. Specific recurring sub-structures called motifs,
have been hypothesised to act as building blocks of software
systems or fingerprints of their evolutionary paths [8, 9, 14].
Whether motifs have any functional meaning or a specific
role in a system is still an open problem: they may occur as
product of intentional design activities (e.g., by implementing
a design pattern as Model View Controller), as well as a
result of evolutionary rules and maintenance activities (e.g.,
by duplication-based rule) [7]:

An interesting question concerns the formation of struc-
tures akin to software design patterns. In the same way that
recurring spatial patterns (vortices, dislocations, fronts, and
solitons) can arise in physical systems under stress, it may

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Barbara Russo

be that recurring functional patterns (adapters, factories, me-
diators, and proxies) can arise in appropriately defined com-
putational systems driven far from equilibrium. [8]

Worth noticing here that motifs involving three nodes (i.e.,
size-three motifs) are the first interesting building blocks
considered in literature. One of the reasons is that their
topology (e.g., closed connect cluster of three nodes) starts
being not trivial and their detection and enumeration is not
so computationally expensive [15].

Research Goal. The research goal of this work is to
characterise the evolution of software systems in terms of
the types of motifs occurring in the call graphs of all their
releases. Such approach is little explored as literature on
motifs in software systems is scarce and typically focuses on
one single release of a system [7, 8, 16].

Contribution. This work proposes a new method to study
the evolution of software systems through the call graphs
derived from every system release and use motifs to profile
and then compare such graphs. In this way, di↵erences in the
evolution of class calls within a system and between systems
can be observed. The method is applied to motifs of size three
occurring in releases of five open source software systems.
Findings show that:

• There are common motifs of size three in the SUTs.
Such motifs include the ones found in literature. The
new common motifs found in this study, may originate
hubs (i.e., classes with large number of dependencies)
or cycles (e.g., circular references) in the code. Hubs
are classes that are somehow “expected” in software
systems, whereas cycles may originate from particular
design choices or features of the system.

• Motifs profile and distinguish systems in their evolu-
tion. Such profiles may eventually reveal releases that
undergo a large change of call interactions.

• Depending on the system, motifs may or may not
contain design patterns in all releases. In all systems,
there are specific motifs that occur once per release
and in all releases and contain an instance of a design
pattern.

Structure of the paper. Section 2 introduces the relevant
background for our research and provides the major defi-
nitions of the paper. Section 3 presents the study design
illustrating the goal, research questions and instrumentation
for data collection and analysis. Section 4 reports the find-
ings, answering the research questions. Section 5 reviews
existing literature relevant for the work, whereas Section 6
discusses the threats that could a↵ect the validity of the
results achieved. Section 7 concludes the paper.

2 BACKGROUND
To ease the reading, we introduce here the major concepts we
based our work on: call graphs, motifs, and design patterns.

public class Factory{

int year;

}

public class DocumentBuilder extends Factory{

public void buildDocument (){};

}

public class TextBuilder extends Factory{

public void buildText(Factory factory ,

DocumentBuilder firstDocumentBuilder){};

}

public class Catalogue {

public void createDocuments(DocumentBuilder

secondDocumentBuilder){};

}

Class Dependencies Class Structure

Factory

TextBuilder

extend, buildText

DocumentBuilder
 buildText

extend

Catalogue

 createDocument

Factory

TextBuilder

extend

DocumentBuilder

extend

Catalogue

Figure 1: Example of code snippet and its derived
call graph.

2.1 Software Systems as Call Graphs
In literature, the dependency structure of software systems
has been generally represented in two ways: as collabora-
tion graph or call graph. A collaboration graph renders
the dependency between classes or objects as data structures
(e.g., as in a UML class or object diagram), whereas a call
graph represents a run of a program [18]. Call graphs have
been used to understand the control and execution flow in
software systems, whereas class and/or object collaboration
diagrams have been used to gather insight into the relation-
ships among abstract data types in Object Oriented systems.
Specifically for call graphs, dependency between classes can
further be distinguished between static or dynamic. Static
graphs typically describe the set of interactions that are possi-
ble, while dynamic graphs identify interactions that actually
take place under specific run-time conditions. In this paper,
we will focus on static call graphs. Di↵erent dependency
relationships among classes would render the class relation-
ships from another perspective and build di↵erent graphs. A
call graph is a graph where classes and interfaces are nodes
and calls between them are edges, Fig. 1. An edge is directed
from the node that calls to the node that is called. To identify
calls, we follow the specifications of the Java Virtual Machine
[19] as in the following:

• invokevirtual: invoking an instance method of an
object.

• invokeinterface: invoking a method declared within
a Java interface. It searches the methods implemented

Profiling call changes via motif mining MSR ’18, May 28–29, 2018, Gothenburg, Sweden

by the particular runtime object to find the appropriate
method,.

• invokespecial: invoking an instance method requiring
special handling, i.e, an instance initialisation method,
a private method, or a superclass method.

• invokestatic: invoking a class (static) method.

Listing 1 illustrates an example from JGap 3.6: in its con-
structor, the class Chromosome calls the constructor of its
parent class BaseChromosome (invokespecial) and invokes stat-
ically the method getStaticConfiguration() of the class
Genotype (invokestatic).

Listing 1: JGap 3.6.
public Chromosome () throws

InvalidConfigurationException {

this(Genotype.getStaticConfiguration ());

}

The number of inward (outward) edges of a node is the in-
(out-)degree or simply degree if no direction for the edge is
considered.

Call graphs possess three major properties: (1) scale-free
distribution for node degrees, (2) short average path lengths,
and (3) high degree of clustering, [7, 20–23]. Properties (2)
and (3) define the so-called small-world networks. Small-world
networks tend to contain highly connected sub-structures
(e.g., closed motifs). Property (1) implies two major facts
of call graphs: i) the largest node degree is proportional
to the size of the network and therefore hubs (i.e., nodes
with high degree) likely occur in large graphs, and ii) the
degree probability P(k) is power law, P (k) ⇠ k

�� [24]. When
quantities follow a power law distribution predicting their
global average is not always straightforward. For example,
the mean (µ) of a power law distribution is undefined when
� < 2 and the standard deviation (sd) is infinite for � < 3.
Thus, if sd is unbounded, when we randomly choose a node
of the graph, we do not know what to expect: the selected
node’s degree could be tiny or arbitrarily large [24]. As call
graphs of software systems can have � ranging between 1 and
2.5 [7, 20, 25, 26], the study of the degree distribution in the
evolution of call graphs is not that helpful. As an example,
Fig. 2 shows the power low distribution we found for util
package of the Spring Framework release 3.0.1.

2.2 Motifs
A network motif is any interconnected set of nodes of a
complex network of a given size and type [9]. The size of
a motif is the number of its nodes. In this work, we focus
on motifs of size three, i.e., the smallest non-trivial sub-
structures (Fig. 3) as the discovery and enumeration of motifs
is computational expensive [15]. In addition, we are interested
in design patterns, which typically involve two or three classes
and their interactions. The type of a motif is defined by its
topology, i.e., the direction and the number of edges between
nodes. Modulo the number of its directed edges, a motif type
is represented by its adjacent matrix, Fig. 3 left. Each entry
of the matrix has value 0 or 1 and represents an edge between
two nodes. For example, the entry at row = 2 and column = 1

Figure 2: Power law degree distribution for the util
package of Spring Framework 3.0.1. Fitted power law
line: y = ax

�� with a = 77.6, � = 1.165 and R

2 = 0.867

A =

2

4
0(8) 0(7) 0(6)

1(5) 0(4) 0(3)

1(2) 1(1) 0(0)

3

5

1

2 3

ID=2

1
+ 2

2
+ 2

5
= 38

Figure 3: Adjacent matrix (left), topology type
(right) and ID for motif 38

represents the edge from node 2 to node 1 whereas the entry
at row = 3 and column = 2 is the edge from node 3 to node 2.
Motifs can have equivalent topologies and therefore the same
type. For example, a motif with only two outgoing edges from
node 1 is equivalent to a motifs with only two outgoing edge
from node 2. The motif ID identifies the type uniquely. The
motif ID is computed from the decimal representation of the
binary expression of the entries of the adjacency matrix A

Fig 3 left. The numbers in brackets in the matrix A represent
the bit position. For example, the ID of the motif in Fig 3
right is computed by summing up the bits corresponding to
the non zero cells of the adjacent matrix (a10, a20, a21). In
the rest of the paper, we will focus on motifs of size
three. There are 13 di↵erent types of size-three motifs. The
full list of size-three motifs, their topology, and literature
about them is reported in Table 6.

2.2.1 Non-random motifs. To characterise complex net-
work, networks called random networks have been used as
baseline for comparison [9, 16, 27]. The type of random
network we use in this work is the one used in literature
of software systems and is built by randomly re-wiring the
edges of the nodes of the original model (i.e., re-directing
links among existing nodes) under the condition that the
degree of each node is preserved [10, 28, 29]. Therefore the
local connectivity of each node is unchanged as well (e.g.,
[16, 17, 28]). To characterise an existing network, a Null
Hypothesis is first formulated:

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Barbara Russo

NH0 : the original complex network and the general random
network obtained by link re-wiring have the same number of
motifs of size k and type i.

The e↵ect size to reject the null hypothesis is measured
by the Z-score (also called motif significance). For size k

and motif type i, the Z-score is defined by

Z

i

= (Nreal

i

� < N

rand

i

>)/std(Nrand

i

)

where N

real

i

is the number of instances of motif of type i and
size k in the actual network, and < N

rand

i

> and std(Nrand

i

)
are respectively the mean and the standard deviation of the
occurrences of motif of type i and size k in 100 random
networks. If Z is greater than two, the null hypothesis can be
rejected as the motif type i is significantly overrepresented
[9, 12, 16, 30]. In this case, the motif is called non-random
motifs. In the rest of the paper, we will refer to motifs
as non-random motifs if not otherwise stated.

Finally, Milo et al. [31] introduced the so-called Signif-
icance Profile (SP) to compare networks based on their
motifs: for every motif type i

SP

i

=
Z

i

(
P

Z

2
i

)1/2

and SP = [SP1, ..., SPn

].

2.3 Design patterns
A design pattern is a sub-structure of a software system
that follows a specific design choice and has the goal to
detach regulation and control of system functionalities from
the objects that finally operate such functionalities. With
design patterns, programmers ensure su�cient regulation and
control without freezing a system into constraints that are
di�cult to evolve, [8] and ease evolution [16]. Fig. 4 illustrates
the topology of design patterns in terms of classes and their
calls as defined in [32].

Factory method

Prototype
0...1

Singleton

(Object)Adapter-Commander
1...n

Composite
1...n

Decorator

Observer

State-Strategy

Template-method
1...n

Proxy

Visitor

Figure 4: Design Patterns collected by pattern4

To identify design patterns in a motif (and a graph), edges
that defines template calls in design patterns are “coloured”

(i.e., are marked) in the motif (or the graph) [36]. For exam-
ple, the diagram in Fig 5 shows a motif containing a Proxy
pattern: topology (left) and adjacency matrix (right). The
proxy method Request() corresponds to the dashed edge in
the topology and a value greater than one (two in the figure)
in the adjacency matrix.

A =

2

4
0 0 0

1 0 2

1 0 0

3

5

Figure 5: Coloured motif - Proxy pattern

3 STUDY DESIGN
Research Goals and Questions. The research goal of this
work is to characterise the evolution of software systems in
terms of the types of motifs occurring in the call graphs of
their releases. In particular, we use this characterisation to
identify releases whose motifs have been significantly changed.
Such analysis is also extended to understand whether the
motifs occur by design choices. The results of our work is,
therefore, relevant to developers that want to identify future
releases that need refactoring of class calls or have a better
understanding of the e↵ects over releases of design choices or
maintenance interventions on the interactions among classes
of their systems. For example, such information can be used
to understand changes in information flow and, consequently,
tune testing strategies [33]. To achieve our goal, we selected
subsequent releases of five open source software systems
(Spring Framework, JGAP, SquirrelSQL, and Lucene, and
JHotDraw) and performed our analysis according to three
major questions:

RQ1: Are there common motifs among releases of the
same system under study or among releases of all systems
under study? It has been reported that di↵erent software
systems share one common motif (motif 38) [7, 8, 16, 17]. As
context, used tools, and settings of the existing studies di↵er
from the one of this work, this question aims at verifying
and eventually extending existing findings to call graphs and
multiple releases.

RQ2: Do motifs distinguish systems in their evolution? Do
they identify releases that underwent significant changes in
the calls among classes? It has been hypothesised that motifs
might reveal stress points of a systems [8]. This question
aims at investigating whether motifs can be used to compare
systems in their evolution and eventually identify releases
that underwent large changes of calls among classes.

RQ3: To what extent do motifs include design patterns
in the systems under study? According to their templates,
design patterns are generally implemented in clusters of 1,
2, or 3 classes Fig. 4. Whether and which of these patterns
appear within motifs is still an open question [8]. Motifs may
also appear because of developers’ intervention during main-
tenance. These constructs typically emerge to satisfy specific

Profiling call changes via motif mining MSR ’18, May 28–29, 2018, Gothenburg, Sweden

	
Extract	class	
dependencies	

Annotate	class	
dependencies	with	DP		

Extract	design	
patterns	

project		
jar	files	

	

Generate	motifs		

Design	
patterns	per	
release	

Class	
dependencies	
per	release	

java-callgraph	

pattern4	

XML	parser	

FANMOD	

Generate	annotated	
motifs		

FANMOD	

Analyse	the	frequency	
a	motif	includes	a	DP	

Analyse	common	
motifs	

RQ1		

RQ3	

txt	

XML	

Motifs	and	
motif	data	

Annotated	
motifs	and	
motif	data	

Analyse	SP	correlation	
between	call	graphs	

	 RQ2	

Figure 6: Activity flow of the analysis

evolution needs (e.g., the addition of a child to a parent
class to extend a functionality). We aim at studying motifs
to identify the presence of design patterns and emergent
sub-structures during maintenance persistently over releases.

3.1 Study method
This section presents a method that extends and integrates
previous approaches (Section 5): motifs are detected and
studied over releases and systems, design patterns are iden-
tified in motifs, and the evolution of systems through the
correlations of their SPs between releases is evaluated. Figure
6 illustrates the method and the tools used / developed.
For each release, collect call pairs. We first collect the
jar files of each release of the systems from the di↵erent
repositories of the projects (e.g., github or sourceforge). We
identify ordered pairs of classes in a call relationship where
the first member calls the second member. To perform this
task, we use the tool javacg-static [35] that parses the jar
file of a release searching for method bodies and returns pairs
of classes in a call pairing as described in Section 2.1.
For each release, measure the Z-score of a motif type.
For this task, we first assign an ID to each class in a call,
convert the pair of class names into pairs of IDs:

Class.Name1, Class.Name2 ! [ID1] , [ID2]

and then pass the pairs of IDs to the tool for motif discovery
FANMOD [11, 36]. FANMOD reads IDs pair and output the
adjacency matrix and the statistic per motif types. The tool
first generates a complex network defined by the call pairs and,
by using the RAND-ESU discovery algorithm, it enumerates
motifs in such complex network. It then generates 100 random
complex networks and enumerates motifs for each of the 100
random networks as well. During enumeration, motifs are
also aggregated by their topology type. The final output
consists of some basic statistic on the total number of motifs
in the original and random networks, the motif frequency, and
Z-score per motif type. The RAND-ESU algorithm makes
FANMOD faster than similar tool for motif detection [11]. In

this study, with a Intel Core i5 with 1.3 GHz CPU and 4Gb of
RAM, FANMOD took on average 30s for Spring Framework,
60s for Lucene, 26s for JGAP, 25s for JHotDraw, and 280s
for Squirrel for randomisation and motif enumeration per
single release.
For each release, identify design patterns in motifs.
To collect the instances of design patterns in Fig. 4 for each
release of the SUTs, we use the design pattern detection
tool, pattern41 [32]. The output is an XML file containing
instances of design patterns per topology type. An instance
of Proxy pattern in Gap 3.5 is illustrated in Listing 2.

Listing 2: An instance of a Proxy pattern.
<pattern name="Proxy">

<instance >

<role name="RealSubject" element="org.jgap.

FitnessFunction" />

<role name="Proxy" element="org.jgap.impl.

BulkFitnessOffsetRemover" />

<role name="Request ()" element="org.jgap.impl.

BulkFitnessOffsetRemover :: clone ():java.lang.

Object" />

</instance >

</pattern >

To recognise instances of design patterns within motif
instances as described in Section 2.3, we implemented a
Java tool that parses the pattern4 XML output, identifies
the template method(s) of the pattern instances, and then
annotates the class pairs IDs with a numerical label indicating
whether the method is a design pattern method and of which
pattern. For example, the instance in Listing 2 is then coded
into the triple:

[ID1], [ID2], [L1]

where
BulkFitnessOffsetRemover! [ID1],
FitnessFunction ! [ID2], and
clone() ! [L1].

From such triples, FANMOD generates so-called coloured
networks and motifs where colours are the labels given to the
edges of the network or motif (Section 2.3). In our case, labels
correspond to the template methods of design patterns. For
example, L1 labels the method “clone()” as it is the template
method “Request()” of the design pattern Proxy in Listing 2.
In the generation of coloured motifs, we choose not to colour
nodes and set FANMOD to re-wire only edges with the same
colour. We choose not to colour the nodes as re-wiring will
have little variation in the significance of the motifs: given the
size of the motifs the majority of them would not have two
nodes of the same colour and it would have been even rarer to
re-wire links of the same colour linking nodes with the same
colour. Both for coloured and non-coloured networks and for
each motif with Z-score greater than two and p-value less
than 0.05, and each release, we collected the motif frequency,
the total number of motifs in the original network, and the Z-
score. The Java parser, we developed will be publicly
available upon acceptance.

1http://users.encs.concordia.ca/⇠nikolaos/pattern detection.html

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Barbara Russo

Table 1: Descriptive analysis of the five systems

System # rel. Releases From - To

SF 37 3.0.1 - 4.1.7 Dec-09 - Jun-15
L 9 2.9.4 - 3.6.0 Dec-10 - Apr-12
S 7 3.0.2 - 3.5.0 June-09 - May-13
JGAP 6 3.4.4 - 3.6.3 Oct-09 - Apr-12
JHD 15 5.2 - 7.6.1 Feb-01 - Jan-11

3.2 Study Subjects
The analysis is performed on a total of 68 releases of five
open source Java software systems that represent di↵erent
types of software ecosystems: Spring Framework core (SF)2,
Lucene core (L)3, Squirrel SQL client (S)4, JGAP (JG)5,
and JHotDraw (JHD)6. Table 1 illustrates the systems and
their releases. We focused on their major releases, which
we identified from the announcement of the corresponding
project pages. Releases were also selected to include the ones
we already used in our past works (citations omitted for
anonymity) so to exploit our previous knowledge of the sys-
tems. Figure 7 describes the distributions of nodes, design
patterns, classes and edges in the five software SUTs. Worth
noticing that there are fewer nodes than classes or interfaces.
The di↵erence is due by those classes or interfaces that do
not call or are called by other classes. Fig. 8 illustrates the

JG JHD SF L S

50
0

10
00

15
00

20
00

nu
m

be
rO

fC
la

ss
es

JG JHD SF L S

20
00

50
00

10
00

0

 n
um

be
rO

fD
ep

en
de

nc
ie

s

JG JHD SF L S

10
0

20
0

30
0

40
0

50
0

60
0

nu
m

be
rO

fN
od

es

JG JHD SF L S

10
0

20
0

30
0

40
0

50
0

in
st

an
ce

sO
fD

es
ig

nP
at

te
rn

s

Figure 7: From top left clockwise: number of classes,
links between classes, design pattern instances, and
nodes.

2https://projects.spring.io/spring-framework/
3http://lucene.apache.org/
4http://squirrel-sql.sourceforge.net/
5http://jgap.sourceforge.net/
6http://www.jhotdraw.org/

distributions over releases of the most frequent design pat-
terns (Object Adaptor (A), Decorator (D), Proxy (Pr)) in
the SUTs (the box plots for all design patterns are omitted
for space reason).

A D P
r

0
50

10
0

15
0 JGap

JHotDraw
Lucene
SpringFramework
Squirrel

Figure 8: Distribution of instances of the most fre-
quent design pattern in SUTs. Object Adaptor (A),
Decorator (D), Proxy (Pr)

4 STUDY RESULTS
RQ1: Are there common motifs among releases of the same
system under study or among releases of all systems under
study? Common motifs of the SUTs are illustrated in Table
2 and Fig. 9. In particular, motifs 36, 38, 108, 110, and 238
are included in at least one release of any system and all
such motifs but motif 238 are common among all releases
of all systems, Fig. 10. In addition, the Z-score plot over

Table 2: Common motifs among all releases of SUTs.

Type JG JHD L SF S

Common 36, 38,
46, 102,
108,
110

36, 38,
46, 108,
110

36, 38,
46, 108,
110,
238

36, 38,
46, 108,
110

36, 38,
98, 102,
108,
110,
238

Dominant 108 108 108, 110 108, 110 110

36*

1

2 3
38*

1

2 3
46

1

2 3
98

1

2 3

102

1

2 3
108*

1

2 3
110*

1

2 3
238

1

2 3

Figure 9: Topology of the motifs appearing in at least
one release of one SUT. Motifs labelled with * ap-
pears in all releases of all systems.

releases of motifs 110 or / and 108 dominates all other plots
in the SUTs, Fig. 10. Looking at each system, we can see that
the plots of all motifs of all releases keep the same order of

Profiling call changes via motif mining MSR ’18, May 28–29, 2018, Gothenburg, Sweden

JG
34
4

JG
35
0

JG
36
0

JG
36
1

JG
36
2

JG
36
3

0

5

10

15

2020

● ●

●
●

●

●

Jgap

● 36
38
46
102
108
110
238

JH
D
52

JH
D
53

JH
D
54
b1

JH
D
60
b1

JH
D
70
6

JH
D
70
7

JH
D
70
8

JH
D
70
9

JH
D
71

JH
D
72

JH
D
73

JH
D
74
1

JH
D
75
1

JH
D
76
1

0

5

10

15

20

25

30

35

40

43

● ●

● ●

●

●
●

●

●

●

●
●

● ●

JHotDraw

● 36
38
46
108
110
238

L2
.9
.4

L3
.0
.0

L3
.0
.3

L3
.1
.0

L3
.2
.0

L3
.3
.0

L3
.4
.0

L3
.5
.0

L3
.6
.0

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

8080

●

●
●

●

●

●

●

●

●

Lucene

● 36
38
46
108
110
238

S3
.0
.2

S3
.2
.0

S3
.2
.1

S3
.2
.2

S3
.3
.0

S3
.4
.0

S3
.5
.0

0

5

10

15

20

25

30

35

40

45

48

● ●

●

●

●

● ●

Squirrel

● 36
38
98
102
108
110
238

SF
30
1

SF
30
2

SF
30
3

SF
30
4

SF
30
5

SF
32
0

SF
32
1

SF
32
2

SF
32
3

SF
32
4

SF
32
5

SF
32
6

SF
32
7

SF
32
8

SF
32
9

SF
40
0

SF
40
1

SF
40
2

SF
40
3

SF
40
4

SF
40
5

SF
40
6

SF
40
7

SF
40
8

SF
40
9

SF
41
0

SF
41
1

SF
41
2

SF
41
3

SF
41
4

SF
41
5

SF
41
6

SF
41
7

0

5

10

15

20

25

30

35

40

45

50

55

59

●●●
●●

●
●
●

●●

●
●
●
●

●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

Spring Framework

● 36
38
46
108
110
238

Figure 10: Z-score plots of motifs over releases of the SUTs. Red lines indicate the most simple types.

dominance in JGAP and Squirrel. For JHotDraw, the Z-score
of all motifs in release 7.1 drops. According to the API JDi↵7,
such drop corresponds to a large removal of packages. Finally,
Lucene and Spring Framework exhibit a significant variation
of their Z-score plots, Fig. 10.

Comparison with existing literature on motifs of call graphs.
Motif 38 is the size-three motif found common in software
systems [8, 16, 17]. Such literature has been performed in a
context more limited than ours. Myers and Ma et al. analysed
only one release per software system, whereas Petrić and
Grbac analysed several versions of three Eclipse plug-ins (i.e.
the same ecosystem). Myers only focused on frequency of
occurrence (i.e. he did not use Z-score). Myers and Ma et al.
used the same motif detection tool mfinder in [9], whereas
Petrić and Grbac compared the average Z-score over releases
both with mFinder and Kavosh tool [38]. They found that, on
average, also motif 46 have a high Z-score for all versions of
one plug-in. In our study, such motif was found in all releases
of all systems but Squirrel, Fig. 10. None of related work
analysed motif plots for multiple systems neither used the
state-of-the-art tool FANMOD [11]. The new motifs we found
reveal some peculiar characteristics of the SUTs. Namely,
motif 36 has an open topology (i.e., it is not a triangle) and,
as such, it contributes to the occurrence of hub classes (i.e.,
classes providing services to many other classes) [7]. In Section
2.1, we have seen that hubs are expected in large networks.
Motif 108, 110, and 238 have cycles (i.e., bi-directional edges),
which, in general, are not desirable in software systems as they
indicate a chain of mutually recursive functions that increase
coupling, are hard to understand, test and may eventually
turn into stack overflow or deadlocks [39]. Occurrence of
cycles may correlate with the presence of faults [40]. In some
cases, their presence is unavoidable and even necessary. For
example, it might have originated from the use of certain
design patterns [33]. Removing cycles might sometimes be
counterproductive. For example, a closer look at instances of
motif 110 in Squirrel’s releases reveals that cycles are often
due to nested classes that are kept unchanged. Therefore,

7https://www.randelshofer.ch/oop/jhotdraw/

planning future changes of such classes can be risky and
unnecessary. There is a set of motifs common to all
releases and systems that includes motif 38 found in
literature, but not only. Such motifs may originate
hubs or cycles. Depending on the system, there are
motifs that dominate the others and therefore more
characteristic.

RQ2: Do motifs distinguish systems in their evolution? Do
they identify releases that underwent significant changes in the
calls among classes? With RQ1, we have discussed common
motifs over all systems. With this question, we investigate
somehow the opposite: use motifs to distinguish systems in
their evolution. To this aim, we analyse the evolution of
call graphs through their Significance Profile (SP) (Section
2.2.1). Specifically, we use the correlation between the SP of
two releases as a measure of similarity between them. The
heatmap in Fig.11 illustrates the e↵ect size of significant
correlations (↵ = 0.05) between SPs of all releases of all
SUTs. White cells represent non-significant correlations. The
darker is the colour the stronger is the e↵ect size. Red squares
over the diagonal correspond to correlations of releases of the
same system.

Analysis of SP correlations between systems. Releases of
JGAP and JHotDraw are similar each other and with the
initial six releases of Spring Framework. Lucene’s releases are
similar to the majority of the releases of Spring Framework
and such similarity is stronger after the first six releases. The
two systems share the same motifs Fig. 10. After the first six
releases, releases of Spring Framework’s are similar to the
one of Squirrel.

Analysis of SP correlations within systems. The map shows
the presence of releases that act as transition between set
of releases highly correlated. In JGAP, the large number
of white cells indicates little similarity of motif profiles of
its releases. This might be due to the large variance of the
Z-score of motif 238, Fig. 10. In JHotDraw, there is a clear
di↵erence between releases before and after release 7.1 as we
already observed above: releases after 7.1 are highly corre-
lated. In Lucene and Squirrel, all releases show high cor-
relation. In Spring Framework, there are four sets within

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Barbara Russo

Table 3: Percentage of releases of a system for which N

DP

(M) � N

noDP

(M) for motif M; “-” indicates no motif
instances of type M for all releases of a system.

motif ID 6 12 14 36 38 46 78 102 98 74 108 110 238

JG - - 100% 0 0 0 100% 0 - - 100% 60% 0
JHD 100% 100% - 7% 0 0 100% - - 100% 0 0 0
L - - 100% 0 0 0 100% 100% - 100% 0 0 0
SF 100% - - 0 0 0 100% - - - 0 0 0
S 100% 100% 100% 0 0 100% - 40% 0 100% 0 0 0

which releases are highly correlated. Such sets are identi-
fied by the transition releases. The Significance Profile
distinguishes systems in the evolution. The profile
may eventually reveal releases that undergo a large
change of call interactions.

RQ3: To what extent do motifs include design patterns in
the systems under study? Design patterns determine pre-
defined call interactions among classes and therefore may
occur within motif instances. To investigate the occurrence of
design patterns in motifs, we start by analysing the percent-
age of releases for which the number N

DP

(M) of motif in-
stances of type M that include a design pattern is greater than
the number N

noDP

(M) that do not to include it (i.e., such
releases likelier include design patterns). Table 3 illustrates
the percentage of releases x for which N

DP

(M) � N

noDP

(M)
in the five SUTs. According to the Table, motifs 6, 12, 14, 74,
78 have x=100% for two or more systems. A closer look at
their count (omitted) tells that these motifs typically occur
in one (the same) instance in each release and some of them
include cycles. Instances of motifs 46, 102, 108, 110 are more
frequent (count omitted) and likely contain design patterns

JGap

JHotDraw

Lucene

Spring Framework

Squirrel

JG
ap

JH
ot

D
ra

w

Lu
ce

ne

Sp
rin

g
Fr

am
ew

or
k

Sq
ui

rre
l

0.00

0.25

0.50

0.75

1.00
value

Figure 11: SP correlations between releases.

in all releases of one system, Table 3. For example, motifs 108
and 110 likelier contain design patterns in JGAP and motifs
46 and 102 in Squirrel. On the other hand, motifs 38, 238 less
likely contain design patterns (as N

DP

(M) < N

noDP

(M))
for all releases of all five systems. Table 4 illustrates the
percentage of releases for which instances of a given motif do
not contain design patterns at all. As expected, motifs 6, 12,
14, 74, 78 do not appear in the Table. Instances of motif 36
do not include design patterns in some releases of all systems
(e.g., in all releases of Squirrel and in 88.9% of the releases
of Lucene). Such percentage varies depending on the system.
For Squirrel, for example, motif 36 and 98 do not include
design pattern instances in all its releases.

Table 4: % of releases that have no design patterns
in all motif instances of a given type

motif ID JG JHD L SF S

36 50% 26.70% 88.90% 12.50% 100%
46 26.70%
98 100%
102 66.60%
108 60% 93.80% 80%
110 33.30% 6.30%
238 33.30% 33.33% 75%

Overview. Table 5 summarise the major results obtained
by the analysis of RQ1 and RQ3. Motif 98,108, 238 do not
include a design pattern for a large number of releases. Worth
noticing that dominant motifs may or may not contain
design patterns over releases. For example, motif 108
likely contains design patterns for JGAP, but does not con-
tain design patterns for JHotDraw, Spring Framework, and
Squirrel. With a closer look at JHotDraw that, more than
the other systems, embraces the use of design patterns in the
development, we can see that design patterns are specif-
ically contained in motifs (6, 12, 74, 78) that occur
in every release and once per release. Such result seems
to confirm the recent findings in [41] for which calls in design
patterns tend not to change over time.

5 RELATED WORK
Evolution of call graphs. The evolution of call graphs has been
long studied in terms of the power law of the node degree
distribution: Myers [8] studied both collaboration graphs and
call graphs; Vasa et al. [26, 42] built a tool to detect static
interactions among classes and analysed call graphs of 12 Java
projects; Wang et al. [25] focused on the call graphs of 223

Profiling call changes via motif mining MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 5: Motif analysis’ overview. In brackets, the percentage of releases.

Motif’s characteristic JG JHD L SF S

Dominant 108 108 108, 110 110 110
Likely contain DP 108(100%), 110(60%) 36(7%) 102(100%) 102(40%), 46(100%)
NoDP 36(50%), 102(66.6%),

238(33.3%)
36(26.7%),
46(26.7%), 108(60%),
110(33.3%),
238(33.3%)

36(88.9%) 36(12.5%),
108(93.8%),
110(6.3%), 238(75%)

36(100%), 98(100%),
108(80%)

Single DP instance 14, 78 6, 12, 74, 78 14, 74, 78 6, 78 6, 12, 14, 74

versions the Linux kernel; Bhattacharya et al. [39] analysed
11 large projects over multiple releases; in 2015, Wang and
Ding [20] studied the Linux kernel. Worth noticing here that
the literature on power law for node degree distribution has
also concerned collaboration graphs (e.g., Valverde and Solé
2005 [7], de Moura et al. [43]), but such articles are out of
the scope of this study.
Motifs and motifs’ evolution in call graphs. According to our
settings, we limit our literature review to research on size-
three motifs in call graphs. To our knowledge, such literature
dates back to 2003 [8] when Christopher Myers conjectured
that motifs could be used to understand evolutionary rules of
software systems. He also briefly mentioned that call graphs
have the common size-three motif 38. Later, Petrić and Grbac
[17] studied the evolution of size-three motifs over several
releases (of three Eclipse plug-ins) and found that motif 38
occurs in all the releases of the plug-ins, whereas motif 46
in all releases of one plug-in. They also showed that the two
algorithms (Kavosh [38] and mFinder [44]) detect a di↵erent
number of motifs with Kavosh outperforming mFinder. They
also built call graphs using an in-house made tool that collects
slightly di↵erent parameters (i.e., method invocation, return
type or parameters) from the javacg-static tool. Ma et al.
[16] studied motifs of one release of six systems and found
that motif 38 was the most common. They collected motifs
with mFinder and filtered out motifs that seldom occur.
Design patterns and motifs of call graphs. There is no litera-
ture on motifs and design patterns for call graphs. Recently,
Ampatzoglou et al. [41] extensively studied the e↵ect of de-
sign patterns on changes of collaboration dependencies. They
found that depending on their role, classes in design patterns
tend to resist to change.
Other studies on call graph analysis. Zimmermann and Nagap-
pan [40] analysed the complexity of the interactions among
and within call graphs. Measures of package internal / ex-
ternal interactions were defined and correlated to number of
failures. Ste↵ and Russo modelled systems as call graphs and
introduced a measure of similarity based on bit representation
of class neighbourhoods [5]. Yan et al. [45] compared the call
graph of a version of the Linux kernel with transcriptional
regulatory network of genomes in terms of their hierarchical
layout.

6 THREATS TO VALIDITY
Given the explorative and observational nature of our work,
the relevant class of threats is construct validity. The major

thread of any work on motif detection is the limitation of
the algorithm. To mitigate this threat we used the state-of-
the-art tool, FANMOD [11, 36]. A second important threat
is the random network used in the definition of the Z-score.
Van Nes et al. [28] argued that a better null model takes
into account the dynamic characteristics of a network. For
metabolic systems, they constructed such model by better
defining the strength of the relations between two nodes. This
may hold true also in the case of software systems although
the results with random re-wiring are promising. Finally, as
for any study performed on a finite number of systems, we
cannot claim any external validity as our results may not
hold true for other systems although our work is in line with
existing literature.

7 CONCLUSIONS AND FUTURE
WORK

In this work, we have proposed a method to study the evolu-
tion of motifs over releases and characterise them as known
design patterns or emergent sub-structures. We further used
motifs to distinguish releases that underwent large changes
in class calls and compare systems during their evolution.
We applied our method to five open source software systems.
Given the explorative nature of our work and the compu-
tational limits of the enumeration algorithms, we focused
our analysis on size-three motifs. We found that the systems
have motifs that occur non-randomly and persistently over
their releases, the set of motifs can be used to describe the
overall evolution of call changes and compare systems, and
there are no specific motif types that include design patterns
in all SUTs, but each system has motifs that likely include
them, motifs that do not include them at all, and motifs
that occur only once in every release and include a design
pattern. At this stage of the work, we cannot associate to
any motif type a unique role in the logic of a system. For
example, motif of type 36 can originate from inheritance
relations as well as simple associations between classes. One
possible way to gain better understanding on this issue might
be to infer from motifs new design patterns following the
approach in [46]. Such approach will be matter of future work.
Another extension of our work can concern the re-definition
of the null model for the Z-score. The re-wiring mechanism
may produce a too basic null model not representing the
real nature of call graphs. Non-trivial null models have been
already introduced for biological systems, [28], and we plan to
replicate this approach for software systems. Such open issue

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Barbara Russo

is also related to a second, more ambitious goal of our future
research: understanding the dynamic ruling the evolution of
call graphs both as Self-Organised Criticality process [4] or
dynamic systems [28].

REFERENCES
[1] A. E. Hassan, “Predicting faults using the complexity of code

changes,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 78–88. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070510

[2] B. Rossi, B. Russo, and G. Succi, “Analysis of open source
software development iterations by means of burst detection
techniques,” in Open Source Ecosystems: Diverse Communities
Interacting, 5th IFIP WG 2.13 International Conference
on Open Source Systems, OSS 2009, Skövde, Sweden, June
3-6, 2009. Proceedings, 2009, pp. 83–93. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02032-2 9

[3] T. Nakamura and V. R. Basili, “Metrics of software architec-
ture changes based on structural distance,” in Proceedings of
the 11th IEEE International Software Metrics Symposium, ser.
METRICS ’05. IEEE Computer Society, 2005, pp. 8–.

[4] Z. Lin and J. Whitehead, “Why power laws? an explanation from
fine-grained code changes,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, 2015, pp. 68–75.

[5] M. Ste↵ and B. Russo, “Measuring architectural change for defect
estimation and localization,” in Empirical Software Engineer-
ing and Measurement (ESEM), 2011 ACM-IEEE International
Symposium on, 2011, pp. 225–234.

[6] L. Moonen, S. Di Alesio, T. Rolfsnes, and D. W. Binkley,
“Exploring the e↵ects of history length and age on mining
software change impact,” in 16th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM
2016, Raleigh, NC, USA, October 2-3, 2016, 2016, pp. 207–216.
[Online]. Available: http://dx.doi.org/10.1109/SCAM.2016.9

[7] S. Valverde and R. V. Solé, “Network motifs in computational
graphs: A case study in software architecture,” Phys. Rev. E,
vol. 72, Aug 2005.

[8] C. R. Myers, “Software systems as complex networks: Structure,
function, and evolvability of software collaboration graphs,” Phys.
Rev. E, vol. 68, Oct 2003.

[9] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon, “Network motifs: simple building blocks of complex
networks,” Science’s STKE, vol. 298, no. 5594, p. 824, 2002.

[10] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-
world” networks,” Nature, vol. 393, pp. 440–442, 1998.

[11] N. Tran, S. Mohan, Z. Xu, and C. Huang, “Current innovations
and future challenges of network motif detection,” Brief Bioin-
form, vol. 16(3), pp. 497–525, 2015.

[12] A. L. Robert J Prill, Pablo A Iglesias, “Dynamic properties of
network motifs contribute to biological network organization,”
PLoS Biol, vol. 3, no. e343, 2005.

[13] S. Maslov and K. Sneppen, “Specificity and stability in topology
of protein networks,” Science, vol. 296, 2002. [Online]. Available:
http://dx.doi.org/10.1126/science.1065103

[14] S. Valverde and R. V. Solé, Motifs in Graphs. New York,
NY: Springer New York, 2009, pp. 1–15. [Online]. Available:
https://doi.org/10.1007/978-3-642-27737-5 339-3

[15] S. Wernicke, “E�cient detection of network motifs,” IEEE/ACM
Trans. Comput. Biol. Bioinformatics, vol. 3, no. 4, pp. 347–359,
Oct. 2006.

[16] Y. Ma, K. He, and J. Liu, “Network motifs in object-oriented
software systems,” Dynamics of Continuous, Discrete and Im-
pulsive Systems (Series B: Applications and Algorithms), vol.
14(S6), pp. 166–172, 2007.

[17] J. Petrić and T. G. Grbac, “Software structure evolution and
relation to system defectiveness,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in
Software Engineering, ser. EASE2014, 2014.

[18] B. G. Ryder, “Constructing the call graph of a program,” IEEE
Transactions on Software Engineering, vol. SE-5, no. 3, pp. 216–
226, May 1979.

[19] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java
Virtual Machine Specification, Java SE 8 Edition. Addison-
Wesley Professional, May 3, 2014 - Computers, 2014.

[20] Y. F. Wang and D. W. Ding, “Topology characters of the linux call
graph,” in 2015 2nd International Conference on Information
Science and Control Engineering, April 2015, pp. 517–518.

[21] M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s
law,” Contemporary Physics, vol. 46, pp. 323–351, Sep. 2005.

[22] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws
in software,” ACM Trans. Softw. Eng. Methodol., vol. 18,
no. 1, pp. 2:1–2:26, Oct. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1391984.1391986

[23] S. Valverde and R. Solé, “Hierarchical small worlds in software
architecture,” Dynamics of Continuous, Discrete and Impulsive
Systems Series B, Special Issue on Software Engineering and
Complex Networks, vol. Supplement, Vol.14(S6), 2007. [Online].
Available: http://arxiv.org/abs/cond-mat/0307278v2

[24] A. Barabási and M. PÃsfai, Network Science. Cambridge Uni-
versity Press, 2016.

[25] L. Wang, Z. Wang, C. Yang, L. Zhang, and Q. Ye, “Linux kernels
as complex networks: A novel method to study evolution,” in
2009 IEEE International Conference on Software Maintenance,
Sept 2009, pp. 41–50.

[26] R. Vasa, J. G. Schneider, C. Woodward, and A. Cain, “Detecting
structural changes in object oriented software systems,” in 2005
International Symposium on Empirical Software Engineering,
2005., Nov 2005, pp. 8 pp.–.

[27] J. F. Knabe, C. L. Nehaniv, and M. J. Schilstra, “Do motifs reflect
evolved function?—no convergent evolution of genetic regulatory
network subgraph topologies,” Biosystems, vol. 94, no. 1–2, pp.
68 – 74, 2008.

[28] P. van Nes, D. Bellomo, M. J. T. Reinders, and D. de Ridder,
“Stability from structure: Metabolic networks are unlike
other biological networks,” EURASIP J. Bioinformatics Syst.
Biol., vol. 2009, pp. 4:1–4:15, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1155/2009/630695

[29] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Phys. Rev. E, vol. 69,
no. 2, p. 026113, Feb. 2004. [Online]. Available: http:
//link.aps.org/doi/10.1103/PhysRevE.69.026113

[30] Y. Artzy-Randrup, S. J. Fleishman, N. Ben-Tal, and L. Stone,
“Comment on ”network motifs: Simple building blocks of complex
networks” and ”superfamilies of evolved and designed networks”,”
Science, vol. 305, no. 5687, pp. 1107–1107, 2004. [Online].
Available: http://science.sciencemag.org/content/305/5687/1107.
3

[31] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzen-
shtat, M. She↵er, and U. Alon, “Superfamilies of evolved and
designed networks,” Science, vol. 303, pp. 1538–1542, 2004.

[32] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. Halkidis,
“Design pattern detection using similarity scoring,” Software En-
gineering, IEEE Transactions on, vol. 32, no. 11, pp. 896–909,
2006.

[33] T. D. Oyetoyan, J. R. Falleri, J. Dietrich, and K. Jezek, “Circu-
lar dependencies and change-proneness: An empirical study,” in
2015 IEEE 22nd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER), March 2015, pp.
241–250.

[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-oriented Software. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[35] G. Gousios. java-callgraph: Java call graph utilities. [Online].
Available: https://github.com/gousiosg/java-callgraph

[36] S. Wernicke and F. Rasche, “Fanmod: a tool for fast network
motif detection,” Bioinformatics, vol. 22, no. 9, pp. 1152–1153,
2006.

[37] M. Ste↵ and B. Russo, “Characterizing the roles of classes and
their fault-proneness through change metrics,” in Empirical Soft-
ware Engineering and Measurement (ESEM), 2012 ACM-IEEE
International Symposium on, 2012, pp. 59–68.

[38] Z. R. M. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini, E. S.
Ansari, S. Asadi, S. Mohammadi, F. Schreiber, and A. Masoudi-
Nejad, “Kavosh: a new algorithm for finding network motifs,”
BMC Bioinformatics, vol. 10, no. 1, p. 318, 2009.

[39] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos,
“Graph-based analysis and prediction for software evolution,” in
2012 34th International Conference on Software Engineering
(ICSE), June 2012, pp. 419–429.

[40] T. Zimmermann and N. Nagappan, “Predicting subsystem
failures using dependency graph complexities,” in Proceedings

Profiling call changes via motif mining MSR ’18, May 28–29, 2018, Gothenburg, Sweden

of the The 18th IEEE International Symposium on Software
Reliability, ser. ISSRE ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 227–236. [Online]. Available:
http://dx.doi.org/10.1109/ISSRE.2007.19

[41] A. Ampatzoglou, A. Chatzigeorgiou, S. Charalampidou, and
P. Avgeriou, “The e↵ect of gof design patterns on stability: A case
study,” IEEE Transactions on Software Engineering, vol. 41,
no. 8, pp. 781–802, Aug 2015.

[42] R. Vasa, J. G. Schneider, and O. Nierstrasz, “The inevitable stabil-
ity of software change,” in 2007 IEEE International Conference
on Software Maintenance, Oct 2007, pp. 4–13.

[43] A. P. S. de Moura, Y.-C. Lai, and A. E. Motter, “Signatures of
small-world and scale-free properties in large computer programs,”
Phys. Rev. E, vol. 68, p. 017102, Jul 2003. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.68.017102

[44] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “E�cient sampling
algorithm for estimating sub-graph concentrations and detecting
network motifs,” Bioinformatics, vol. 20, 2004.

[45] K.-K. Yan, G. Fang, N. Bhardwaj, R. P. Alexander, and M. Ger-
stein, “Comparing genomes to computer operating systems in
terms of the topology and evolution of their regulatory control
networks,” Proceedings of the National Academy of Sciences,
vol. 107, no. 20, pp. 9186–9191, 2010.

[46] P. Tonella and G. Antoniol, “Inference of object-oriented design
patterns,” Journal of Software Maintenance and Evolution: Re-
search and Practice, no. 13, pp. 309–330, 2001.

[47] W. Kim, M. Diko, and K. Rawson, “Network motif detection:
Algorithms, parallel and cloud computing, and related tools,”
Tsinghua Science and Technology, vol. 18, no. 5, pp. 469–489,
Oct 2013.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Barbara Russo

Table 6: Topological equivalent size-three motifs and their adjacency matrices

M
o
ti
f
ID

M
o
ti
f
st
ru

ct
u
re

A
d
ja
ce

n
cy

m
a
tr
ix

D
es
cr
ip
ti
o
n

T
o
p
o
lo
g
ic
a
l
eq

u
iv
a
le
n
t
m
o
ti
fs

C
o
n
te
x
t

R
ef
er
en

ce
s

6
1

2
3

2 4
0

0
0

0
0

0
1

1
0

3 5
D
o
w
n

-
li
n
k
ed

n
o
d
es

4
0
,
1
9
2

1
2

1

2
3

2 4
0

0
0

0
0

1
1

0
0

3 5
T
h
re
e
n
o
d
e
ch

a
in

3
4
,
6
6
,
9
6
,
1
3
2
,
1
3
6

F
o
o
d

W
eb

s
[9
]

1
4

1

2
3

2 4
0

0
0

0
0

1
1

1
0

3 5
D
o
w
n

-
li
n
k
ed

n
o
d
e
m
u
tu

a
l
d
y
a
d

4
2
,
7
0
,
1
6
8
,
1
9
3
,
2
2
4

3
6

1

2
3

2 4
0

0
0

1
0

0
1

0
0

3 5
U
p

-
li
n
k
ed

n
o
d
es

7
2
,
1
3
0

3
8

1

2
3

2 4
0

0
0

1
0

0
1

1
0

3 5
F
ee

d
fo
rw

a
rd

lo
o
p

1
0
4
,
1
3
4
,
1
4
4
,
1
9
4
,
2
0
0

S
o
ft
w
a
re

S
y
st
em

s,
G
en

e
re
g
u
la
ti
o
n

(t
ra

n
-

sc
ri
p
ti
o
n
s)
,
N
eu

ro
n
s,

E
le
ct
ro

n
ic

ci
rc
u
it
s,

O
b
je
ct
-o
ri
en

te
d

so
ft
w
a
re

[1
6
]
[9
][
1
7
]

4
6

1

2
3

2 4
0

0
0

1
0

1
1

1
0

3 5
U
p

-
li
n
k
ed

m
u
tu

a
l
d
y
a
d

1
9
8
,
2
3
2

W
o
rl
d

W
id
e
W

eb
,
O
b
je
ct
-o
ri
en

te
d

so
ft
-

w
a
re

[9
]
[1
7
]

7
4

1

2
3

2 4
0

0
1

0
0

1
0

1
0

3 5
U
p

-
li
n
k
ed

n
o
d
e
m
u
tu

a
l
d
y
a
d

7
6
,
1
0
0
,
1
3
8
,
1
6
2
,
1
6
4

7
8

1

2
3

2 4
0

0
1

0
0

1
1

1
0

3 5
T
w
o
m
u
tu

a
l
d
y
a
d
s

1
7
0
,
2
3
0

9
8

1

2
3

2 4
0

0
1

1
0

0
0

1
0

3 5
T
h
re
e-
n
o
d
e
fe
ed

b
a
ck

lo
o
p

1
4
0

E
le
ct
ro

n
ic

C
ir
cu

it
s

[9
]

1
0
2

1

2
3

2 4
0

0
1

1
0

0
1

1
0

3 5
F
ee

d
fo
rw

a
rd

lo
o
p

m
u
tu

a
l
d
y
a
d

1
1
6
,
1
4
2
,
1
7
2
,
2
0
4
,
2
2
6

1
0
8

1

2
3

2 4
0

0
1

1
0

1
1

0
0

3 5
D
o
w
n

-
li
n
k
ed

m
u
tu

a
l
d
y
a
d

1
6
6
,
2
0
2

1
1
0

1

2
3

2 4
0

0
1

1
0

1
1

1
0

3 5
F
ee

d
b
a
ck

w
it
h

tw
o
m
u
tu

a
l
d
y
a
d
s

1
7
4
,
2
0
6
,
2
3
0
,
2
3
4
,
2
3
6

W
o
rl
d

W
id
e
W

eb
[9
]

2
3
8

1

2
3

2 4
0

1
1

1
0

1
1

1
0

3 5
F
u
ll
y
co

n
n
ec

te
d

tr
ia
d

W
o
rl
d

W
id
e
W

eb
[1
7
]

