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Abstract

Context: A large amount of information about system behavior is stored in logs that record system changes. Such information can
be exploited to discover anomalies of a system and the operations that cause them. Given their large size, manual inspection of logs
is hard and infeasible in a desired timeframe (e.g., real-time), especially for critical systems.
Objective:This study proposes a semi-automated method for reconstructing sequences of tasks of a system, revealing system anoma-
lies, and associating tasks and anomalies to code components.
Method: The proposed approach uses unsupervised machine learning (Latent Dirichlet Allocation) to discover latent topics in
messages of log events and introduces a novel technique based on pattern recognition to derive the semantic of such topics (topic
labelling). The approach has been applied to the big data generated by the ALMA telescope system consisting of more than 2,000
log events collected in about five hours of telescope operation.
Results: With the application of our approach to such data, we were able to model the behavior of the telescope over 16 different
observations. We found five different behavior models and three different types of errors. We use the models to interpret each error
and discuss its cause.
Conclusions: With this work, we have also been able to discuss some of the known challenges in log mining. The experience we
gather has been then summarized in lessons learned.

Keywords: Log mining, Latent Dirichlet Allocation, Text pro-
cessing, System behavior

1. Introduction

System behavior is determined by a complex interplay of
technical and non-technical factors in an operational environ-
ment, (i.e., a set of conditions under which the system oper-
ates). Low performance or unscheduled downtime can carry
huge costs that seriously concern system managers and engi-
neers. Therefore, understanding and, eventually, forecasting
system behavior is of paramount importance, especially in crit-
ical systems that must be 24/7 operational.

System logs consist of events that keep track of system ex-
ecution. Log events are automatically generated by the log-
ging service of a system and are typically archived as a semi-
structured short text (event text). Log mining is the process to
discover patterns in log events. Such patterns have been used to
model or predict system’s behavior (Russo et al., 2015; Fronza
et al., 2013; Mariani and Pastore, 2008; Goldstein et al., 2017;
Chuah et al., 2010). Although there are several proposals to
standardize the format of the event (Jiang et al., 2008; Russo
et al., 2015; Salfner et al., 2006), no specific standard has been

extensively adopted and mining logs becomes a sort of art with
the following log mining known challenges:
Short texts. The unstructured part of the log text (i.e., log mes-
sage) may be very short (e.g., one / two lines) and may include
domain terms (e.g., acronyms). Thus, automated text analysis
on individual log texts may be not that efficient (Zou and Song,
2016).
Context investigation. Log data is big and distributed. Data
can be generated every millisecond and triggered by any appli-
cation running in the system. As such, log mining requires a
deep understanding of the system context and careful data pre-
processing (Russo et al., 2015).
Sequences of events. System behavior (e.g., system opera-
tions) can be encapsulated in more than one log event. There-
fore, log mining recently focuses on sequences of log events
and mining logs requires context analysis to define and iden-
tify such sequences (Russo et al., 2015; Fronza et al., 2013) and
the involvement of domain experts is of paramount importance
(Russo et al., 2015).
Observation time window. Over the course of a system’s life-
time, anything from software upgrades to minor configuration
changes can drastically alter the meaning or character of the
logs. Thus, a system must be observed in a period in which no
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specific upgrade, test, or drastic change happen (Oliner et al.,
2012).
Fully-automated log mining. Over the years, several tools
have been developed to support log mining (e.g., (Rouil-
lard, 2004), (Mariani and Pastore, 2008), although no fully-
automated method is yet available and most of the mining effort
is still manual and left to researchers, who may have a limited
knowledge of the system and the environment in which it oper-
ates (Cinque et al., 2013).
Fault localization. Existing techniques of log mining provide
useful insights about the possible locations of faults although
developers must still put a significant effort to exactly identify
the faults to be fixed (Gazzola et al., 2019; Salfner et al., 2006).

In this study, we illustrate the case of a system orchestrat-
ing the Atacama Large Millimeter Array telescope (ALMA)1.
ALMA is the largest astronomical project in existence. It con-
sists of a single telescope of revolutionary design, composed of
66 high precision antennas. Such system is compounded of 200
computers controlling the 66 antennas positioned in the Ata-
cama desert in Chile at 5000 meters of altitude. The system
is operational 24/7 and its logging service generates logs each
millisecond for a total of up to 30 GB per day (log database
size is measured in Terabytes) from six different subsystems
triggered by over twenty heterogeneous teams at twelve par-
ticipating institutes over the world (Gil et al., 2016). As such,
mining logs of the ALMA system poses additional challenges,
that are specific to its context, but that may incur in other similar
large / complex / critical systems.

Log mining at ALMA (Fig. 3) is performed by the software
engineers with the goal of finding the most ‘optimal’ query to
interrogate the log dataset and reconstruct the cause of an error
by visualizing log events time series that occur in a time win-
dow that incorporates the timestamp of the error reported in the
ticket. All activities are performed manually and the ‘optimum’
is defined and reached when experts decide so, Table 3. Thus,
automatizing the procedure is a real need and poses specific
challenges of log mining:
Incomplete information. Deciphering the information in log
events might not be simple. One reason concerns the user inter-
face used to include the event description. Such interface may
not incorporate all relevant information (Cinque et al., 2013) or
may not be resilient to change with the same pace of the ALMA
system. As result, some events may carry incomplete informa-
tion about the system operations.
Identical timestamp. Log events can also occur with a preci-
sion lower than a millisecond and the logging system may not
be able to distinguish one from the other. Thus, logs can be re-
ported with identical timestamp and their order of occurrence is
therefore lost. Thus, it is not completely straightforward to fol-
low the logic of system just by looking at the individual logs se-
quentially and it becomes important to analyze them into clus-
ters.

1.1. Research goal and contributions
The goal of the study is to design an approach to

1http://www.almaobservatory.org

reconstruct from system logs the (anomalous) behavior of a sys-
tem as sequences of system’s tasks and identify the low-level
software components (i.e., files and methods) involved in the
tasks.

Once a system’s anomaly is detected, maintainers can au-
tomatically associate telescope’s tasks and code components
to such misbehavior and avoid the manual, complex analysis
of big sets of individual log events like the one described in
Fig. 3 for the ALMA operations. To achieve this goal, we
propose a semi-automated approach that combines existing ma-
chine learning method for log mining, the Latent Dirichlet Allo-
cation (LDA), with pattern recognition for topic labelling. LDA
is one of the most popular tools for text mining used to discover
a hidden thematic structure (i.e., latent topics) from collections
of textual documents (Blei et al., 2003). LDA is trained on a set
of textual documents and produces a set of latent topics as bags
of words extracted from the documents and a model that gives
the probability for a new textual document to belong to any of
such topics (i.e., posterior probability). We use LDA to dis-
cover the tasks of the ALMA telescope as latent topics of docu-
ments defined by sets of event messages. Therefore, topics are
represented as bags of words of the ALMA log vocabulary. The
process to associate a semantic to bags of word is called topic
labelling. Such process is typically performed manually by the
domain experts that interpret the words of a topic within the do-
main context (Layman et al., 2016). The semantic expressed by
the bags of words might not be always enough to distinguish
one topic from another. Thus, in our approach, the information
associated to each topic is enriched: each topic is represented as
a set of patterns of sequences of event messages recurring over
documents of the ALMA corpus. The greater semantic of such
patterns may better guide experts and researchers to find suit-
able labels than individual messages or words. As illustrative
example, we applied our overall method to a sample of logs of
the ALMA system and reflect on the lessons learned and how
we overcome some of the challenges in log mining.

Summarizing, the contributions of this work are the following:

– An iterative method to identify the number of latent topics
in log messages based on the coherency and independency
of topics as sets of most relevant messages.

– A novel approach to label latent topics in log messages
that exploits the natural time-ordering of sequences of log
events and use pattern recognition on such sequences. By
reading patterns of sequences of messages instead of bags
of words researchers can better determine the semantic of
a topic and associate it a label.

– A novel approach to model system’s behavior as set of sys-
tem’s tasks by means of latent topics in sequences of log
messages. By leveraging the information carried by log
events, the model can also be used to localize the software
classes and methods that are involved in each task. This is
particularly useful for testers to trace in software the cause
of system misbehavior.
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– An application of the approach to the real case study of the
complex system orchestrating the ALMA telescope. With
the proposed model of system behavior, we are also able
to describe the system’s errors and their cause that would
otherwise have been hidden behind the highly technical
language of the logs.

– A final reflection on the challenges in log mining exist-
ing in literature and arising from the specific context of
research.

The paper is organized as follows. We discuss the related
work in Section 2. In Section 4, we introduce the research ques-
tions and illustrate the context analysis and the study samples.
The approach is described in Section 5. In Section 6, we answer
the research questions and we summaries the lesson learned and
the threats to validity in Section 7 and 8 respectively. Finally,
we conclude in Section 9.

2. Related Work

Three major research areas are relevant for the present study:
1) log mining, 2) topic modeling, and 3) topic labelling. In the
following, we review the relevant literature according to these
major perspectives.

2.1. Log mining

Oliner et al. (Oliner et al., 2012), overviewed some of the
most common applications of log mining. According to the
authors, log mining is usually performed to understand sys-
tem performance. For example, system logs have been exten-
sively used in diagnosing faults, scheduling applications and
services of hardware (Featherstun and Fulp, 2010), or in de-
pendable computing, and in computer networks management
and monitoring (Fu and Xu, 2010). In software engineering,
system logs have been employed to model the workflow de-
sign of activity processes (van der Aalst et al., 2003). In other
cases, they have been used to identify abnormal system behav-
ior against a system operational profile, i.e., the system ex-
pected behavior (Oliner and Stearley, 2007). Unfortunately,
such operational profile is often not accessible without disclos-
ing protected information. In addition, the operation profile is
not always unique as it can evolve with the context.

Given the large amount of data that logging services can, in
principle, produce, one of the major challenges is mining logs
automatically. Mariani and Pastore (Mariani and Pastore, 2008)
group automatic techniques supporting log mining into three
major classes: specification-based techniques, expert systems
and heuristic based techniques.

Specification-based techniques match events in log files with
formal specifications that describe legal event sequences and
the detected anomalies for verification (Andrews and Zhang,
2003). Such techniques reveal deviations from specifications,
but they require the maintenance of complete and consistent
specifications.

Expert systems use expert knowledge databases to describe
the events that are commonly related to system errors. As

such, methods of log mining are very tight to the single con-
text (e.g., querying databases with regular expressions) as the
databases are very connected to a specific operational environ-
ment (Simon and Malcolm, 2006). Thus, maintaining methods
and databases is very expensive.

Heuristic-based approaches model event sequences with su-
pervised and unsupervised machine learners (Gordon, 1999).
Training supervised learners require the knowledge of behav-
ior categories (e.g., error or regular behavior) (Russo et al.,
2015) or generation of normal and anomalous behaviors in a
controlled manner (e.g., (Bertero et al., 2017; Goldstein et al.,
2017) whereas unsupervised algorithms, which identify errors
as those that do not belong to any cluster of events or event
sequences, require expert validation on the number of clusters
and / or the found errors (Mariani and Pastore, 2008). In this
work, we adopted the Heuristic-based approach with unsuper-
vised machine learner (i.e., LDA) and provided a method to
estimate the number of clusters needed by focusing on the se-
mantic coherence of the events in clusters.

2.2. Topic modeling
Topic modeling is a text-mining approach for discovering

hidden semantic structures in a text body. Recent research in
software reliability has applied it to mine software issues for
different purposes: from the detection of bug duplicates in bug
reports (Nguyen et al., 2012) to triaging bug reports to devel-
opers (Xia et al., 2017). (Layman et al., 2016) applied topic
modeling to bug reports at NASA to identify common problem
across NASA missions whereas Damevski et al. (2016) mod-
eled logs on IDE interactions.

The possibility to apply topic modeling relies on how diffi-
cult it is to adapt the modeling technique for natural language
text to log data. Log events tracing the execution of a system
are likely to be repetitive and predictable and, as such, follow
some kind of naturalness like in natural language (Hindle et al.,
2012). Thus, text processing techniques can potentially be ex-
ploited for log mining (Damevski et al., 2018). A good text
processing model captures such regularity. Models based on
individual word frequency (e.g., TF-IDF) have known limita-
tions when applied to log text: they assume that the counts
of different words provide independent evidence of similarity
and they make no use of semantic similarities between words.
Thus, these models do not capture position in text, semantic,
co-occurrence in different documents etc. To incorporate con-
text in modeling (e.g., words’ co-occurrence), other approaches
based on frequency and similarity of n-grams (e.g., sequence
of words of length n) have been proposed in text processing,
Guille and Favre (2014). In log mining though, system’s tasks
that compound systems’ behavior are typically derived by ag-
gregating the information carried by multiple messages, whose
length and number are not known and can vary from tasks to
task. Thus, approaches based on similarity of (equal-size) n-
grams may not provide good model for logs.

Unsupervised classification as clustering (e.g., clustering) is an-
other option that have some limitations when applied to logs.
For example, k-means clustering and LDA are unsupervised
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learning algorithms, where the user needs to decide a priori the
parameter k, respectively the number of clusters and the num-
ber of topics. If both are applied to assign k topics to a set of
N documents, the key difference is that k-means partitions the
N documents in k disjoint clusters whereas LDA characterizes
each document as a set of topics each with a given probability
(e.g. Document D belongs for 60% to Topic A, 30% to topic
B and 10% to topic E). This characterization helps reconstruct
the documents as a set of topics as for the goal of this research
(Section 1.1).

LDA and Hidden Markov Models are the most popular tech-
niques recently used for log mining (Layman et al., 2016;
Nguyen et al., 2012; Gadler et al., 2017; Damevski et al., 2016;
Damevski et al., 2018; Khodabandelou et al., 2014). In this
study, we use LDA on log event messages. One of the major
challenges in applying LDA is the size and the richness of the
vocabulary extracted from the corpus of text bodies. For ex-
ample, an LDA analysis on short messages like tweets may be
inefficient in isolating topics (Zou and Song, 2016).

Inefficiency in identifying topics in short messages is common
to topic modeling techniques. To increase the efficiency of
such techniques, Guille and Favre (2014) leverage the creation
frequency of dynamic links that users insert in tweets to de-
tect important events and estimate the magnitude of their im-
pact over the crowd. To specifically increase LDA perfor-
mance, a recent solution is to use a pooling schema improve-
ment strategy by aggregating short messages before using them
for LDA analysis (Mehrotra et al., 2013; Zou and Song, 2016;
Damevski et al., 2018). Mehrotra et al. (2013) compared sev-
eral schemas on tweets messages, including author-wise pool-
ing (pooling tweets according to authors) and temporal pooling
(pooling gathering all tweets posted within the same hour to
capture the case when a major event occurs) whereas Damevski
et al. (2016) pooled sequences of debug commands of debug
sessions to build LDA documents.

In this study, we used the temporal pooling schema to aggre-
gate event messages that belong to the same system’s behavior
(i.e., based on the time stamps between two begin events). As
such, an LDA document is a text compounded by all such event
messages. In our case, the pooling schema improvement tech-
nique enriches the vocabulary of the machine learner by inte-
grating terms coming from messages related to the same task
(i.e., the event sequence) of the telescope.

2.3. Topic labelling

In LDA, a topic is essentially a cluster of words of a given
vocabulary that are ranked by the probability to belong to such
cluster. Therefore, labelling a topic means associating to each
of such clusters a representative concept (Lau et al., 2011).
The typical approach for labelling topics in literature is ana-
lyzing the distribution of words in each topic with the help of
domain experts (Layman et al., 2016; Hindle et al., 20). Re-
cently, automated approaches parse online, textual references
(e.g., Wikipedia) to derive such candidate labels and use super-
vised vector machines to associate labels to topics (Lau et al.,

2011; Jiang et al., 2010). In this study, we propose an ap-
proach that uses information contained in patterns of message
sequences to retrieve candidate labels from manuals and vali-
date such candidates with domain experts.

3. Topic modeling and Latent Dirichlet Allocation

A topic model is a statistical algorithm for text mining used
to discover the hidden thematic structure (i.e., latent topics) of
a collection of documents.

In this work, the use of topic models is motivated by their ca-
pability to reduce dimensionality, which may be useful to raise
the level of abstraction in logs from low-level event messages
to higher level system’s tasks. Specifically, documents are first
build to represent the behavior of a system and then topic mod-
eling is used to discover the tasks compounding such behavior.

LDA is one of the most popular method for topic modeling
(Blei et al., 2003; Jiang et al., 2016; Zou and Song, 2016; Hindle
et al., 20; Layman et al., 2016). An LDA model is a Bayesian
generative model for discrete data where topics are assumed
to be uncorrelated. It models a collection of text documents
assuming that the words of each document arise from uncorre-
lated latent topics, each of which is characterized by a distri-
bution over words of a given vocabulary (Blei et al., 2003). In
LDA, a word w is the basic unit of discrete data, a document d is
a bag of words, and a corpus is a collection of documents. In a
topic model of a corpus, documents are represented as random
mixtures over latent topic, where each topic is a distribution
over all words of a given vocabulary V . Random mixture im-
plies that the population of documents has multiple subpopula-
tions and a word in a sample is assigned to many subpopulations
that are indexed by using topics. Fig. 1 illustrates the model in
terms of random and observed variables and their dependency
structure. An LDA model is therefore generated from two prior
probability Dirichlet distributions:

– θ ∼ Dirichlet(α): representing the topic distribution over
documents with hyper-parameter α,

– η ∼ Dirichlet(β): representing the word distribution over
topics with hyper-parameter β.

Words in documents are described by a matrix expressing the
probability of selecting a particular word when sampling a par-
ticular document. The model estimated by LDA consists of
two matrices that “split” the association word-document into
word-topic and topic-document. The first matrix describes the
probability of selecting a particular word when sampling a par-
ticular topic. The second matrix describes the probability of
selecting a particular topic when sampling a particular docu-
ment. Therefore, the generative process builds the two matrices
by estimating α and β.

3.1. Application to system log messages

In this work, LDA is applied to the messages extracted from
the system log events of the System Under Test (SUT) and ab-
stracted to remove contextual attribute values. A document is
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Figure 1: LDA model. Nodes represent random variables, observed variables are shaded, arrows represent possible dependence, plates are replicated structures. K=

number of topics, D = number of documents, N = number of words

set of abstract messages of a sequence of logs corresponding to
a SB. Words are terms contained in all documents and they form
the vocabulary V. By running LDA, documents can be recon-
structed each as a set of topics representing the thematic struc-
ture of documents. As such, each scheduling block SB, which
represents one instance of the telescope’s observation process,
can be reconstructed as a set of telescope’s tasks.

4. Study design

Our work uses an experimental protocol for exploratory anal-
ysis (Wohlin et al., 2012) on how to apply topic modeling to
system’s log mining. To this aim, in this section, we illustrate
the protocol as 1) the research questions derived from the goal
in Section 1.1, 2) the study context and the decision taken there-
after that drove the experiment settings and the analysis of the
data, 3) the data collection and selection and description of the
study samples, 4) the results are qualitatively described in Sec-
tion 6 and are mainly demonstrative of the applicability and
automation and 5) the approach for mining logs is finally de-
scribed in details in Section 5.

4.1. Research questions
To achieve our research goal (Section 1.1), we formulate

three research questions that we investigate by applying our ap-
proach to the ALMA system (i.e, the SUT) and its logs:
RQ1. Can the behavior of a system be reconstructed from
system logs? We will model the behavior of a software system
as sets of system’s tasks obtained by mining the information
carried by sequences of log events with LDA. We will addi-
tionally discuss what of our modeling approach can be fully
automated.
RQ2. Can the proposed model of system behavior be used

to associate code components to specific tasks performed by
a system? We will able to localize software files and methods
involved in the system’s tasks identified in RQ1. Such knowl-
edge will help software engineers to maintain the code of a sys-
tem in relation to its behavior.

RQ3. Can the proposed model of system behavior be used
to describe the cause of system anomalies? We show how to
identify tasks as per RQ1 and code as per RQ2 responsible of
system anomalies. In this work, anomalies are error events in
logs and their causes are traced from the set of system’s tasks
of the proposed behavior models that contain the error. Pro-
viding such information to software testers will help them to
design strategies to increase fault tolerance and predict future
malfunctions of the system.

4.2. The Study Context

There is an ongoing interest of the ALMA team to auto-
matically exploit the information available in system logs and
better understand the complexity of the telescope’s processes
(Gil et al., 2016). We spent more than one year to analyze the
context and the environment that required a certain knowledge
of applied physics. In this section, we summaries the results
of such analysis by describing the operational environment of
ALMA and how context analysis has guided the selection of
the samples for the study. We report in italic the major deci-
sions derived from context analysis.
The ALMA Observation Process. The telescope’s operations
are triggered by the activities defined in the ALMA Observation
Process. The process, the system and its sub-systems operating
the telescope are described in Fig. 2. The process comprises
all the phases and activities needed to scan and observe the uni-
verse. Astronomers around the world submit a project proposal
for observing a specific astronomic event. Approved projects
are executed during one cycle, i.e., a period of 12 months dur-
ing which a set of technical capabilities of the telescope are
guaranteed.

The measurements for a project are collected in one or more
Scheduling Blocks (SBs). The observation process starts by
manually selecting an array of antennas. An SB is selected
from a list provided by the Scheduler sub-system and the ex-
ecution starts. Then, the Control sub-system executes all the
scripts of the SB and the scan / subscan sequences to command
all relevant hardware. Each SB lasts from few minutes to 2
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Figure 2: The Observation Process and the ACS architecture. Source: (Asayama et al., 2016)

hours maximum (on average 1.5 hours) and specific regions of
the sky are scanned several times at the same frequency with the
same set of antennas. The scripts use the information in the SB
to determine the execution sequence as a set of scans and sub-
scans of the universe. Each scan is compounded of several sub-
scans lasting from few seconds to few minutes. On average, in
each scan 10% of the time is dedicated to the real observation
and 90% of the time to the calibration of the antennas. Each
sub-scan specifies tuning, phase centering and antenna point-
ing, calibration device position, and intent metadata to convey
the purpose of the scan/sub-scan. Thus, the data of an SB con-
tains hardware calibrations, meta-data, and binaries obtained
from the instruments. By internal policy, an SB runs to com-
pletion (i.e., it ends with an “end event”), fails (i.e., it ends with
an “error event”) or is interrupted by the Astronomer on Duty
(and a new SB starts) (Asayama et al., 2017). The Control sub-
system executes the scan / sub-scan sequences by command-
ing all relevant hardware. The resulting raw data and metadata
are finally stored to the Archive sub-system and made avail-
able to the online Telescope Calibration (TelCal) sub-system
that publishes, reduces, and archive the observation data. The
QuickLook GUI sub-system displays the results to the operators
and the Astronomer on Duty (AoD) to evaluate the observation
progress. The Control sub-system stores the result of the SB in
a compact form called Execution Block, which contains cali-
brations, meta data and binaries obtained from the instruments.

When SBs are selected to start an operation process their Exe-
cution Blocks are retrieved.
An SB of the Control subsystem represents a complete behavior
of the telescope and, thus, is the object of this study.
Science and engineering time. One of the major issues is iden-
tifying the time window from which to select the study sam-
ples. As mentioned in the challenges, such window must cap-
ture telescope’s regular behavior (e.g., avoiding specific mainte-
nance activities). The telescope operates in two modes: science
and engineering time. Science time is dedicated to observations
whereas engineering time is used for antennas’ maintenance,
software testing and general troubleshooting. Thus, we focused
on science time.
Log events triggered during science time are considered in the
study as they relate to the ordinary operations of the telescope.

The main users operating the telescope during science time
are operators, AoD and support astronomers that form a mixed
team between four to six persons. The team sets up software
and hardware, performs initial calibrations, monitors the health
of the system, acts as a first line of troubleshooting, and reports
to software engineers all problems that the team cannot fix by
itself. Thus, we selected log events trigged by such users.
Log events triggered by Operators, AoD and Support As-
tronomers are selected for this study.
The ACS architecture. ALMA is a distributed system consist-
ing of six sub-systems, Fig. 2. In this study, we will focus on
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the sub-system Control as it generates logs about the execution
of SBs. The ALMA Common Software (ACS) is a middleware
over the operating system. It implements the ALMA Container-
Component model to support distributed development and run-
time deployment of components, supplying services such as
messaging, logging, error and alarm handling, and configura-
tion database, (ALMA, 2017; Sommer et al., 2004).

The components run in the so-called containers. Containers
run components that are logically connected and hosted in spe-
cific computers. There are containers for each development lan-
guage used in ACS. For example, “CONTROL/ACC/javaCon-
tainer” refers to the sub-system Control, contains the code writ-
ten in Java ( “javaContainer” ), and runs in the Array Control
Computer (ACC), which is the computer located at the central
control area at ATACAMA and responsible for coordinating all
instrument activities. When a container is started, it instantiates
a CORBA ORB and register itself to the ORB’s Portable Ob-
ject Adapter. The Manager Container provides the container’s
object reference for future requests and manage the requests to
the components as a CORBA service by instructing a container
to insatiate and run the requested component that it contains.

Typical software errors. A single telescope’s observation is
a complex process involving several hardware pieces and soft-
ware applications that could be subject of failures at any instant.
By the nature of the ALMA operations, the majority of the er-
rors refer to a timeout of a software / hardware component. Ex-
amples of timeouts are:

– more than 48 ms for monitor and control hardware devices
as part of Controller Area Network (CAN bus) (e.g., anten-
nas, inner devices, Correlator sub-system, etc.)

– More than 120 seconds for sub-scan duration

– More than 5 minutes for scan duration

– More than 5 minutes for CORBA timeouts, that is, when
communicating over ACS fails for any reason

Such timeouts do not always trigger an error that is submitted
to the ticketing system, but they may be traced in the logs of the
ALMA system.
In this study, we focus on errors that can be traced in logs.
Logs. In ACS, logs are coded in XML files where each log
event is a node whose attributes consist of several structured
data and an unstructured XML character attribute CDATA that
contains the log event message, Listing 1. An XML node tag
describes the types of log. Among such types, we focused only
on the ones targeted to operators, AoD, or Support Astronomers
(e.g., “INFO”) or tagging errors (e.g., “ERROR”, “WARNING”
etc.). The source code information is stored in the node at-
tributes “File”, “Line”, and “Routine”. The runtime context
information is stored in the fields “Host”, the name of the com-
puter from which the log entry is triggered, “Process”, a con-
tainer, “Thread”, a thread in a component, and “SourceObject”
an ACS component. The log entry message is a string of char-
acters enclosed in the CDATA field.

Listing 1: An example of log event text produced by the ACM system

<INFO

TimeStamp= 20170605T05:54:05.520Z

File= ObservingModeBaseImpl.java

Line= 260

Routine= beginSubscan

Host= gas01

Process= CONTROL/ACC/javaContainer

SourceObject= CONTROL/Array001

Thread= Thread771

LogId= 20375

Audience= Operator >

<![CDATA[’Scan 5, subscan 3 has an intent of HOT, takes

5.760 seconds from 05:54:05.520 to 05:54:11.280’]]>

</INFO>

This study focuses on the types of log events tagged as “INFO”,
“ERROR”, and “WARNING”.
Manual mining logs to search cause of error. Fig. 3 illus-
trates the complex process used by ALMA engineers to query
their three databases (called JIRA, ICTJIRA, Kibana) and iso-
late those log events that may explain the cause of an error.
JIRA database is based on JIRA software2 and contains tickets
that the operators submit when they observe some system mis-
behavior. Tickets are labelled with the identifier PRTSPR-ID
(e.g., PRTSPR-9280). ICTJIRA is the database of tickets that
software engineers and developers already investigated. These
tickets are labelled with the identifier ICT-ID (e.g., ICT-3210)
and include a very detailed report on the cause and solution of
the issue. Log events are collected and stored with Logstash3 in
the Kibana database, searched with the engine Elasticsearch3,
and visualized with the Kibana tool3. The adopted configura-
tion of the Kibana tool only visualizes time series of log events.

Either in science time and engineering time, many problems
cannot be solved directly by operators. For such cases, there is
a support team of specialists including software engineers that
intervenes when a new ticket is submitted to the ALMA tick-
eting system as described in Fig. 3. The first goal of software
engineers is to check whether similar tickets have been reported
in the database and if the new ticket can be inspected by min-
ing logs (top box in Fig. 3) then they search the cause of the
issue by manually inspecting logs (bottom box in Fig. 3). The
process starts by choosing a new ticket in the JIRA database
(say PRTSPR-120) Then, the ICTJIRA repository is queried
by title or title fragment of the selected ticket to find previous
solved tickets on the topic. If any, the most recent ticket from
ICTJIRA (say ICT-203) and its associated (closed) ticket form
JIRA (say PRTSPR-100) are selected. then, new tickets includ-
ing PRTSPR-120 and similar to PRTSPR-100 (say PRTSPR-
115,...,PRTSPR-125) are selected from the JIRA database. By
reading the information in all such tickets, software engineers
can decide on their own experience whether these new tickets
can be analyzed by inspecting logs. Not all tickets can be inves-
tigated with software logs. There is a broad class of problems
(about one third), like the ones related with energy supply, host
down, network issues, that are investigated in other ways. These
classes of problems are not matter of this study. If a ticket can

2https://www.atlassian.com/
3https://www.elastic.co/products/
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Figure 3: The existing manual process at ALMA to isolate the cause of an error by exploiting system logs.

be investigated with logs, the process to search the cause of an
error (bottom box in Fig. 3) is started by select the logs rele-
vant for the solved ticket ICT-203. Time windows in which to
examine the log events are then chosen by inspecting the infor-
mation contained in the new tickets, PRTSPR-115,...,PRTSPR-
125. By visual inspection with Kibana tool, the support team
compares the time series of events associated to the solved is-
sue ICT-203 with the one associated to any of the new tickets
PRTSPR-115,...,PRTSPR-125 and decide whether any of the
new tickets is a duplicate of the closed one PRTSPR-100. If
this is not the case, log events are again visually inspected with
the Kibana tool. Anytime the frequency of a log event in such
plots is unordinary high in the opinion of software engineers,
the ticket is tagged as bug, then solved, and a new report is
submitted to ICTJIRA.
Therefore, the process to identify the tasks of the telescope that
are relevant to solve the ticket may be biased by the human
perception and subjectivity.

4.3. Study Samples
We selected two samples of logs: a testbed sample and a

validation sample collected in two different days of the same
week. The testbed sample is used to illustrate the proposed
method, whereas the validation sample is used to ensure that the
vocabulary for topic modeling obtained from the testbed sample
is not related to specific states or operations of the telescope
(Section 8).

The testbed sample contains log events triggered on
2017.03.13. Such events occurred around the time of occur-
rence of a bug issued during the normal operations of the tele-
scope and stored in ICTJIRA. The bug is about the too long
initialization of meta-data model that must be later saved in the
database of astronomical data. It was selected because the bug
occurred a few times between the open and fix date of the bug
report. Thus, software engineers could observe logs while the
bug re-occurred and include in the bug report the information
on the log events related to such bug occurrences. From the
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Table 1: Description of the samples.

Testbed sample Validation sample
Bug report ID ICT9453 NE
Time window 20170312T23:33:47.219 - 20170313T04:53:55.866 20170313T23:00:11.943 - 20170314T22:54:19.649
Log size 174 MB 1,14 GB
Total no. events 1,752 18,214
Log priority(count) ERROR(295), INFO(1,386), WARNING(71) EMERGENCY(2), ERROR(2,543), INFO(15,239), WARNING(430)
ARRAYS 001,005,007,008 009, 011,016, 018,026

information carried in such logs, we first infer the sub-systems
and components relevant for the analysis. We select the “CON-
TROL/ACC/javaContainer” (see Section 4.2) that includes the
Java code that orchestrates all the instruments’ activities of dif-
ferent arrays of antennas. Each array (e.g., A007) includes an-
tennas that perform the same data collection, have the same fre-
quency, point the same part of the sky, and use the same hard-
ware (e.g., sub-reflectors). Thus, with the XML log parser we
wrote (Section 5.11), log events in the testbed sample were se-
lected by the node attribute Process equal to “CONTROL/AC-
C/javaContainer,” the node attribute SourceObject that contains
the term “ARRAY” and the node type (i.e., Log type) not DE-
BUG (i.e., logs related to ordinary operations of the telescope).
In total, log events within about 5 hours, 16 complete SBs were
collected and seven arrays of antennas. The validation sample
is collected one day after and for about 24 hours according to
the same rules.

The two samples are described in Table 1 and Table 2.

5. Study Approach

The approach proposed as the contribution of this paper is
overviewed in Fig. 4 and discussed in the following sections.

The approach is designed to be used for any system whose log
events carry similar information and structure (e.g., code data)
as for our SUT and the system behavior can be inferred from
events’ sequences (e.g., with begin and end events). Domain
experts have also a key role in the proposed approach as the do-
main is highly technical and the validation of the model requires
insider’s knowledge.

The approach also aims at automatizing the most the man-
ual process currently performed by the software engineers at
ALMA and described in Fig. 3. The output of this approach are
behavior models constructed as set of telescope’s tasks (latent
topics) and code components involved in such tasks.

5.1. Approach overview

The proposed approach (Fig. 4) starts by selecting a sam-
ple of log events. As illustrative example, we have selected a
sample of log events within a time window containing the oc-
currence time of a bug reported in the issue tracker JIRA of
the ACS system (as described in Section 4.3). In this way, log
events related to at least one anomaly (i.e., the reported bug)
are included in the chosen sample. We first identify the se-
quence of log events related to each SB as described in Section
5.4. For these events, we extracted the event messages from

the XML nodes and abstracted them as described in Section 3.
The abstracted messages of each SB are merged to create an
input document for LDA analysis, as portrayed in Section 5.4.
With LDA analysis, topics are identified and a map between
individual event messages in a document and topics is defined
through the maximum LDA posterior probability (see Section
5.6). Thanks to this map, an appropriate number of topics is de-
termined (Section 5.6) and patterns of sequences of messages
recurring over SBs are retrieved to label topics, Section 5.8.
Methods and files are then associated to topics by linking log
messages to topics when they have positive posterior probabil-
ity, Section 5.9. Through the same association, the number of
the messages associated to a topic is used to reconstruct a doc-
ument as set of topics (see Section ) and define the behavior
models. Finally, the analysis of models and their associated
code components are used to describe the telescope’s behavior
and localize anomalies (Section 6).

5.2. Sequences of log events corresponding to SBs

Identifying sequences of log events corresponding to specific
SUT behavior is always a challenge (Russo et al., 2015). On
the one hand, log events often do not explicitly mention the start
and end of a SUT behavior and events of different SUT execu-
tions may interleave making hard the identification of a specific
SUT behavior. On the other hand, a SUT anomaly may origi-
nate and propagate in events preceding the one in which it man-
ifests itself. Thus, one typical problem in log mining is to split
logs in sequence of events each determining a specific SUT be-
havior. In this study, after we interviewed the ALMA software
engineer and explored the logs, we were able to split logs by
sequences of time-ordered events corresponding to scheduling
block of the Observation process (Section 4.2). We called such
sequences, SBs, as the corresponding scheduling block. To au-
tomatically retrieve SBs, we first filter logs as described at the
end of Section 4.2 to avoid selecting events of different SUT
executions and then we split the logs into sequences of events
that occur between two log events with message Beginning

SB execution. According the ALMA software engineer, the
resulting SBs correctly describe individual scheduling blocks
of the Observation process.

5.3. Message abstraction
To recognize patterns in sequences of messages, we ab-

stract messages to remove contextual attribute values, leaving
data flow information that captures the rationale underlying the
use of these values. This is a typical technique of text pre-
processing, (Russo et al., 2015; Jiang et al., 2008; Mariani and
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Figure 4: Approach overview to reconstruct SUT behavior by mining log events with LDA.

Pastore, 2008). In this work, event messages are abstracted by
keeping the static information that describes the event (e.g.,
“Start scan”) and removing the dynamic values generated at
run-time (e.g., the scan progressive index). The result of this
process is illustrated in Listing 3, the original message, and
Listing 2, its abstraction.

Listing 2: Log message in the CDATA field.

Tuning BB_1 to 221.538GHz BB_2 to 223.538GHz BB_3 to

237.538GHz BB_4 to 239.538GHz (Band 6) & optimize the IF

power levels to 30.0 dBm and the BB power levels to 2.4 dBm

and label this setting Band 6 pointing/focus at 03:47:17

.322 for a correlator calibration subscan

Listing 3: Abstraction of log message in Listing 2

Tune [BBs], Optimize [IF power level, BB power level],

Label [settings Band Device - Pointing/Focus]

for [Correlator Calibration]

where values in ‘[ ]’ are predefined constants described in the
reference documentation (Asayama et al., 2017). Such con-
stants qualify the action performed by the telescope. For ex-
ample, [BBs] stands for Base Bands of signal frequencies and
[settings Band Device - Pointing/Focus] is the setting of a de-
vice for one of the calibration types (i.e., Pointing/Focus). By
removing contextual references, abstraction allows to compare
messages and find the same message or recognize patterns
within sequences of event messages and across different SBs.
After abstract abstraction the vocabulary of corpus consists of
114 distinct words in the testbed and 169 in the evaluation sam-
ple.

5.4. Documents for LDA analysis

The context and the goals of a research typically determine
the granularity of the input (i.e., Documents) for LDA analysis,
(Mehrotra et al., 2013). In our study, we excluded individual
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[1] "Beginning SB execution."                                                                                                 
[2] "Getting SB from the ARCHIVE."                                                                                           
[3] "Executing SB in ScriptExecutor CONTROL/Array001/SCRIPTEXEC"                                                                                                 
[4] "activated callback: IOR:…”
[5] "Interferometry observing mode starting."                                                                                
[6] "Ensuring enough antennas are in autonomous mode (releasing the brakes)."                                                
[7] "Opening the shutter on all antennas"                                                                                    
[8] "Moving the antennas to J1058+0133 (10:58:29.605, +001.33.58.824)"                                                       
[9] "Tuning BB_1 to 95.995GHz BB_2 to 97.932GHz BB_3 to 107.995GHz BB_4 to 109.995GHz (Band 3) moving the ACD to the 
PARK position & optimize the IF power levels to -30.0 dBm and the BB power levels to 3.8 dBm and label this setting 'Mon Mar 13 
01:14:35 2017 1489367675.506541' at 01:15:02.448 for scan 1, sub-scan 1"                                                        
[10] "Using a horizon offset of (-23.4, 0.0) arc-seconds at 01:15:17.568"                                                       
[11] "Using a horizon offset of (23.4, 0.0) arc-seconds at 01:15:29.184"                                                        
[12] "Using a horizon offset of (0.0, -23.4) arc-seconds at 01:15:40.800"                                                       
[13] "Using a horizon offset of (0.0, 23.4) arc-seconds at 01:15:52.416"                                                        

…

[210] "Starting scan 30 with scan intent OBSERVE_TARGET using NONE."                                                         
[211] "Scan 30, sub-scan 1 has an intent of ON_SOURCE, takes 90.720 seconds from 02:17:38.016 to 02:19:08.736"                  
[212] "Moving the antennas to J0948+0022 (09:48:57.320, +000.22.25.559)"                                                     
[213] "Tuning BB_1 to 108.993GHz BB_2 to 106.993GHz BB_3 to 94.994GHz BB_4 to 96.885GHz (Band 3) at 02:19:18.288 for scan 
31, sub-scan 1"                                                                                                                 
[214] "Starting scan 31 with scan intents of CALIBRATE_PHASE using CHANNEL_AVERAGE_CROSS, CALIBRATE_WVR using 
WVR."                                                                                                                        
[215] "Scan 31, sub-scan 1 has an intent of ON_SOURCE, takes 30.240 seconds from 02:19:24.192 to 02:19:54.432"                  
[216] "Interferometry observing mode shutting down."                                                                         
[217] "Waiting for ASDM to be archived..."                                                                                   
[218] "The ASDM has been archived."                                                                                          

Figure 5: The effects of topic modeling. On the left, the 218 time-ordered log messages describing the execution of SB4; on the right, the seven labelled topics
characterizing SB4 ordered by the percentage of messages in SB4 mapped to each topic.

event messages as input since short texts (like event messages or
tweets) do not typically carry enough vocabulary to apply topic
modeling with success. Fig. 5 on the left shows the consecu-
tive messages for SB4. By reading the messages in the figure,
we can see that different types of events are repeated and inter-
mixed. In addition, some messages as read individually have a
rather obscure meaning (e.g., “Scan 30, sub-scan 1 has an in-
tent of ON SOURCE, takes 90.720 seconds from 02:17:38.016
to 02:19:08.736”). As mentioned in Section 3, recent literature
opted for strategies based on clustering of short messages. In
this research, we adopt the temporal pooling schema for text
processing improvement, which is a strategy to aggregate event
messages according to some temporal order (Zou and Song,
2016). Specifically, we defined a document by merging abstract
messages of consecutive events of an SB.

In this work, a document is obtained by merging abstract
messages that correspond to an SB. Specifically, a document
D j is a set of abstract messages AMi of events ei, which
occur between two log events with message Beginning SB

execution. Table 2 describes the sequences selected for this
study. To build a document, log messages are extracted by pars-

Table 2: Description of the documents

Testbed sample Validation sample
# events in SBs 1,485 13,462
# Documents 16 64
Document’s length (min, max, avg) 1, 218, 95 5, 626, 221

ing log events {ei} of an S B j with a regular expression that
searches the text encapsulated in the CDATA field. Then each
event text is abstracted as described in Section 3. An LDA
document D j is finally built by merging the abstract messages
{AMi} of the S B j:

S B j = {e1, ..., es}, D j = {AM1 ∪ ... ∪ AMs}

Fig. 5 on the left shows the document for SB4.

5.5. LDA hyper-parameters α and β

We use one of the Grün and Hornik methods (Gruen and
Hornik, 2011) to estimate the parameters of the Dirichlet dis-
tributions while we fix a priori the value of k. Specifically, we
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use the Variational Expectation Maximization (VEM) with val-
ues for the parameters α = 50/k and β = 0.1 as recommended
in (Griffiths and Steyvers, 2004b). The Grün and Hornik algo-
rithm performs the following pre-processing on the input cor-
pus prior to constructing the document-term matrix:

– Converting all terms to lowercase

– Removing punctuation and numbers

– Removing stop words using the SMART list (Benoit et al.,
2017)

– Porter stemming terms using the Snowball algorithm
(Porter et al., 2019)

– Omitting terms with length < 3 as suggested in (Menzies
and Marcus, 2008).

5.6. Message - Topic mapping
The Message - Topic mapping aims at representing topics as

sets of abstract messages. Firstly, an LDA model with k topics
is trained on the documents of the testbed sample. A set of k
topics T1, ..Tk is therefore determined. Then, iteratively over all
abstract messages, if a message contains an as-yet-uncovered
vocabulary, its LDA posterior probability is computed (Blei
et al., 2003). Finally, an abstract message is univocally associ-
ated to a topic, if the message has its maximum posterior prob-
ability for that topic. In this way, a topic Ti is represented by a
set of unique abstract messages with their maximum posterior
probability for Ti:

Ti = {AMa1 , ..., AMar } (1)

As messages are mapped to topics by their highest posterior
probability, there might be one or more topics for which no
messages are mapped to and such topics are mapped to the
empty set. In addition, by construction and empirical observa-
tion, two topics have non-overlapping sets of abstract messages
(i.e., no messages happen to have the same maximum probabil-
ity on two different topics). Then, abstract messages mapped
to a topic are clustered by documents they belong to. Thus, a
topic Ti is represented as a set of sets of abstract messages:

Ti = {D1, ...Dn}

D j = {AMv(a1), ..., AMv(ar)}
(2)

Each document corresponds to an SB in which messages are
ordered by the time stamp of the events they belong to. We
used this information to identify sequences of events in SBs
that corresponds to messages in each document of a topic as
represented in 2. Table 3 shows the result of this process for
topic T5 in which all message abstractions are assigned a letter
of the alphabet. Table 3 shows the abstract messages (A-I, W,
E2) mapped into topic T5 and the sequences of such messages
for each SB in which the messages appear ordered by their time
stamp (i.e., SB2, SB4, SB15, SB16).

Table 3: Message patterns in Topic 5: “Move ACD.”

Messages in Topic 5:

(A) Tune [BB]

(B) Move [ACD] to [AMBIENT LOAD] for [scan,

subscan]

(C) Load [Attenuator settings] [Band device delay

Load Attenuations] for [scan, subscan]

(D) Move [ACD] to [HOT LOAD] for [scan, subscan]

(E) Load [Attenuator settings] [Maximum

Attenuator Setting] for [scan, subscan]

(F) Move[ACD] to [PARK] for [scan, subscan]

(G) Optimise, label [IF, BB power level] for [

scan, subscan]

(H) Start Scan [CALIBRATE-POINTING, CALIBRATE-

WATER VAPOR RATIO] use [CHANNEL-AVERAGE-CROSS,

WATER VAPOR RATIO]

(I) Start Scan [CALIBRATE PHASE, CALIBRATE WATER

VAPOR RATIO] use [CHANNEL-AVERAGE-AUTO, WATER

VAPOR RATIO]

(W) Timed out ACD to get into position. Not

shutdown the observation. Data will be

flagged & subsequent power level optimizations

may be incorrect

(E2) Operation Timeout (type=10000, code=14)

Sequences of event messages by document in Topic 5:

D2:

HABCDE E2W

D4:

AFCG H BD E2W BD E2W BD E2W IBD E2W IID E2W IBD E2W II

D15:

AFCG H BD E2W BD E2W BD I BD E2W II BD E2W I BD E2W II

D16:

AFCG H BD E2W BD I E2W BD E2W I BD E2W II BD

5.7. The number of topics k

Finding the number of topics k is an open issues (Layman et al.,
2016; Agrawal et al., 2018; O’Callaghan et al., 2015; Koltcov
et al., 2014) as topics must be semantically distinct as well as
cohesive (O’Callaghan et al., 2015; Blei et al., 2003). In litera-
ture, approaches to evaluate topic coherence and independence
vary from direct approach by asking people about topics to in-
direct approach by evaluating point-wise mutual information
between the topic words (O’Callaghan et al., 2015; Lau et al.,
2014), and automated approach by using measures like perplex-
ity (Chang et al., 2009) or searched based software engineering
such as differential evolution Agrawal et al. (2018) or simply
by examining the results for a few different numbers of top-
ics, Damevski et al. (2018). For example, (Chang et al., 2009)
found that perplexity was often negatively correlated with hu-
man judgements of topic quality and suggested that evaluation
should model human intuition. Thus, the process of choosing
the number of topics still lacks definitive guidance, (Layman
et al., 2016; O’Callaghan et al., 2015; Zhao et al., 2015). In
this work, we propose a method to choose k by assessing the
cohesiveness and independence of topics once they have been
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Table 4: Top-5 words of the nine topics obtained with LDA on the testbed.

T1 T2 T3 T4 T5 T6 T7 T8 T9
1 refer block stop stop request schedul request stop request
2 maximum schedul schedul schedul stop receiv stop receiv stop
3 channel-

average-
auto

request request receiv block stop schedul schedul receiv

4 calibrate-
ampli

receiv block block maximum block receiv block schedul

5 read stop receiv request receiv request block request block

represented as a set of abstract messages by the Message -Topic
map. Reading topics as set of messages instead of individual
words helps understanding their semantic and verifying their
coherency and independency. Thus, our method iteratively

1. Chooses the number of topics k, and the non- negative pa-
rameter α and β as in Section 5.5,

2. Runs LDA on the documents for k topics

3. Represents topics as set of abstract messages by the Mes-
sage -Topic map

4. Assesses topics for cohesiveness and independence,

5. Re-runs the LDA algorithm with different k value if the
result of step 4) is not satisfactory.

Each set of messages representing a topic is evaluated for cohe-
siveness and independence according to three assumptions:

A1 Messages that carry information of the same error must be
in the same set (i.e the same topic);

A2 Information carried by messages in the same set must be
coherent;

A3 Messages in different topics must be semantically uncor-
related.

As in literature (Griffiths and Steyvers, 2004a), we start with
k = 100. With k = 100, only 22 topics were found relevant

(i.e., non-empty set under the Message-Topic map) and a fur-
ther manual inspection revealed low cohesiveness of such top-
ics. For instance, all log messages related to the task “synchro-
nize antennas” were scattered in four different topics (violating
A3). Thus, we selected a value of the parameter k lower than
22. When we reached k = 10, the assumption A2 and A3 were
first satisfied except in the case of messages that initialized an
SB were erroneously distributed over two different topics (vi-
olating A3). This did not happen for k = 9. In addition, the
two distinct messages “Error reading input data (type=30001,
code=8)” and “Operation Timeout (type=10000, code=14)” re-
ferring to two different errors were also correctly mapped into
two distinct topics (according to A1). One topic (T4) was empty
though. Therefore, we built the Message-Topic map for k = 8.
In this case, few non-related messages were moved into the
same topic violating A2. Therefore, in the end, we selected
k = 9.

5.8. Topic labelling

Labelling a topic means associating to a topic a label express-
ing its semantic (Lau et al., 2011). The typical approach for
labelling topics is analyzing the distribution of words in each
topic with the help of domain experts (Layman et al., 2016;
Hindle et al., 20). In the case of the ALMA logs, this procedure
proved not to be successful as the differences among the terms
of the topics were too small to uniquely identify a topic by vi-
sual inspection. This can be easily seen from the top five words
in the nine topics obtained by LDA on the testbed sample in
Table 4. Thus, the approach we propose exploits the Message -
Topic mapping to enrich the information contained in each topic
and, in this way, facilitate the label assignment. The approach
is based on the recognition of patterns of messages in topics. As
a topic can be represented as sets of abstract messages (Eq. 2)
that are ordered by the time stamps of their events, patterns can
be found as sequences of abstract messages that recur over such
sets. Thus, a topic can be described by its patterns. As patterns
are more informative than bags of words, they can provide, in
principle, more accurate topics’ labels.

Table 3 illustrate the output of our method for T5. On the top
of the table the messages with maximum posterior probability
are shown. On the bottom, sequences of such messages found
over the documents of the corpus are illustrated. Documents
that do not include any of such messages are not listed.

T5 has two sequence patterns AFCG H and BD E2W. Such
patterns occurs with little variation in almost all SBs of T5 and
never in the other topics (omissis). As such, the two patterns
characterize the topic and can be used to label it. According to
the ALMA manuals and the ALMA software engineer, T5 was
given the label “Move ACD” as AFCG H and BD refer to the
typical operation of the Alma Calibration Device (ACD) to cap-
ture atmospheric weather conditions: after the device has been
calibrated (corresponding to the pattern AFCG H), a mechan-
ical arm replaces an ambient microwave absorber (AMBIENT
LOAD, 20C) with hot microwave absorber (HOT LOAD, 70
C) in front of the receiver feed horns of any of the signal band
devices (Base Bands), (corresponding to pattern BD) (ALMA-
Newsletter, 2012). Then a warning and an error appear (corre-
sponding to the pattern E2W). Thus, the topic T5 also contains
an error. The same procedure has been performed for all topics
and their labels are illustrated in Table 5. As topics must be in-
dependent (Section 5.6) and the value of k has been chosen to
respect such principle, the fact that we found different patterns
across the topics (omitted for space reasons) further validates
the choice we made for the value of k.
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Table 5: Topics’ labels.

Task Label
T1 Pointing and Focus
T2 Calibrate Atmosphere data
T3 Tune Analog Signal
T5 Move ACD
T6 Set Horizon Offset
T7 Move Antennas
T8 Error
T9 Begin/Shut Execution SB

5.9. Associating files and methods to topics

To associate code components to topics, abstract messages
are again mapped to topics through their posterior probability.
All messages with posterior probability greater than zero for
a topic are analyzed and all code components valued in fields
“file” (i.e., code file) and “routine” (i.e., code method) of the
events of such messages are associated to the topic as in the
following:

Ti = { fh1 ,m
1
h1
, ..md

h1
, ..., fht ,m

1
ht
, ...,mg

ht
}

where f j is a class and mk
j is a method of this class. Unique files

and methods among the ones in a topic are finally associated
to that topic. Worth noticing here that the same files or meth-
ods can be associated to more topics. The final association is
illustrated in Table 6.

5.10. Reconstructing an SB as a set of tasks

LDA model outputs a Document-Topic matrix that describes
the probability to find a topic in a Document, Section 3.
Through this matrix, a Document can be reconstructed as a set
of topics with non-zero probability; correspondingly an SB is
reconstructed as a set of tasks of the telescope. Table 7 illus-
trates the SBs as set of tasks for the testbed sample.

For each SB in the table, the percentages are calculated as
the number of abstract messages AM of the corresponding LDA
document D that have non-zero posterior probability for a topic
Ti (probi > 0) over all messages of D:

reli =
|AM ∈ D & probi(AM) > 0|

|AM ∈ D|
. (3)

In other words, the metric rel quantifies the probability of an SB
to include a task in terms on the number of events associated to
the task.

Table 7 groups SBs by their tasks. Each of the five groups rep-
resents a behavior model Mi of the telescope as it corresponds
to the same set of tasks. The table shows that models do not
depend on the hardware setting (array of antennas) or time win-
dow (index of the SBs). Three error are found: E1, E2, E3.
Each in the same tasks and in different models (M2, M3, and
M4). The error retrieved in the JIRA database (E3) is not re-
ported as an error event, but it stops the execution of the SBs of
model M4 (i.e., only T9 “Begin/Shut Execution SB” is included
in the model).

The output of our approach is a behavior model that consists of
a set of tasks of the telescope independent from specific hard-
ware setting or observation time. Classes and method are uni-
vocally associated to each tasks.

5.11. Tools for mining logs

We implemented few tools to perform our empirical study
and mine logs. A Java program parses XML files. To pre-
pare the data and run LDA, two R packages topicmodels and
quanteda are used. A final R script maps individual messages
to topics and draw the distribution of topics in an SB4.

6. Results

In this section, we illustrate the application of the method to
the 1752 log events of the testbed sample, Table 1 and answer
the research questions.

RQ1. Can the behavior of a system be reconstructed from
system logs? With the procedure described in Section 5.10,
we reconstruct an SB as a set of tasks performed by the ACS
system, where an SB corresponds to a document D and tasks
correspond to the topics Ti found by the LDA model. The be-
havior model is then defined by a specific set of tasks recurring
over SBs. Table 7 illustrates the behavior models of the ACS
system derived from the SBs of the testbed sample. The SBs
are grouped by types of tasks that compound them. There are
two groups of SBs with no error and three with error. Each of
these groups is a behavior model. Worth noticing here that T9
represents the task that always opens and closes the execution
of any SB (Fig. 5) and, thus, it is not crucial to characterize
the semantic of a specific SB. The SBs in the first group tune
the analog signal (T3) and move the antennas (T7) before point-
ing and focusing them (T1). In these tasks, no error is reported,
whereas additionally setting the horizon offset (T6) causes an
error (E1) in group three. If, further, the ACD is moved (T5)
to calibrate the atmosphere data (T2), another error (E2) occurs
in group two. The error we found in the ticketing system (E3),
completely blocks the execution of the SBs (group four). Fi-
nally, only moving the antennas (T7) is executed with no errors
(group five).

RQ2. Can the proposed model of system behavior be used
to associate code components to specific tasks performed by
a system? With the procedure described in Section 5.9, we
associate files and methods to tasks (Table 6) and, in turn, to
the SBs that execute those tasks (Table 7). Files and meth-
ods that uniquely appear in a task are reported in boldface in
Table 6. Other methods are, instead, shared by the topics as
they perform a more generic action. For example, the method
ObservingModeBaseImpl.java::beginSubscan typically
initiates an operation of the telescope; thus, for example, it oc-
curs to start setting the horizon offsets in T6 as well as pointing
and focusing the antennas in T1.

4The code can be found here https://goo.gl/JCWUhE
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Table 6: Code files and methods per topic. Methods in boldface indicate components solely associated to a topic.

no. Label Files and methods
T1 Pointing and Focus ObservingModeBaseImpl.java::beginSubscan,

LocalOscillatorThread.java::generateTuningInfo,
LocalOscillatorImpl.java::setAttenuators,
ArrayMountControllerImpl.java::setSubreflectorPositionOffset

T2 Calibrate Atmosphere Data ObservingModeBaseImpl.java::logBeginScan,::beginSubscan,
LocalOscillatorThread.java::generateTuningInfo,
LocalOscillatorImpl.java::optimizeSignalLevels,::setAttenuators

T3 Tune Analog Signal LocalOscillatorThread.java::generateTuningInfo,
LocalOscillatorImpl.java::optimizeSignalLevels

T5 Move ACD ObservingModeBaseImpl.java::logBeginScan,
LocalOscillatorThread.java::generateTuningInfo,::waitForACD,
LocalOscillatorImpl.java::setAttenuators,
AntennaCallbackBase.java::waitForEnoughResponses

T6 Set Horizon Offset ObservingModeBaseImpl.java::logBeginScan,::beginSubscan,
LocalOscillatorImpl.java::optimizeSignalLevels,
ArrayMountControllerImpl.java::setOffsetPrivate

T7 Move Antennas ObservingModeBaseImpl.java::logBeginScan,
LocalOscillatorThread.java::generateTuningInfo,
InterferometryObservingModeImpl.java::init,
ArrayMountControllerImpl.java::setDirection

T8 Error ArrayStateBase.java::reportFocusModel
T9 Begin/Shut Execution SB InterferometryObservingModeImpl.java::init,::cleanUp,

AutomaticArrayOperationalState.java::run,
ArrayMountControllerImpl.java::track,::openShutter

Table 7: Behavior models for the SBs in the testbed. SBs are indexed in temporal order (e.g., S B1 precedes S B2). Values in the topics’ columns are percentages
computed with Eq. 3.

Model SB ID Length Array T1 T2 T3 T5 T6 T7 T8 T9 Error
M1 S B1 38 A001 11 29 34 26 No

S B6 50 A003 8 48 24 20 No
S B7 50 A003 8 48 24 20 No
S B9 50 A005 8 48 24 20 No
S B10 38 A007 11 29 34 26 No
S B11 38 A007 11 29 34 26 No

M2 S B2 66 A001 24 6 9 9(E2) 20 17 15 E2
S B4 218 A001 18 37 3 15(E2) 7 15 5 E2
S B15 217 A007 18 37 3 15(E2) 7 15 4 E2
S B16 154 A007 17 34 5 16(E2) 10 14 5 E2

M3 S B3 213 A001 39 1 11 4 39(E1) 5 E1
S B8 150 A004 56 4 16 5 12(E1) 7 E1
S B14 217 A007 39 1 11 4 41(E1) 5 E1

M4 S B12 1 A007 100(E3) E3
S B13 8 A007 100(E3) E3

M5 S B5 12 A002 17 83 No

RQ3. Can the proposed model of system behavior be used
to describe the cause of system anomalies? As we mentioned
(Section 4.1), this study focuses on anomalies that can be mined
from log. In the ALMA logs, such anomalies are identified by
events that either stop the execution of an SB or are tagged as
errors or warnings in the XML logs. In the former case, SBs
do not complete and no shutting event is reported in the log
(i.e., the last three messages in Fig. 5 do not occur). This is
the case of the error reported in the ticketing system JIRA that
we used to select the testbed sample (Section 4.3). The latter
case, errors are completely identified by their type and code as
described in the ALMA manual, ESO (2016). The value of
the type is number that can be chosen between 0 and 909999
and among ranges that identify general ACS errors (0-9999)
and ALMA subsystems’ errors (e.g., for CONTROL is 10000
-19999), as illustrated in Table 8. The message further includes

a pre-defined code (the list of codes is maintained in ALMA
manuals, ESO (2016)) and a short free-text description. An
example of error message is:

Error reading input data (type=30001, code=8)

Overall, the information carried by the error events is minimal
and often requires good knowledge of a specific subsystem.

In Table 3, task T5 is an anomaly. It contains the error E2
whose message is

Operation timeout (type=10000, code=14)

The type refers to the “CONTROL” subsystem, Table 8 and
the pre-defined code is described in the manual as “Any TICS
TCorr error”, (ESO, 2016). The free text reports the timeout of
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Table 8: Ranges of values for error types.

subsystem range
ACS 0 - 9999
CONTROL 10000 - 19999
CORRELATOR 20000 - 29999
OFFLINE 30000 - 39999
TELCAL 40000 - 49999
PIPELINE 50000 - 59999
ARCHIVE 60000 - 69999
EXECUTIVE 70000 - 79999
SCHEDULING 80000 - 89999
OBSPREP 90000 - 99999
HLA 100000 - 109999
ACA 110000 - 119999
Examples/Test 900000 - 909999

a not specified operation. As such, this description is not much
informative. We argue that the behavior models built with our
approach (Table 7) and the associated code components (Table
6) can provide better insight about errors and their causes.

In the reminder of this section, we first overview the informa-
tion delivered in Table 7 and then we discuss each error by com-
paring the model in which it has been found with the error-free
model M1.

Firstly, Table 7 shows that our approach is able to encapsu-
late each error in a single task of a single behavior model in a
consistent manner independently from hardware configuration
and observation time window. (e.g., error E2 occurs only for
model M2 and for any Sb of the model) The table shows that
three types of errors, (E1, E2, E3), were found in the testbed
sample. E3 is the error that was retrieved from the ALMA tick-
eting system when the testbed was sampled (see Section 4.3).
E1 and E2 are two different error events found in testbed’s logs.
Each of the three errors consistently occurs in the same task of
different SBs (e.g., E1 occurs in T1 for S B3, S B8, S B14) and
in the same behavior model (e.g., E1 occurs in M3). The three
errors occur in different tasks, for different arrays of antennas
(e.g., E1 occurs for the arrays A001, A004, A007), and during
different timeframes also non-consecutive (the index of the SBs
is ordered by time, e.g., S B1 precede S B2). Thus, the seman-
tic of each error is univocally encapsulated in one task which is
associated to only one model. Such result supports the choice
made for the k value in terms of coherency and independency of
the topics (Section 5.6) and the validity of the behavior models
in Table 7. In the following, we discuss each error in more de-
tails. To derive the cause of an error, we compare models with
error with the error-free model. To get more information on the
type of error we investigate the sequences of messages charac-
terizing a task and including the error message and analyze the
classes and methods associated to the task.

E1. E1 is reported in the logs as an ERROR event. The er-
ror appears in model M3 (Table 7) and the log message Error

reading input data (type=30001, code=8) is the sole
event message mapped into T8. The type indicates that the er-
ror is generated within the subsystem “OFFLINE” and the code
reports the generic description “Any C++ error”, (ESO, 2016).
The behavior model of M3 differs from the error-free M1 by the

error tasks T8 and the task T6 “Set Horizon Offset”. In addi-
tion, when the error occurs, the task “Pointing and Focusing”
(T1) is likelier whereas the tasks “Tuning analog signal” (T3)
and “Moving antennas” (T7) are less likely to occur than in the
error-free M1.

Thus, it appears that when the error occurs, operations
to calibrate pointing and focusing have been performed as
well. The method of T8 reportFocusModel of class
ArrayStateBase (Table 6) is called to generate the data model
of the focus of the antennas. To perform tasks T1 and T6,,
two methods of the class ArrayMountControllerImpl are
specifically called: setSubreflectorPositionOffset and
setOffsetPrivate. According to the manuals, again such
methods refer to the calibration of the horizon of the antennas
for focusing and pointing.

Summarizing, we can say that the error in T8 must be re-
lated to the data model used to focus the antennas and its sub-
reflectors’ offset calibration. This has been verbally confirmed
by the ALMA software engineer: “the error code refers to prob-
lems in the DataCapturer subsystem (Fig. 2) and concerns in-
valid or missing data of antennas’ focus.”

E2. E2 is reported in the logs as an ERROR event. The error
appears in group two (Table 7) and the log message Operation
Timeout (type=10000, code=14) is the sole event message
mapped into T5 “Move ACD” Table 3. The type value refers
to the subsystem “CONTROL” and the code 14 is described as
“Any TICS TCorr error”. As we are analyzing logs of the CON-
TROL subsystem the type does not add much information and
we were not able to find a more verbose description in the man-
uals. According to the ALMA manuals, ACD is the mechanical
arm that measure the ambient or universe temperature for an
observation of the universe. The pattern E2W in T5 (Table 3)
indicates that the E2 is followed by a message of a WARNING
event (annotated as W). The warning message is more informa-
tive:

Timed out ACD to get into position. Not shutdown the ob-
servation. Data will be flagged & subsequent power level opti-
mizations may be incorrect

Thus, the warning concerns the timeout of the mechanical
arm ACD to return to a certain position and the corruption of
power level optimization data. As declared in the warning mes-
sage the error does not stop the execution of the SBs. As in
the case of E1, the behavior model M2 differs from the free-of-
errors model M1 by tasks T2 “Calibrate Atmosphere Data” and
T6 “Set Horizon Offset.”

Thus, it appears that when the error occurs in T5, opera-
tions to calibrate atmosphere data have been performed as
well. The methods LocalOscillatorImpl::waitForACD and
AntennaCallback-Base::waitForEnoughResponses are solely
associated to topic T5 (Table 6). In addition, the pattern of mes-
sages we found for T5 BD E2W (Table 3) associates the timeout
error to the movement of ACD from the “AMBIENT” to the
“HOT” load. According to the ALMA manuals, this indicates
that the timeout is related to the temperature measurement for
the observation (“HOT” load) and the call back of the mechan-
ical arm during such measurement.
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Summarizing, the error is due to a timeout of the mechanical
arm ACD when it moves to the position in which it measures
the temperature for universe’s observation.

E3. E3 in group four is the error we chose in the JIRA database.
The error is about the initialization of a meta-data model that
later is saved in the database. It is reported in JIRA data base
and not in the logs. Our approach detects it because at the
time stamp of an occurrence of such error in the selected time
window, the SB immediately stops and only task T9 is per-
formed. Inspecting the logs, we could see that in less than 30
seconds, the operator was actually able to restart the execution
with S B14, on the same array of antennas, A007 and with no
such an error. Therefore, this error seems not to be systematic
and, as such, it can be classified as critical as there is no indi-
cation of when it will occur again. In the bug report in JIRA,
software engineers came to the same conclusion after few days
of discussions and trials:

It is clear that during January there was only one instance
lasting more than 100 seconds, while in the last week there have
been nine of such slow initializations.

7. Lessons learned in mining a large corpus of log events

In this section, we briefly summaries the how we overcome
new and old challenges of mining log to extract system behav-
ior.
Short texts. To overcome the lack of vocabulary of short text
messages, we implemented two strategies: 1) the behavior of a
system is modelled by hidden topics in sequences of event mes-
sages and not by individual message and 2) topics are labelled
using patterns of such messages not bag of words.
Context investigation. A thorough context analysis and val-
idation of the results with domain experts was crucial for the
application of our approach starting from the definition of the
sample that better suited our research goal, Section 4.2.
Sequences of events. This work adopts the approach in (Russo
et al., 2015) that uses sequences of events as input for a machine
learner. In this study, sequences of event messages are used to
as input for the LDA analysis, whereas recurring sequences of
messages are used to label the resulting telescope’s tasks.
Observation time window. In this work, a deep context analy-
sis has guided the choice of the samples to select a time period
during which the telescope is fully operational and does not un-
dergo any maintenance activity.
Fully-automated log mining. The approach of this work auto-
mated a large part of the manual activities of log mining per-
formed at ALMA. Two steps of our approach are still man-
ual: selecting the number of topics k and labelling message
patterns. Any of these manual activities can be automated a
bit more though losing in accuracy. For example, the choice of
the number of topics k can be automated by using the perplexity
function leaving only the interpretation of the resulting perplex-
ity curve to the subjectivity of the researcher. Yet, this approach
does not assure accuracy in terms of topics coherency and in-
dependency (Layman et al., 2016). In this work, we preferred

to introduce a more accurate approach that requires the man-
ual inspection of the distribution of the messages over topics to
obtain topics with internal coherent semantic.

Manual labelling message patterns can be replaced by auto-
matic extraction of topic labels from manuals or online articles
like in the work of Lan et al. (Lau et al., 2011). The approach in
(Lau et al., 2011) is not fully automated though as it requires a
ground truth derived by manual inspection of candidate online
articles.
Fault localization. Our approach is able to associate low-level
code components to tasks and SBs can be reconstructed as sets
of tasks. When one of such tasks contains an error, the code
components of the SBs with the error can be retrieved. When
the error can effectively be associated to a system malfunction,
such information can be exploited by the software engineers
as starting point for the fixing process and replace manual lo-
calization of the issue as in the current practice at ALMA. Of
course, the malfunction can be originated in files and methods
not directly included in the information of the log events and
nested deeper in the code. The analysis of the execution traces
can help to get access to such nested code (Tan et al., 2008), but
they are not available in the logs mined in this work.
Incomplete information and identical timestamp. The ap-
proach in this work clusters the information carried by individ-
ual events and reconstructs the latent semantic of such clusters.
In this way, incomplete information in a message of a single
event is augmented by the information carried by the messages
of the same cluster taming down the negative effects of incom-
plete information. Likewise, identical time stamps have little
to no effect on our findings as the time stamp is used only to
distinguish SBs by means of their starting and ending events.

8. Threats to validity

Given the explorative nature of this work, the relevant class
of threats falls under construct validity.

Firstly, the event messages may still contain a vocabulary
specific to non-ordinary activities of the system (e.g., ad hoc
maintenance) although we accurately selected the logs during
the Observation phase of the telescope. Thus, to understand
whether this is the case, the vocabularies of the messages of
the testbed and the validation sample have been compared. The
testbed vocabulary contains 114 distinct terms, which are all
contained in 169 terms of the validation sample vocabulary.
Many of the remaining terms in the validation sample vocabu-
lary have small differences with terms of the testbed vocabulary
that text pre-processing was not able to capture (e.g., “Focus”,
“FocusX”). Thus, the two vocabularies are not much different.

The ALMA software engineer also confirmed that the vocab-
ulary during the Observation phase of the ALMA telescope is
in fact homogeneous as it has to follow the technical standards
of the Observation cycle (Asayama et al., 2017)), although it
leaves engineers enough room to include their own terms espe-
cially in case of unexpected or erroneous behavior. On the other
hand, this flexibility is not considered a good practice and, in
part, motivates this work.

17



Secondly, mechanisms to detect and explain anomalies in
logs still suffer of false positives as the information included
in individual log events can be missing or not completely accu-
rate (Oliner et al., 2012; Cinque et al., 2013), ChuahEtAl2010).
In our work, we tamed this issue by clustering event messages
into topics so that the information in individual error events is
augmented with the one in events of the same cluster. We fur-
ther were able to build behavior models that do not associate an
error to specific context of operation (array of antennas) or time
frame (SB execution).

Another issue is that labelling topics is manual process that
implies subjective bias. In our work, we propose a method that
increase the expressivity of the information carried by topics
and help researchers or practitioners label the topics.

Finally, the LDA machinery have its own limitations. In LDA,
each document is represented as a bag of words. One prob-
lem of this representation is that the model is responsible for
figuring out which dimensions in the document vectors are se-
mantically related. Leveraging information on how words are
semantically correlated to each other may improve a model’s
performance and this is what word embeddings do and may be
matter of future work.

Generalizability is a typical class of threats for explorative
studies: logs and the information they carry might be specific
of the ALMA context. For example, the identification of se-
quences of events to be used as LDA documents might not be
straightforward as events or their messages might not contain
clear indication of a sequence’s start or end. To define the
sequences, a deeper context analysis and informative research
must be performed (Russo et al., 2015)

9. Conclusion

In this work, we propose a method that exploits the informa-
tion contained in log events to reconstruct system behavior as
set of telescope’s tasks. The work uses LDA analysis to identify
the number of such tasks and a pooling schema improvement
based on pattern recognition to label such topics. The applica-
tion of our method illustrates how to mine about 2000 events
and reconstruct the tasks of 16 sequences of events each de-
scribing an observation of the ALMA telescope. The method
is also able to identify anomalies in logs, consistently over se-
quences and derive the semantic of such malfunctions by ana-
lyzing the tasks and the code components involved in the tasks
of an SB. The overall approach aims at reducing to the min-
imum the manual activities for log mining that are currently
adopted at ALMA. With this work, we have also been able to
discuss some of the known challenges in log mining. The expe-
rience we gather has been then summarized in lessons learned.

In future work, we will explore how to increase further the
automation of the proposed method. In particular, we will
study the feasibility to replicate the work of Lau et al.(Lau
et al., 2011) in the ALMA context. In such work, the au-
thors propose an approach that parses online, textual references
(e.g., wikipedia articles) to derive candidate labels, defines the
ground truth with domain experts, and uses supervised vector

machines to associate labels to topics (Lau et al., 2011). In
principle, such approach can be applied to the ALMA logs.
To understand whether such replication makes any sense, we
took the bag of words for Topic 1 in Table 4 and searched with
google engine the words together with the term ”ESO” (Euro-
pean Southern Observatory) to identify the candidates’ textual
references as in (Lau et al., 2011). Interestingly, the first five
pages we found speak about the “tuning of image signal” and
the fifth page is the ALMA manual of the 2017 cycle (the tele-
scope’s cycle from which the logs of this work were collected).
“Tuning image signal” is the label of topic T1 indeed, Table 5.
Such finding is promising and the technique in (Lau et al., 2011)
has a good potential to be replicated with our logs by simply re-
placing the ground truth with the labels that we found with your
approach, Table 5.
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