
Query-Based Configuration of Text Retrieval Solutions for

Software Engineering Tasks

Laura Moreno1, Gabriele Bavota2, Sonia Haiduc3
, Massimiliano Di Penta4,

Rocco Oliveto5, Barbara Russo2, Andrian Marcus1

1The University of Texas at Dallas, Richardson, TX, USA
2Free University of Bozen-Bolzano, Bolzano, Italy; 3Florida State University, Tallahassee, FL, USA

4University of Sannio, Benevento, Italy; 5University of Molise, Pesche (IS), Italy

ABSTRACT
Text Retrieval (TR) approaches have been used to lever-
age the textual information contained in software artifacts
to address a multitude of software engineering (SE) tasks.
However, TR approaches need to be configured properly in
order to lead to good results. Current approaches for au-
tomatic TR configuration in SE configure a single TR ap-
proach and then use it for all possible queries. In this paper,
we show that such a configuration strategy leads to subopti-
mal results, and propose quest, the first approach bringing
TR configuration selection to the query level. quest recom-
mends the best TR configuration for a given query, based on
a supervised learning approach that determines the TR con-
figuration that performs the best for each query according to
its properties. We evaluated quest in the context of feature
and bug localization, using a data set with more than 1,000
queries. We found that quest is able to recommend one of
the top three TR configurations for a query with a 69% ac-
curacy, on average. We compared the results obtained with
the configurations recommended by quest for every query
with those obtained using a single TR configuration for all
queries in a system and in the entire data set. We found
that using quest we obtain better results than with any of
the considered TR configurations.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Documentation, Measurement

Keywords
Text-Retrieval in Software Engineering, Configuration, Fea-
ture and Bug Localization

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEC/FSE’15 , August 31–September 4, 2015, Bergamo, Italy

Copyright 2015 ACM . ISBN 978-1-4503-3675-8/15/08 ...$15.00.

1. INTRODUCTION
Software systems contain a large amount of information

in text format, captured in a multitude of software arti-
facts, such as, requirements documents, design documenta-
tion, source code, bug reports, developer communication,
user manuals, test documents, etc. This information, when
properly utilized, can help developers understand various as-
pects of a software system and can help them in their daily
tasks. Text Retrieval (TR) approaches have been proposed
to leverage the large amount of text information available
in software. These techniques have been successfully ap-
plied to support more than 20 di↵erent software engineering
tasks [37], such as feature and bug localization in source
code [38], traceability link recovery [4], impact analysis [11],
bug triaging [5], and so on.

The research on using TR in software engineering (SE) has
generated several hundred papers in the last decade, with a
focus on investigating how to support specific tasks and how
to improve the performance of specific TR approaches. Most
of the published work is empirical in nature, and many tools
and research prototypes have been produced. TR techniques
need to be configured before using them, which requires cal-
ibrating several parameters. Di↵erent parameter values lead
to di↵erent TR configurations, and the work on determin-
ing the best TR configurations in SE [35, 40, 48] reached
the conclusion that the performance of a TR configuration
varies widely from system to system, even when used for the
same task. More than that, a TR configuration that works
best for one software corpus may not be the best for another.

Di↵erent automated approaches have been proposed to
calibrate some TR techniques for specific SE tasks and for in-
dividual software corpora, either based on specific heuristics
[6, 22, 48], or by relying on search-based optimization tech-
niques [35, 40]. While this previous work has acknowledged
the need to adapt the configuration of the TR techniques
to the characteristics of each individual software corpus and
SE task, it has overlooked one aspect: the query.

Other previous work showed that, while some queries lead
to good results, others fail to retrieve any useful information
when using a specific TR configuration. This is mainly be-
cause di↵erent queries have di↵erent lexical and semantic
properties [12], which may require di↵erent approaches for
finding relevant documents. In consequence, researchers also
focused on (automatically or manually) changing the queries
[19, 24] to fit a given TR configuration and software corpus.

Based on all existing work, we argue that there is no “sil-
ver bullet” TR configuration that can work equally well for

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...

http://dx.doi.org/10.1145/2786805.2786859

567

all queries formulated in the context of a SE task and a
given software corpus. In order to verify such assumption,
we conducted an exploratory study and reported the perfor-
mance of 21 TR configurations used in previous SE work,
using a large data set of software systems and queries for
the task of feature and bug localization. This study (see
Section 3) confirmed our conjecture that no single TR con-
figuration works best for all queries in a system and that the
di↵erence in performance between TR configurations varies
greatly across queries in the same system. In other words,
these findings indicate that the query is an important fac-
tor in determining the best TR results for a given software
corpus.

In this paper, we tackle the TR configuration problem
at a new granularity level, i.e., the query level. We pro-
pose a new approach, named quest (QUEry-based config-
uration for Software reTrieval), which considers both the
software corpus and the query to automatically determine
the best TR configuration to use for each individual query
in the context of a given SE task. quest relies on super-
vised learning, and uses a training set of queries and their
relevant results for building a classification model. For each
query, quest computes a set of measures that capture dif-
ferent properties of the query that have been shown to be
useful in other TR tasks, such as, query quality prediction
[25] and query reformulation [24]. The learning process re-
lies on automatically running a set of queries using di↵erent
TR configurations on labeled training data and determin-
ing which configuration performs the best for each query
according to its properties. When a new query is issued, the
model is then used to automatically determine the best TR
configuration to use for the query, based on its properties.

We evaluated quest in an empirical study on feature and
bug localization data. Part of the evaluation focused on
determining how accurate is quest in determining the best
configuration for a given query. We found that quest is able
to recommend one of the top three TR configurations for a
query with a 69% accuracy, on average. The evaluation also
focused on determining whether the configuration selected
by quest for each query leads to better results (for feature
and bug localization) than running any of the individual
TR configurations on all the queries. We found that for
76% of the queries (on average) the configuration selected
by quest improves or preserves the quality of the retrieval.

Novel contribution. While previous work attempted to
find the best TR configuration for a given software corpus
and/or for a specific task [6, 22, 48, 35, 40] or to reformulate
a query to fit a given TR configuration [19, 24], quest is the
first technique that determines the best TR configuration for
an individual query and a given software corpus.

Replication package. A replication package is available
online1. This package includes (i) data sets used in our stud-
ies; (ii) complete results of the exploratory study; (iii) the
definition of the query property measures currently imple-
mented by quest; and (iv) complete results and analysis of
the empirical study.

2. RELATED WORK
Hundreds of approaches have used TR techniques to ad-

dress software engineering tasks. The vast majority of such

1
http://www.utdallas.edu/~lmorenoc/research/

fse2015-quest/

approaches have determined the TR configurations to use
based on previous work in natural language processing, or by
relying on ad-hoc decisions [3, 15, 34, 38]. The most relevant
work to this paper deals, however, with comparing di↵erent
TR configurations for various software engineering tasks or
automatically determining the best TR configuration for a
particular task and data set. We discuss each of these two
research directions below. No prior work has addressed TR
configuration at query level in software engineering.

Several studies have compared TR configurations in order
to determine the most suited one for a specific software en-
gineering task. Abadi et al. [1] compared five TR engines
and several parameter values for each engine for the task
of traceability link recovery and found Lucene and Jensen-
Shannon as the best engines to use. This same task was
addressed by Gethers et al. [21], which combined orthog-
onal TR approaches for achieving better results. Falessi et
al. [17] compared a large number of TR configurations and
combinations of TR engines for discovering equivalent re-
quirements. Shi et al. [46] used BM25 and BM25F with
several fixed parameter configurations and compared them
with other TR approaches for feature location, showing that
the BM25 approaches performed the best. Rao et al. [44] ad-
dressed bug localization and compared five TR engines using
di↵erent parameter configurations, as well as combinations
of two TR engines. They found that the Unigram model
and its respective composite approach performed the best.
Thomas et al. [48] also considered bug localization for their
large scale comparison of TR configurations; over 3,000 con-
figurations were tested and combinations of TR engines were
also considered. The study showed that the best individual
TR engine is the Vector Space Model (VSM), and that com-
binations of TR are always beneficial no matter which TR
models are combined. Wang et al. [49] followed this di-
rection and used a genetic algorithm in order to determine
a near-optimal composition model for several VSM variants
for bug localization. Lukins et al. [36] and Nguyen et al. [39]
addressed Latent Dirichlet Allocation (LDA) configuration
for bug localization, comparing it with other approaches.

Most of the studies mentioned so far focus on finding one
TR configuration or a combination of TR configurations that
achieve the best performance across all data sets, as a gen-
eral prescription to be used by researchers for similar tasks.
However, one of the most outstanding and frequent lessons
of these studies is that di↵erent TR configurations may be
needed for di↵erent data sets. As an illustration, Wong et al.
[50], who used VSM for bug localization, found that the opti-
mal parameter settings are di↵erent from project to project.
Biggers et al. [6], focusing on the configuration of LDA for
the task of feature location, showed that di↵erent parameter
values are needed for systems having di↵erent sizes. Binkley
et al. [7] emphasized this point and studied the impact of
LDA parameter configuration on results. The study under-
lines the fact that there is no universal best setting for LDA
parameters and that the optimal settings depend on the SE
task, the input corpus, and the information needs of the de-
veloper. As a result, some approaches were proposed for
determining the best TR configuration for a particular data
set. Kuhn et al. [31] proposed a formula for determining the
number of Latent Semantic Indexing (LSI) dimensions for a
system based on its corpus size. On a similar note, Grant
et al. [23] devised an approach to determine the number
of topics to use in LDA for SE applications based on the

568

Table 1: Data set used in the studies.

System Version KLOC # of methods # of issues # of queries
apache-nutch 1.8 50 2,230 10 30
apache-nutch 2.1 43 2,114 18 54
bookkeeper 4.1.0 52 3,382 27 81
commons-math3 3.0 197 9,173 16 48
derby 10.9.1.0 1,020 41,576 33 99
mahout 0.8 172 9,485 22 66
openjpa 2.0.1 508 41,911 22 66
pig 0.8.0 311 15,095 35 105
pig 0.11.1 440 19,478 55 165
solr 4.4.0 834 30,982 37 111
tika 1.3 69 3,401 20 60
zookeeper 3.4.5 85 4,711 50 150
Total 12 3,782 183,538 345 1,035

number of code fragments in a system. Recent approaches
made use of genetic algorithms in order to determine the
best parameter values to use with a given data set for LDA
(see Panichella et al. [40]), as well as VSM and LSI (see
Lohar et al. [35]).

A parallel set of approaches called “learning-to-rank”
(LtR) has been studied for retrieving relevant software arti-
facts for di↵erent SE tasks. Binkley and Lawrie [8] studied
LtR in the context of traceability link recovery and feature
location, and Ye et al. [52] used it for bug localization. LtR
approaches, which were first introduced in the last decade in
the field of Information Retrieval [32], make use of machine
learning in order to learn the rank of each document in re-
sponse to a given query [33] or set of queries [20, 30]. These
approaches use a set of features for each (query, document)
pair, which can indicate some properties of the query and
document, including the similarity of the query to the doc-
ument based on some TR approach. However, when TR ap-
proaches are used to obtain such features, their parameters
are set to the same values for all queries. In LtR approaches,
the final list of results for a query is not given by a TR ap-
proach therefore LtR does not deal with TR configuration.
Moreover, LtR builds a model that is trained for ranking
documents and then the same model is used to rank the doc-
uments for all queries. In our approach, we use di↵erent TR
configurations depending on the query. LtR approaches are
also very computationally intensive, as they require learning
the rank of each individual document with respect to each
query, making these models very complex and impractical
for large corpora [32]. Our approach requires learning only
the TR configuration to use for a query, which can be ap-
plied to all documents, as opposed to learning the rank of
every document in the corpus.

3. EXPLORATORY STUDY
Is there a single TR configuration that works best for all

queries, given a software corpus? We performed an ex-
ploratory study to answer this question, in the context of
feature and bug localization.

3.1 Data Set
We performed the study on a set of 12 versions of ten soft-

ware systems, which are maintained by the Apache Software
Foundation2, belong to various domains, and have various
sizes (see Table 1). In feature and bug localization studies
using TR approaches, it is common to use the issue tracking

2
http://www.apache.org

system and the versioning system of a software in order to
extract the evaluation data. The queries for a system are
extracted from change requests (i.e.,bug reports and feature
requests) found in the issue tracker of that system. Each
change request has a title and a description, both contain-
ing textual information which describes the problem (in the
case of bug reports) or the feature to be implemented (in the
case of feature requests). Queries in TR studies are usually
extracted from these titles and descriptions [16].

In our study, we extracted three representative queries
for each change request: one from its title, one from its
description, and one merging the title and the description.
Therefore, for the 345 issues considered in the study, we ob-
tained a total of 1,035 queries. After extracting the queries,
we applied common processing techniques to the text in
the queries, such as, splitting (i.e., separating composed
words, such as identifiers, into individual terms), filtering
(i.e., removing common English words and programming
keywords), and stemming (i.e., mapping words to their lexi-
cal root). We used the Porter stemmer [43] and a stop word
list that is available in the replication package.

The gold set (a.k.a. ground truth) for the evaluation
is formed by the set of changed methods in response to
each bug report or feature request. So, we focused on
bug reports and feature requests that have been success-
fully resolved, i.e., those marked as resolution = Fixed and
status 2 {Resolved,Closed}. We extracted the modified
methods from the commits that implemented the change
requests, found in the versioning system of each software.
In particular, we linked each resolved issue to the commit
pushing it in the versioning system by using the approach
proposed by Fischer et al. [18], which relies on matching the
issue ID in the commit note (e.g., “fix commit #ID”, “fixing
#ID”). All the systems used in our study adopt this conven-
tion for keeping traceability between commits and issues.

For each software system, we built a text corpus from
its source code by considering each method as a separate
document and extracting the identifiers and comments of
each the method. This corpus was then processed using the
same sequence of techniques applied to the queries: splitting,
filtering, and stemming. The corpus for each system was
indexed using each TR configuration, and used to retrieve
the relevant methods in a system, based on the queries.

3.2 Methodology
We applied 21 di↵erent TR configurations (see Table 2) to

the queries in the data set and analyzed their results. The
TR configurations were selected by considering the ones rec-

569

Table 2: TR configurations used in the studies.

Engine Configuration ID
Lucene [48] Default E1C1

Variable according to the system size [6] E2C1
n = 500, iterations = 500, ↵ = 0.5, � = 0.5 E2C2
n = 400, iterations = 200, ↵ = 0.5, � = 0.25 E2C3

LDA

n = 300, iterations = 300, ↵ = 0.1, � = 1 E2C4
k1 = 1.2, b = 0.5 E3C1
k1 = 1.2, b = 0.75 E3C2BM25 [46]
k1 = 1.5, b = 0.5 E3C3
� = 0.1 E4C1
� = 0.5 E4C2LMJM [46]
� = 0.7 E4C3

LMD Default E5C1
model = Bose-Einstein, after-effect = Bernoulli, norm = H1 E6C1
model = Poisson-based tf-idf, after-effect = Laplace, norm = H1 E6C2
model = Poisson-based tf-idf, after-effect = Laplace, norm = H2 E6C3
model = Poisson-based tf-idf, after-effect = Bernoulli, norm = H1 E6C4

DFR

model = Poisson-based tf-idf, after-effect = Bernoulli, norm = H2 E6C5
distribution = log-logistic, � = df, norm = No E7C1
distribution = log-logistic, � = ttf, norm = No E7C2
distribution = smoothed power-law, � = df, norm = No E7C3

IBM

distribution = smoothed power-law, � = ttf, norm = No E7C4

TR configurations

E1C1 E2C4 E2C3 E5C1 E6C1 E6C2 E3C1 E4C3 E6C4 E2C2 E7C1 E4C1 E6C5 E3C2 E2C1 E4C2 E7C3 E6C3 E3C3 E7C2 E7C4
0%

3%

6%

9%

12%

15%

18%

%
 o

f q
ue

rie
s

w
ith

 b
es

t e
ffe

ct
ive

ne
ss

Figure 1: Percentage of queries for which the TR configurations obtain the the best e↵ectiveness.

ommended in previous work focusing on TR tuning in SE
[6, 40, 48]. In addition, we also considered some new TR
configurations, which were not used before in the context of
SE applications. The 21 TR configurations correspond to
seven di↵erent TR engines: Lucene, LDA [9], Okapi BM25
[45], Language Model [42] with Jelinek-Mercer smoothing
(LMJM) [54], Language Model with Dirichlet smoothing
(LMD) [54], Divergence From Randomness (DFR) [2], and
Information-Based Model (IBM) [13].

We evaluated the performance of the TR configurations
by measuring the e↵ectiveness of the retrieval for each query
in the data set. E↵ectiveness is a measure widely used for
evaluating TR approaches for feature and bug localization
[16]. It represents the position of the first relevant document
in the list of results, therefore being a proxy of the number of
documents a developer would have to look at before finding
the first relevant answer to the query (i.e., the developer’s
e↵ort for finding the answer).

3.3 Results
By analyzing the e↵ectiveness results on our data set, we

observed that none of the considered TR configurations con-
sistently performs the best across all the queries. Figure 1 re-
ports the percentage of queries for which each TR configura-

tion achieved the best e↵ectiveness in the entire data set. As
it can be observed, the highest number of queries for which a
TR configuration performed the best is no higher than 16%
(i.e., 162 out of 1,035 queries). This result is achieved by the
default configuration of Lucene (E1C1). We also observed
that the highest percentage of queries for which any of the
TR configurations performed the best in a particular system
varies between 12% and 43% (see Table 3). This means that
if only one TR configuration were used for all queries of the
12 systems, between 57% and 88% of the queries would be
suboptimally answered—and this is in the best case scenario,
when the best performing TR configuration is chosen.

In addition, the di↵erence in the results between choos-
ing di↵erent TR configurations for the same query can be
tangible, impacting the success (or failure) of the retrieval
task. For example in openjpa 2.0.1, if we were to choose its
best TR configuration E2C4 for all of its queries, we would
come across cases like query 34, for which E2C4 retrieves
the first relevant document on position 486, thus resulting
in an unsuccessful search, as developers rarely look past the
first 10 to 20 results. Choosing the configuration E5C1, on
the other hand, would have returned the relevant document
on the first position in the list of results for the same query.
We also observed that the same TR configuration performs

570

Table 3: Percentage of queries for which the TR configurations obtain the the best e↵ectiveness per system.

System E1C1 E2C1 E2C2 E2C3 E2C4 E3C1 E3C2 E3C3 E4C1 E4C2 E4C3 E5C1 E6C1 E6C2 E6C3 E6C4 E6C5 E7C1 E7C2 E7C3 E7C4
apache-nutch-1.8 43% 0% 0% 10% 0% 3% 10% 0% 3% 0% 0% 7% 3% 7% 0% 10% 0% 3% 0% 0% 0%
apache-nutch-2.1 11% 2% 7% 13% 11% 9% 0% 2% 0% 2% 7% 2% 2% 9% 2% 2% 6% 11% 0% 2% 0%
bookkeeper-4.1.0 15% 0% 1% 4% 10% 11% 4% 1% 4% 4% 5% 5% 5% 7% 0% 6% 4% 10% 1% 2% 1%
commons-math3-3.0 33% 2% 6% 2% 2% 13% 4% 0% 4% 2% 2% 8% 10% 0% 0% 0% 0% 6% 2% 2% 0%
derby-10.9.1.0 14% 2% 1% 6% 19% 3% 1% 2% 4% 2% 8% 3% 11% 7% 1% 5% 3% 5% 2% 0% 0%
mahout-0.8 26% 5% 3% 3% 9% 6% 3% 3% 2% 0% 2% 5% 9% 17% 0% 5% 5% 0% 0% 0% 0%
openjpa-2.0.1 8% 3% 11% 14% 26% 5% 0% 0% 9% 2% 0% 8% 5% 2% 2% 0% 5% 3% 0% 2% 0%
pig-0.11.1 12% 0% 7% 10% 12% 4% 2% 1% 3% 0% 3% 10% 12% 4% 2% 6% 9% 0% 1% 0% 2%
pig-0.8.0 11% 2% 9% 9% 10% 4% 2% 1% 4% 2% 6% 16% 7% 5% 1% 6% 0% 4% 1% 2% 0%
solr-4.4.0 13% 0% 2% 7% 11% 6% 1% 0% 5% 2% 7% 11% 11% 8% 2% 9% 2% 1% 1% 2% 0%
tika-1.3 23% 3% 0% 3% 22% 3% 0% 3% 0% 0% 7% 5% 8% 7% 0% 7% 2% 3% 0% 3% 0%
zookeeper-3.4.5 13% 1% 7% 15% 7% 5% 1% 0% 4% 1% 9% 10% 5% 3% 3% 6% 3% 5% 1% 1% 0%
Average 19% 2% 5% 8% 12% 6% 2% 1% 3% 1% 5% 7% 7% 6% 1% 5% 3% 4% 1% 1% 0%

!

!
!

!

Figure 2: E↵ectiveness of the TR configurations in the whole data set sorted by median values (the lower

the better).

quite di↵erently across systems. For example, E2C4 is the
configuration which leads to the best results over the largest
set of queries in derby-10.9.1.0 (i.e., E2C4 has the best re-
sults among the 21 configurations for 19.2% of its queries),
whereas the same configuration never obtains the best re-
sults among the 21 TR configurations for any of the queries
in apache-nutch-1.8.

These examples are not outliers. Figure 2 shows the distri-
bution of e↵ectiveness (highest rank for the relevant method,
so the lower the better) for all queries for each configuration.
Data reveals that the e↵ectiveness of the retrieval widely
varies across configurations (as it can be seen by comparing
the di↵erent boxes), and from query to query (as it can be
seen from the large boxes, i.e., interquartile di↵erences, and
from the presence of several outliers exhibiting a rank hav-
ing value of orders of magnitudes greater than the median).
For example, E2C4 and E2C3 (corresponding to LDA) are
the 2nd (12%) and 3rd (9%) best configurations based on the
number of queries for which they obtain the best e↵ective-
ness (see Figure 1). If someone is determined to use LDA for
their task, she might be tempted to choose one of these two
configurations. However, based on median e↵ectiveness (see
Figure 2), these two configurations are ranked as 18th (me-
dian e↵ectiveness 563) and 20th (median e↵ectiveness 585)
among the 21 configurations, respectively. In other words,
their performance over all the systems and queries is nearly
the worst.

The complete results of this exploratory study can be
found in our replication package. These results underline

two facts: (i) choosing one TR configuration for all queries
in a system or across several systems leads to suboptimal
results, and (ii) in some cases, the di↵erence between the
optimal results that could be achieved using the best TR
configuration for each individual query and those obtained
using only one TR configuration for all queries is signifi-
cant. As shown above, choosing the right TR configuration
can make the di↵erence between a successful and an unsuc-
cessful search. Since developers get easily discouraged using
a particular tool if the results retrieved are not good even for
a few instances, choosing the TR configuration that leads to
the best results for each query could have a significant im-
pact on the adoption of TR approaches by practitioners. In
the next section we describe our approach, which premiers
query-level TR configuration on software corpora.

4. AN APPROACH FOR QUERY-BASED
TR CONFIGURATION: QUEST

As any technique based on supervised learning, quest fol-
lows two major steps. The first one is a training step, where
a classifier is built from a training data set. The second step
is recommending the TR configuration that performs the
best for a given query, based on the trained classifier. The
idea behind quest is that the performance of TR configura-
tions varies according to di↵erent properties of the queries.
Since both the training and recommendation steps make use
of such properties, we provide first a brief overview of them.

571

4.1 Query Properties and Measures
Previous work on query quality prediction [25] and query

reformulation [24] in software engineering adopted a series of
Information Retrieval measures that capture linguistic and
statistical properties of queries and a software corpus. These
measures were used to predict whether a query will lead to
relevant or irrelevant TR results [25], given a TR configura-
tion, and to automatically find the reformulation for a query
that leads to the best results, given a TR configuration [24].
In the context of this paper, we use these measures as indi-
cators of the performance of particular TR configurations,
since they capture properties of the query, software corpus,
and the results retrieved by a TR approach.

Existing query and corpus measures are categorized into
pre-retrieval and post-retrieval [12], depending on the mo-
ment when they are computed and the type of information
they capture.

Pre-retrieval properties and measures. Pre-retrieval
measures are computed before the query is run, and measure
linguistic and statistical properties of the query and its re-
lationship with the software corpus. Pre-retrieval measures
assess properties such as, coherency, specificity, similarity,
and term relatedness [12].

Coherency indicates how focused a query is on a particular
topic [28, 56]. The coherency of a query is usually measured
as the level of inter-similarity between the documents in the
corpus containing the query terms. The more similar the
documents are, the more coherent the query is.

Specificity refers to the ability of the query to represent
the current information need and discriminate it from oth-
ers [27, 41]. The main idea behind this property is that a
query composed of terms commonly used in the corpus is
considered having low specificity, as it is hard to di↵eren-
tiate the relevant documents from non-relevant ones based
on its terms. For example, when searching source code, the
query “initialize members” could have low specificity, if a
comment containing this text would be found in most class
constructors in a system. Specificity measures are usually
based on the query terms’ distribution over the collection of
documents, but the way this information is captured di↵ers
from measure to measure.

The similarity between the query and the entire document
collection is another property that reflects an aspect of the
query and corpus [51]. The argument behind this type of
measure is that it is easier to retrieve relevant documents
for a query that is similar to the corpus, since high simi-
larity potentially indicates the existence of many relevant
documents in the corpus to retrieve from.

Finally, term relatedness measures make use of term co-
occurrence statistics in order to assess the performance of a
query [26]. The terms in a query are assumed to be related
to the same topic and are, thus, expected to occur together
frequently in the corpus.

Post-retrieval properties and measures. While pre-
retrieval measures capture some general characteristics of
the query and corpus, they do not take into consideration
the list of results returned by a TR engine. Post-retrieval
measures rely on the analysis of the search results, that is,
the list of documents in the corpus ranked highest in re-
sponse to the query.

Robustness-based measures evaluate how robust the re-
sults are to perturbations in the query and the documents
in the result list [53, 55]. Some of these measures assess

the robustness of the result list to small modifications of the
query. When small changes in the query cause large changes
in the search results, the confidence in the capacity of the
query to capture the essential information diminishes. Doc-
ument perturbation measures, on the other hand, rely on
injecting the top documents in the result list with noise and
re-ranking them, measuring the di↵erence in their ranks be-
fore and after the perturbation. For a robust query, small
perturbations of the documents in the result list should not
result in significant changes in their ranking.

Score distribution-based methods analyze the similarity
between the query and the results, which are used to rank
the results of the retrieval [47, 56]. For example, the highest
retrieval score (i.e., similarity) and the mean of top scores in-
dicate query performance, since, in general, low scores of the
top-ranked documents indicate some di�culty in retrieval.

Clarity-based methods directly measure the “focus” (clar-
ity) of the search results with respect to the corpus. Due
to the considerable execution time of the clarity-based mea-
sures, we did not include them in the current implementation
of our approach.

4.2 Training Phase
The starting point for building quest’s classifier is a train-

ing set built from a collection of queries, their properties,
and their respective relevant documents. quest is a general
approach, which can be applied in the context of any SE
task making use of TR techniques. Therefore, what each
query in the collection represents and how it is collected can
vary according to the SE task at hand. In the case of feature
and bug localization, on which we focus in this paper, the
queries and relevant documents represent, respectively, text
extracted from change requests and the methods modified
in response to the requests (as in the case of our exploratory
study in Section 3).

The next are the steps followed by quest during the train-
ing phase:

1. For each query in the data collection, quest computes
the values of a predefined list of n query property mea-
sures. The current version of our approach uses 21
pre-retrieval and seven post-retrieval query measures
shown to be useful in other query-related tasks in SE
[25, 24]. The 28 measures currently implemented in
quest are listed in Table 4 and fully described in our
replication package. As post-retrieval measures require
the analysis of retrieval results for each query, we use
the results provided by Lucene to compute such mea-
sures. We chose Lucene, as the exploratory study in-
dicated that its standard configuration is one of the
better ones among the ones we studied (i.e., E1C1).
Using other TR engine or configuration for computing
the post-retrieval measures does not change our ap-
proach. Future work will investigate the use of other
TR configurations for the computation of the post-
retrieval measures.

2. For each query, quest then applies, one by one, a set of
TR configurations to rank the documents relevant to
the query and identifies the one performing the best
for each query. In feature and bug localization the
best configuration is the one that retrieves any of the
relevant artifacts to a query on the highest position in
the list of results (i.e., lowest e↵ectiveness values).

572

Table 4: Query property measures implemented by quest.
Property Measure

Maximum of the Inverse Document Frequency
Standard deviation of the Inverse Document Frequency
Average Inverse Collection Term Frequency
Maximum Inverse Collection Term Frequency
Standard deviation of the Inverse Collection Term Frequency
Average entropy
Median entropy
Maximum entropy
Standard deviation of the entropy.
Query Scope

Specificity (PRE)

Simplified Clarity Score
Average of the Variances
Maximum of Variances
Sum of Variances

Coherency (PRE)

Coherence Score
Average of the collection-query similarity
Maximum of the collection-query similaritySimilarity (PRE)
Sum of the collection-query similarity
Average Pointwise Mutual Information

Term Relatedness (PRE)
Maximum Pointwise Mutual Information
Subquery Overlap
Robustness Score
First Rank Change
Clustering Tendency

Robustness (POST)

Spatial Autocorrelation
Weighted Information Gain

Score distribution (POST)
Normalized Query Commitment

3. Then, each data point in the training set represents
a query described by a vector of n attributes corre-
sponding to the values of the query properties and one
attribute corresponding to the best TR configuration
for the query. This latter represents the class label of
a data point.

4. Finally, a supervised learning algorithm is run on the
training set. Currently, quest uses classification trees
[10], which produce human-understandable rules and
implicitly perform feature selection. This is important
for quest, as it reduces the sensitivity to the choice of
query property measures. In other words, given as in-
put all nmeasures of a query, the classification tree will
automatically determine those properties that are rel-
evant for the classification, with little overhead. Clas-
sification trees are generally suitable to solve problems
where the goal is to determine the values of a categor-
ical variable based on one or more continuous and/or
categorical variables. In our approach, the categorical
dependent variable is represented by the best TR con-
figuration to use for a particular query, while the inde-
pendent variables are the 28 query property measures.
The classifier uses the training data to automatically
select the independent variables and their interactions
that are most important in determining the dependent
variable to be explained. Future work will investigate
other learning algorithms.

Two approaches can be followed to train the classifier:
within-project (i.e., training a classifier for each software sys-
tem independently) and cross-project (i.e., training a global
classifier for all the considered systems). Cross-project train-
ing can be useful when training data for a specific software
system may not be obtained. Within-project training has
been shown to outperform cross-project training in previous
work [24] and our experimental evaluation from Section 5
confirms this trend also for quest.

A classification tree is the outcome of quest’s training
stage. In this tree, each root-to-leave path represents a series
of conditions or rules on the query properties that need to be

satisfied in order to reach a class label, given by the path’s
leaf.

4.3 Recommendation Phase
For a new query, quest computes the same n query prop-

erties considered in the training phase. Based on these val-
ues, quest uses the classification tree obtained in the train-
ing phase to automatically determine the TR configuration
that is expected to perform the best for the query. Finally,
the selected TR configuration is run to retrieve the docu-
ments relevant to the query.

5. QUEST EVALUATION STUDY
We conducted an empirical study to assess quest’s pre-

diction accuracy and to compare it with the traditional way
of applying TR approaches in software engineering (i.e., one
TR configuration for an entire data set), in the context of
feature and bug localization.

The study aims at answering the following two research
questions:

RQ1. How accurately does quest predict the best TR con-
figuration for a give query?

RQ2. Does quest improve feature and bug localization com-
pared to using a single TR configuration for a software
system?

5.1 Study Design
We built an instance of quest to perform the empirical

study. The methodology followed in this study is in many
ways similar to the exploratory study presented in Section
3, so we will not go into details whenever the same data or
settings were used and previously explained.

Data set. We used the same data set as in our ex-
ploratory study, consisting of 1,035 queries extracted from
resolved issues (i.e., feature requests and bug reports) of
12 versions of ten software systems, described in Table 1.
As a reminder, each query in the data set was extracted
from either the title, the description or the concatenated ti-

573

tle and description of an issue. For each query, the set of
methods that were modified in response to its corresponding
change request are known and represent the gold set used
to determine the performance of the TR configurations and
quest. The text corpus of a system contains its methods as
documents and each document contains the identifiers and
comments extracted from a method. Both the queries and
the corpus of each system were processed following the same
procedure as in the exploratory study.

Performance measurement. We measure the perfor-
mance of a TR configuration and of quest as its e↵ective-
ness, i.e., the position of the first relevant document in the
ranked list of retrieved results. As mentioned in Section 3
this is an inverse measure, so a lower value is better (i.e.,
an e↵ectiveness value of 1 is the best possible result, which
means that one of the relevant methods is ranked the highest
in the list of retrieved documents).

TR configurations. It is impractical to build classifi-
cation trees that select among 21 categories, so we limited
the number of TR configurations used in this study to eight.
We selected the ones with the highest percentage of queries
for which they obtain the best e↵ectiveness from our ex-
ploratory study (Table 2): E1C1, E2C3, E2C4, E3C1, E4C3,
E5C1, E6C1, and E6C2. The rationale behind this choice
is to ensure that there are enough samples in each category.
quest will consider each of these as a category and will rec-
ommend applying one of them for a given query, based on
its properties.

Training strategy. We used both within- and cross-
project strategies to train quest. In the within-project case,
one classification model was individually trained on each
system and a stratified 4-fold cross-validation was performed
following the next steps:

1. randomly divide the set of queries of a system into four
equal subsets (if possible), containing approximately
the same percentage of samples of each target class as
the complete set;

2. set aside one of the subsets as a test set and build the
classification model with the queries in the remaining
subsets (i.e., the training set);

3. use the classification model built on the training set to
identify the best TR configuration for the queries in
the test set;

4. repeat this process, setting aside each subset in turn.

Note that each query is used only once in the test set. In
the case of the cross-project training, the queries of 11 of the
systems in the data set are used for training and the queries
from the remaining project are used for evaluation. This is
repeated such that the queries in each project are tested.

In order to answer RQ1, we evaluate the fitness of the
training strategies by computing their top-k recommenda-
tion accuracy, this is, for each query, if the TR configura-
tion recommended by quest is in the top-k TR configura-
tions (i.e., the best k configurations according to the perfor-
mance measurement), we consider it as a success; otherwise,
we consider it as a failure.
Baselines. In order to answer RQ2, we considered each

of the eight TR configurations selected for the evaluation
as baselines and ran them for the entire data set. Then we
compared the results of applying each individual TR config-
uration to each system with the results obtained by running
the TR configuration recommended by quest for each indi-

Table 5: quest’s top-k recommendation accuracy

when using within- and cross-project training.

Training strategy System Top 1 Top 2 Top 3
apache-nutch-1.8 57% 75% 86%
apache-nutch-2.1 39% 62% 69%
bookkeeper-4.1.0 23% 58% 69%
commons-math3 3.0 62% 75% 79%
derby-10.9.1.0 31% 53% 73%
mahout-0.8 53% 70% 78%
openjpa-2.0.1 39% 70% 73%
pig-0.8.0 20% 34% 48%
pig-0.11.1 29% 45% 58%
solr-4.4.0 22% 39% 56%
tika-1.3 53% 63% 65%
zookeeper-3.4.5 30% 45% 70%

Within-project

Average 38% 57% 69%
Cross-project Average 13% 24% 35%

vidual query. The comparison was based on the e↵ectiveness
of the approaches and was made by considering the number
of queries for which the e↵ectiveness measure obtained by
quest improves, preserves, or deteriorates each of the base-
lines’ e↵ectiveness.

The sets of results were also analyzed through statistical
analysis using the Mann-Whitney test [14]. We chose this
test as we cannot assume normality of data and the test
does not make normality assumptions. The results are in-
terpreted as statistically significant at ↵ < 0.05. However,
since we performed multiple tests, we adjusted our p-values
using the Holm’s correction procedure [29]. This procedure
sorts the p-values resulting from n tests in ascending order,
multiplying the smallest by n, the next by n� 1, and so on.

5.2 Results
We present and discuss the results for each research ques-

tion separately.

5.2.1 RQ1—Classification Accuracy

Table 5 reports the top-k recommendation accuracy
achieved by quest when using within- and cross-project
strategies to train the classifier. The data reveals that the
classification model based on cross-project training is sig-
nificantly less accurate than the models built for each in-
dividual project. As expected, the accuracy of both the
training within- and cross-project strategies increases as the
top set increases its size k. The accuracy of the within-
project trained classification models varies from system to
system (see Table 5). The best top-1 recommendation ac-
curacy is achieved for the commons-math3 3.0 project, in
which the best possible TR configuration was selected 62%
of the times. This percentage increases to 79% when con-
sidering the top-3 TR configurations as success factor. The
worst top-1 accuracy corresponds to pig 0.8.0, where the
classification model predicted the best TR configuration in
only 20% of the cases. Recommending any of the top-3 con-
figurations increases the accuracy to 48% for this system.
On average, the within-project training ensures a success in
the selection of the top-k configuration in 38% of cases when
k = 1, 57% when k = 2, and 69% when k = 3 (see Table 5).

5.2.2 RQ2—Comparison with Baselines

In order to determine if query-based configuration brings
improvement over the traditional way of applying TR-based
approaches for feature and bug localization, we compared
quest with the eight considered baselines, according to the
procedure described in Section 5.1. Given the lower accuracy

574

Table 6: Percentage of queries for which quest im-

proved (in parenthesis, median of improved posi-

tions), preserved and deteriorated (in parenthesis,

median of deteriorated positions) the retrieval per-

formance with respect to each baseline.

Baseline Improved Preserved Deteriorated
(med. improv.) (med. deter.)

E1C1 27.8% (-84) 53.1% 19.1% (233.5)
E2C3 71.9% (-412) 16.6% 11.5% (159)
E2C4 67.8% (-367) 18.2% 14.0% (763)
E3C1 44.6% (-40) 25.5% 29.9% (66)
E4C3 41.3% (-53) 30.5% 28.2% (99)
E5C1 51.5% (-42.5) 21.4% 27.1% (75)
E6C1 35.7% (-48) 31.0% 33.3% (61)
E6C2 41.8% (-60.5) 29.0% 29.2% (66)
Average 47.8% (-138.4) 28.2% 24.0% (190.3)

results of the cross-project training described in the previ-
ous subsection, we focus here only on the recommendations
using the within-project training model.

Table 6 shows how quest’s recommended configuration
compares with the baselines, aggregated for all queries (i.e.,
1,035). The rows of the table correspond to each of the eight
baselines, and the columns show the percentages of queries
from the data set for which quest leads to an improved e↵ec-
tiveness measure (i.e., the TR configuration recommended
by quest led to a better e↵ectiveness measure than the TR
baseline on that row), preserved the same e↵ectiveness re-
sults (i.e., the TR configuration recommended by quest re-
turned the same e↵ectiveness value as the TR baseline on
the row), or deteriorated the e↵ectiveness measure (i.e., the
TR recommended by quest returned a higher e↵ectiveness
value than the TR baseline), respectively. The values in
parenthesis indicate the median change in the e↵ectiveness.

It must be pointed out that a lower e↵ectiveness value
indicates a better result, i.e., a lower rank in the list of re-
trieved results for the first relevant document to the query.
“Preserved” means that the e↵ectiveness measure was the
same between the baseline and the TR configuration recom-
mended by quest; however, in some cases this e↵ectiveness
actually represents the best value among all TR configu-
rations considered. Therefore, in some “preserved” cases,
quest’s recommendation led to the best results, even if the
baseline obtained the same value. When a TR-based feature
or bug localization technique improves in some cases com-
pared to a baseline and it deteriorates in other cases, it is
important to preserve the best results (i.e., where improve-
ments cannot be achieved). We consider these cases also a
successful recommendation; Table 7 lists these cases for the
comparison of quest with each baseline.
The results indicate that quest improves the e↵ectiveness

for 47.8% of the queries, maintains the e↵ectiveness for
28.2% of queries, and deteriorates the e↵ectiveness in 24.0%
of the cases, when averages across all eight baselines are
considered. Therefore, using the TR configuration recom-
mended by quest for each query results in an improved or
preserved e↵ectiveness for 76% of the queries. This means
that there are twice as many queries with improved results
than those for which the results deteriorate, compared
to the average baseline results. We note that among the
cases where the e↵ectiveness is preserved, quest’s TR
configuration led to the best e↵ectiveness results in more
than half (56.8%) of the cases (see Table 7).

Table 7: Queries for which the results were pre-

served by quest, but represent optimal results.

Baseline # Preserved # Preserved % Preserved
but Best but Best

E1C1 406 175 43.1%
E2C3 127 55 43.3%
E2C4 139 84 60.4%
E3C1 195 127 65.1%
E4C3 233 137 58.8%
E5C1 164 107 65.2%
E6C1 237 147 62.0%
E6C2 222 146 65.8%
All 1,723 978 56.8%

When compared to individual TR baselines, quest always
leads to more cases of improvement than deterioration of the
e↵ectiveness. The percentage of improved queries ranges
from 27.8%, when compared to E1C1 (with only 19.1% of
deterioration), to 71.9%, when compared to E2C3 (with only
11.5% of deterioration). We note, however, that for E1C1
43.1% of the preserved results represent the best results
among all TR configurations and therefore are successful
recommendations, as the e↵ectiveness cannot be improved.
Also, in E6C1, which has the second lowest percentage of
improved queries, 62% of the preserved e↵ectiveness results
are optimal. The highest improvement in e↵ectiveness was
obtained over E2C3. 71.9% of the results were improved,
and 43.3% of the preserved results are optimal. One must
also note that the median size of improvement in the e↵ec-
tiveness is somewhat lower than the size of the deterioration
(138 vs. 190—see Table 6). However, considering the larger
number of improvements than deteriorations, we consider
the results promising.

We performed also the Mann-Whitney statistical test
between the results obtained by the recommendation of
quest and those obtained by each of the baselines, in order
to see if the di↵erences between them are statistically sig-
nificant. After Holm’s correction, the results revealed three
baselines for which there is no statistically significant di↵er-
ence between the results of quest and that of the baseline.
These baselines are E2C3 (adjusted p-value of 3.95E-53),
E2C4 (adjusted p-value of 7.44E-31), and E6C1 (adjusted p-
value of 3.89E-03). While the results of the Mann-Whitney
test did not show statistically significant di↵erence between
the performance of quest and the rest of the TR baselines,
the results do show that overall quest improves the e↵ec-
tiveness measure.

As previously said, there is no single TR configuration
that performs the best across all systems (see Table 3 in Sec-
tion 3). Therefore, we performed a more in-depth analysis of
the comparison between the results of the baseline perform-
ing the best in each system and quest. Table 8 presents
the per-system results of this comparison, in terms of the
percentage of queries for which the results were improved,
preserved, or deteriorated. We observe that quest leads
to more improved queries than deteriorated ones for all but
two systems: solr-4.4.0 and zookeeper-3.4.5, where the
percentage of improved queries lags behind the percentage
of deteriorated ones. Incidentally, these are two of the sys-
tems where the predictor had the lowest accuracy (see Table
5). However, from the cases where the e↵ectiveness was pre-
served, 50% in solr-4.4.0 and 38.3% in zookeeper-3.4.5

represented optimal values that were preserved by quest’s
recommendation, when compared to the respective best TR

575

Table 8: Percentage of queries per system for which

quest improved (in parenthesis, median of improved

positions), preserved and deteriorated (in parenthe-

sis, median of deteriorated positions) the retrieval

performance with respect to the best TR baseline.

System Best Improved Preserved Deteriorated
baseline (med. improv.) (med. deter.)

apache-nutch-1.8 E1C1 29.2% (-3) 66.7% 4.2% (1)
apache-nutch-2.1 E2C3 61.5% (-111) 28.2% 10.3% (34)
bookkeeper-4.1.0 E1C1 30.6% (-5) 53.2% 16.1% (7.5)
commons-math3-3.0 E1C1 19.4% (-2) 69.4% 11.1% (23.5)
derby-10.9.1.0 E2C4 56.0% (-1,062) 34.7% 9.3% (770)
mahout-0.8 E1C1 25.0% (-20) 72.7% 2.3% (9,457)
openjpa-2.0.1 E2C4 37.8% (-1,948) 48.9% 13.3% (420)
pig-0.11.1 E1C1 33.8% (-312) 43.8% 22.5% (551.5)
pig-0.8.0 E5C1 39.7% (-65) 28.6% 31.7% (531)
solr-4.4.0 E6C1 24.1% (-10.5) 36.1% 39.8% (25)
tika-1.3 E1C1 37.8% (-93) 37.8% 24.4% (88)
zookeeper-3.4.5 E1C1 10.4% (-18) 76.4% 13.2% (68)
Average 33.8% (-304.1) 49.7% 16.5% (1,000.3)

baselines (i.e., E6C1 and E1C1). Over the entire data set,
the average number of queries with worse results than the
best individual baseline (i.e., 16.5%) is lower than the av-
erage of improved queries across all systems (i.e., 33.8%),
showing the potential of using TR configurations at query
level over system level.

We answer RQ2 as follows. quest’s recommended TR
configurations lead to better results for 47.8% of the queries,
it preserves the e↵ectiveness for 28.2% of the queries, and it
deteriorates the results for 24% of the queries. The results
are statistically significant for three of the eight baselines.
While the results indicate that there is room for improve-
ment, they are promising and support the use TR configu-
rations at query level.

6. THREATS TO VALIDITY
Regarding the construct validity, both the exploratory

study (Section 3) and the empirical study (Section 5) rely on
a query performance measure (i.e., the e↵ectiveness) that is
widely used in TR-based feature and bug localization stud-
ies and provides a proxy measure of the developer’s e↵ort in
a feature location task.

Several co-factors can influence our results (internal va-
lidity). We automatically extracted the set of queries used
in both studies from the online issues trackers of the object
systems. Such queries are approximations of actual user
queries and we believe that they resemble real usage scenar-
ios. Nonetheless, increasing the size of the data set could
a↵ect the classification model and its accuracy. Another
influencing co-factor is the set of query property measures
implemented by quest. We selected measures that capture
di↵erent aspects of the queries and have shown to be useful
in other SE tasks (e.g., query quality prediction and query
reformulation). The eight TR configurations selected for
the empirical study were the ones with most best ranked
instances, which ensures better distribution of classes in the
training data. Using a di↵erent set of TR configurations
can a↵ect the accuracy of the predictors. We believe, how-
ever, that quest will improve or preserve the performance of
traditional TR-based approaches in most of the cases. The
last co-factor is the computation of the post-retrieval query
properties based on Lucene. The results can vary when us-
ing another TR engine for this task.

Threats to conclusion validity concern the relationship be-
tween treatment and outcome. Where appropriate, we used

non-parametric statistical tests (Mann-Whitney) to show
statistical significance for the obtained results.

Concerning the generalization of the obtained results (ex-
ternal validity), we selected queries from 12 versions of ten
Java software systems from di↵erent domains and with dif-
ferent size. A larger set of queries from di↵erent systems
and written in other programming languages would clearly
strengthen the results from this perspective. Moreover, we
used eight TR configurations when training the classifica-
tion models. The results might vary when using other TR
configurations. Finally, we only evaluated the proposed ap-
proach in the context of feature and bug localization. Thus,
we cannot (and do not) generalize the results to other SE
tasks.

7. CONCLUSIONS AND FUTURE WORK
We proposed a novel approach, quest, which is the first

to perform query-specific TR configuration selection in the
context of a software engineering task. quest uses machine
learning techniques in order to learn the best TR configura-
tion to be used for each query. The learning is based on a
set of linguistic and statistical properties of the query itself,
the software corpus, and the list of results returned for it.
In an exploratory study, we found that choosing any indi-
vidual TR configuration to use for all the queries formulated
for a system or for an entire data set leads to suboptimal
results. Then, in our empirical evaluation, we showed that
quest is able to correctly assign one of the top-3 performing
TR configurations for a query with 69% accuracy on average
and, overall, it leads to improved results compared to any
individual TR configuration applied to the entire data set.

While we consider the results positive and promising,
there is room for improvement. For a few systems, and
when compared with a few TR configurations, quest lead
to slightly more queries for which the results deteriorated
than the number for which it improved. Our future work
will focus on determining what properties of the software
or queries led to this suboptimal performance and will fo-
cus on overcoming these cases. Other directions of future
work include: (i) considering more TR configurations in or-
der to determine a more variate set of post-retrieval query
measures, (ii) considering di↵erent classifiers, (iii) including
more TR configurations to choose from in quest, and (iv)
experimenting with the size of the training set to see the
impact it has on the accuracy of the prediction. Last but
not least, we will evaluate quest in the context of other
software engineering tasks where TR is used.

We believe the work presented in this paper opens the
door to a new research direction in TR-based software en-
gineering, which will take the query into the consideration
when applying TR techniques to SE tasks. Since develop-
ers often get discouraged from using tools if the results they
retrieve are not correct even for a few instances, we believe
that devising and perfecting an approach like quest could
have a positive impact on the adoption of TR approaches
by practitioners.

8. ACKNOWLEDGMENTS
Laura Moreno and Andrian Marcus are supported in part

by the National Science Foundation grants CCF-1526118
and CCF-085706. Sonia Haiduc is supported in part by the
National Science Foundation grant CCF-1526929.

576

9. REFERENCES
[1] A. Abadi, M. Nisenson, and Y. Simionovici. A

traceability technique for specifications. In Proceedings
of 16th IEEE Int’l Conf. on Program Comprehension,
pages 103–112, Amsterdam, The Netherlands, 2008.
IEEE CS Press.

[2] Amati, G Rijsbergen, Van Rijsbergen, and C. J.
Probabilistic models of information retrieval based on
measuring the divergence from randomness. ACM
Transactions on Information Systems, 20(4):357–389,
2002.

[3] G. Antoniol, G. Canfora, G. Casazza, and
A. De Lucia. Information retrieval models for
recovering traceability links between code and
documentation. In Proceedings of 16th IEEE Int’l
Conf. on Software Maintenance, pages 40–51, San
Jose, California, USA, 2000. IEEE CS Press.

[4] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IEEE Transactions on
Software Engineering, 28(10):970–983, 2002.

[5] J. Anvik, L. Hiew, and G. Murphy. Who should fix
this bug? In Proceedings of 28th IEEE/ACM Int’l
Conf. on Software Engineering, pages 361–370,
Shanghai, China, 2006. IEEE CS Press.

[6] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy,
L. H. Etzkorn, and N. A. Kraft. Configuring latent
Dirichlet allocation based feature location. Empirical
Software Engineering, 19(3):465–500, Aug. 2012.

[7] D. Binkley, D. Heinz, D. Lawrie, and J. Overfelt.
Understanding LDA in source code analysis. In
Proceedings of the 22Nd Int’l Conf. on Program
Comprehension, pages 26–36, New York, NY, USA,
2014. ACM.

[8] D. Binkley and D. Lawrie. Learning to rank improves
IR in SE. In Proceedings of the 20th IEEE Int’l Conf.
on Software Maintenance and Evolution, pages
441–445, Sept. 2014.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. The Journal of Machine Learning
Research, 3:993–1022, 2003.

[10] L. Breiman, J. Friedman, C. Stone, and R. Olshen.
Classification and Regression Trees. Chapman and
Hall, 1984.

[11] G. Canfora and L. Cerulo. Fine grained indexing of
software repositories to support impact analysis. In
Proceedings of the 2006 Int’l Workshop on Mining
Software Repositories, pages 105–111, New York, NY,
USA, 2006. ACM.

[12] D. Carmel and E. Yom-Tov. Estimating the query
di�culty for information retrieval. In Proceedings of
the 33rd Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 911–911,
New York, NY, USA, 2010. ACM.

[13] S. Clinchant and E. Gaussier. Information-based
models for ad hoc IR. In Proceedings of the 33rd Int’l
ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 234–241, New York, NY,
USA, 2010. ACM.

[14] W. J. Conover. Practical Nonparametric Statistics.
Wiley, 3rd edition edition, 1998.

[15] A. De Lucia, M. Risi, G. Tortora, and G. Scanniello.

Clustering algorithms and latent semantic indexing to
identify similar pages in web applications. In 9th IEEE
Int’l Workshop on Web Site Evolution, pages 65–72,
Oct. 2007.

[16] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: a taxonomy and
survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

[17] D. Falessi, G. Cantone, and G. Canfora. Empirical
principles and an industrial case study in retrieving
equivalent requirements via natural language
processing techniques. IEEE Transactions on Software
Engineering, 39(1):18–44, Jan. 2013.

[18] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In 19th Int’l Conf. on Software
Maintenance, pages 23–32, Amsterdam, The
Netherlands, 2003. IEEE Computer Society.

[19] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. On
the use of relevance feedback in IR-based concept
location. In Proceedings of the 15th IEEE Int’l Conf.
on Software Maintenance, pages 351–360, Sept. 2009.

[20] X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and
H.-Y. Shum. Query dependent ranking using k-nearest
neighbor. In Proceedings of the 31st Annual Int’l ACM
SIGIR Conf. on Research and Development in
Information Retrieval, pages 115–122, New York, NY,
USA, 2008. ACM.

[21] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D.
Lucia. On integrating orthogonal information retrieval
methods to improve traceability recovery. In
Proceedings of the Int’l Conf. of Software
Maintenance, pages 133–142, 2011.

[22] S. Grant and J. Cordy. Estimating the optimal
number of latent concepts in source code analysis. In
10th IEEE Working Conf. on Source Code Analysis
and Manipulation, pages 65–74, Sept. 2010.

[23] S. Grant, J. R. Cordy, and D. B. Skillicorn. Using
heuristics to estimate an appropriate number of latent
topics in source code analysis. Science of Computer
Programming, 78(9):1663–1678, 2013.

[24] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto,
A. De Lucia, and T. Menzies. Automatic query
reformulations for text retrieval in software
engineering. In Proceedings of the 2013 Int’l Conf. on
Software Engineering, pages 842–851, Piscataway, NJ,
USA, 2013. IEEE Press.

[25] S. Haiduc, G. Bavota, R. Oliveto, A. De Lucia, and
A. Marcus. Automatic query performance assessment
during the retrieval of software artifacts. In
Proceedings of the 27th IEEE/ACM Int’l Conf. on
Automated Software Engineering, pages 90–99, New
York, NY, USA, 2012. ACM.

[26] C. Hau↵. Predicting the e↵ectiveness of queries and
retrieval systems. SIGIR Forum, 44(1):88–88, Aug.
2010.

[27] B. He and I. Ounis. Inferring query performance using
pre-retrieval predictors. In SPIRE, pages 43–54, 2004.

[28] J. He, M. Larson, and M. De Rijke. Using
coherence-based measures to predict query di�culty.
In Proceedings of the IR Research, 30th European
Conf. on Advances in Information Retrieval, pages

577

689–694, Berlin, Heidelberg, 2008. Springer-Verlag.
[29] S. Holm. A simple sequentially rejective Bonferroni

test procedure. Scandinavian Journal on Statistics,
6:65–70, 1979.

[30] I.-H. Kang and G. Kim. Query type classification for
web document retrieval. In Proceedings of the 26th
Annual Int’l ACM SIGIR Conf. on Research and
Development in Informaion Retrieval, pages 64–71,
New York, NY, USA, 2003. ACM.

[31] A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic
clustering: Identifying topics in source code.
Information and Software Technology, 49(3):230–243,
2007.

[32] T.-Y. Liu. Learning to Rank for Information Retrieval.
Springer Berlin Heidelberg, 2011.

[33] T.-Y. Liu. Query-dependent ranking. In Learning to
Rank for Information Retrieval, pages 113–121.
Springer Berlin Heidelberg, 2011.

[34] K. K. Lo, M. K. Chan, and E. Baniassad. Isolating
and relating concerns in requirements using latent
semantic analysis. In Proceedings of ACM SIGPLAN
Int’l Conf. on Object-Oriented Programming, Systems,
Languages and Applications, pages 383–396, Portland,
Oregon, USA, 2006. ACM Press.

[35] S. Lohar, S. Amornborvornwong, A. Zisman, and
J. Cleland-Huang. Improving trace accuracy through
data-driven configuration and composition of tracing
features. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages
378–388, New York, NY, USA, 2013. ACM.

[36] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug
localization using latent Dirichlet allocation.
Information and Software Technology, 52(9):972–990,
Sept. 2010.

[37] A. Marcus and G. Antoniol. On the use of text
retrieval techniques in software engineering. In 34th
IEEE/ACM Int’l Conf. on Software Engineering,
Technical Briefing, 2012.

[38] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic.
An information retrieval approach to concept location
in source code. In Proceedings of 11th Working Conf.
on Reverse Engineering, pages 214–223, Delft, The
Netherlands, 2004. IEEE CS Press.

[39] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V.
Nguyen, and T. Nguyen. A topic-based approach for
narrowing the search space of buggy files from a bug
report. In 2011 26th IEEE/ACM Int’l Conf. on
Automated Software Engineering, pages 263–272, Nov.
2011.

[40] A. Panichella, B. Dit, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia. How to e↵ectively
use topic models for software engineering tasks? an
approach based on genetic algorithms. In Proceedings
of the 2013 Int’l Conf. on Software Engineering, pages
522–531, Piscataway, NJ, USA, 2013. IEEE Press.

[41] V. Plachouras, B. He, and I. Ounis. University of
Glasgow at trec 2004: Experiments in web, robust,
and terabyte tracks with terrier. In Proceedings of the
13th Text REtrieval Conf. NIST Special Publication,
2004.

[42] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of

the 21st Annual Int’l ACM SIGIR Conf. on Research
and Development in Information Retrieval, pages
275–281, New York, NY, USA, 1998. ACM.

[43] M. F. Porter. An algorithm for su�x stripping.
Program, 14(3):130–137, 1980.

[44] S. Rao and A. Kak. Retrieval from software libraries
for bug localization: A comparative study of generic
and composite text models. In Proceedings of the 8th
Working Conf. on Mining Software Repositories,
pages 43–52, New York, NY, USA, 2011. ACM.

[45] S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-Beaulieu, and M. Gatford. Okapi at
TREC-3. pages 109–126, 1996.

[46] Z. Shi, J. Keung, and Q. Song. An empirical study of
bm25 and bm25f based feature location techniques. In
Proceedings of the Int’l Workshop on Innovative
Software Development Methodologies, pages 106–114,
New York, NY, USA, 2014. ACM.

[47] A. Shtok, O. Kurland, and D. Carmel. Predicting
query performance by querydrift estimation. In 2nd
Int’l Conf. on Theory of Information Retrieval, 2009.

[48] S. Thomas, M. Nagappan, D. Blostein, and A. Hassan.
The impact of classifier configuration and classifier
combination on bug localization. IEEE Transactions
on Software Engineering, 39(10):1427–1443, Oct. 2013.

[49] S. Wang, D. Lo, and J. Lawall. Compositional vector
space models for improved bug localization. In
Proceeding of the 20th IEEE Int’l Conf. on Software
Maintenance and Evolution, pages 171–180, Sept.
2014.

[50] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang,
and H. Mei. Boosting bug-report-oriented fault
localization with segmentation and stack-trace
analysis. In 2014 IEEE Int’l Conf. on Software
Maintenance and Evolution (ICSME), pages 181–190,
Sept. 2014.

[51] J. Yang and L. Tan. Inferring semantically related
words from software context. In 9th IEEE Working
Conf. on Mining Software Repositories, pages
161–170, 2012.

[52] X. Ye, R. Bunescu, and C. Liu. Learning to rank
relevant files for bug reports using domain knowledge.
In Proceedings of the 22nd ACM SIGSOFT Int’l
Symposium on Foundations of Software Engineering,
pages 689–699, New York, NY, USA, 2014. ACM.

[53] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow.
Metasearch and federation using query di�culty
prediction. In 28th Annual Int’l ACM SIGIR Conf. on
Research and Development in Information Retrieval,
Workshop on Query prediction and its applications,
2005.

[54] C. Zhai and J. La↵erty. A study of smoothing methods
for language models applied to information retrieval.
ACM Trans. Inf. Syst., 22(2):179–214, Apr. 2004.

[55] Y. Zhou and W. B. Croft. Ranking robustness: a
novel framework to predict query performance. In 15th
ACM Int’l Conf. on Information and Knowledge
Management, 2006.

[56] Y. Zhou and W. B. Croft. Query performance
prediction in web search environments. In 30th Annual
Int’l ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 543–550. ACM, 2007.

578

