
Barbara Liskov
• American

• MIT

• 2008 Alan Turin award

• The Liskov principle

(B. Liskov, J. Wing, 1994)

4/25/16 Barbara Russo 1

Extension and Contraction
• Inheritance can extend:

– the behavior and data associated with the child class is a
larger set that the behavior and data associated with the
parent class

• Inheritance can contract:
– the child class is a more specialized or restricted form of the

parent class

Barbara Russo 2

Example (Contraction)
public class CardPile {

 int x, y;

 Stack thePile;

 public CardPile (int x1, int yl) {
 x = xl;
 y = yl;
 thePile = new Stack();
 }
 public void addCard (Card aCard) {
 thePile.push(aCard);
 }

class DiscardPile extends CardPile {

 public DiscardPile (int x, int y) {
 super (x, y);
 }

 public void addCard (Card aCard){
 if (!aCard.faceUp()){
 aCard.flip();

 super.addCard(aCard);
 }
 }
 ...
}

The addCard method has been
restricted

Example (Extension)
public class CardPile {

 int x, y;

 Stack thePile;

 public CardPile (int x1, int yl) {
 x = xl;
 y = yl;
 thePile = new Stack();
 }
 public void addCard (Card aCard) {
 thePile.push(aCard);
 }

 Suite mySuite;

 public int countSuiteCards(){

 return mySuite.length;

 }

}

A new method is added

Subclass, Subtype and Substitutability
• Subclassing and subtyping is not exactly the same

thing

Barbara Russo 5

Liskov principle of substitutability
• The Liskov principle of substitutability says that given

two classes A and B, where B is a subclass of A, it
should be possible

to replace any instance of class A with instances of
class B in any situation with no observable effect

4/25/16 Barbara Russo 6

Example
• RacingBike and LightedBike classes are subclasses of

Bike

• Bike class has goHome() method that

• Pre-condition: Requires that the sun has not yet
set and

• Post-condition: it gets you home in exactly 10
minutes

Barbara Russo 7

Example
• In LightedBike, goHome() has

• Weaker Pre-condition: It does not require that the
sun has not yet set, since it has a light it will work
perfectly well under this adverse condition

• Same Post-condition: it gets you home in 10
minutes,

• Then LightedBike satisfies the contract of
Substitutability because it requires less and promises
the same effects

Barbara Russo 8

Pre-conditions
• A pre-condition tells you when to use the class

• The pre-condition is typically seen in the code in
which the instance is used:

 if (!Sun.set(t)){
 Bike myBike= new Bike();
 myBike.goHome();
 }

4/25/16 Barbara Russo 9

Substituting

 if (!Sun.set(t)){
 Bike myBike= new LightedBike();
 myBike.goHome();
 }

4/25/16 Barbara Russo 10

Liskov principle of substitutability
• If RacingBike, goHome() has
• Same Pre-condition: requires that the sun has not yet set,
• Post-condition changing the invariant: (time to go home):

gets you home in 5 minutes,
• Then RacingBike breaks the contract of

Substitutability

Barbara Russo 11

Liskov principle of substitutability
• Even though someone might consider it beneficial that

the method takes 5 minutes less to perform, Bike
specifies that it would take exactly 10 minutes

• If a code relies on the fact that the goHome() would
take 10 minutes and someone has maliciously passed a
RacingBike when it was expected a Bike, the code
would no longer behave predictably

Barbara Russo 12

Liskov principle of substitutability
• The base cannot be extended without to code it

again
• If I wanted to extend Bike with RacingBike then I had to re-

code Bike in order it to know about the behaviour of
RacingBike

• In our case, Bike has to allow going home in 5 minutes too
(e.g, between 10 and 5 minutes)

Barbara Russo 13

4/25/16 Barbara Russo 14

• Breaking the substitutability principle implies breaking
the open/closed principle of object programming

Open/closed principle

Barbara Russo 15

Open/closed principle Bertrand Meyer (1988 "Object
Oriented Software Construction" book):

an entity is open to extension and closed to
implementation

• Subclasses must extend bases without any further
implementation of the code of the base

Open/closed principle

Liskov conditions
• Preconditions cannot be strengthened in a subtype

• Postconditions cannot be weakened in a subtype

• Invariants of the supertype must be preserved in a
subtype

4/25/16 Barbara Russo 16

Subtyping and Subclassing
• Subtyping and subclassing are different in how they do

or do not follow the Liskov principle.
– Subtyping does follow the principle of Liskov

Barbara Russo 17

 Forms of Inheritance
• Inheritance is used in a surprisingly variety of ways. Some

general abstract categories are:

– Subclassing for specialization
– Subclassing for specification
– Subclassing for construction
– Subclassing for generalization
– Subclassing for extension
– Subclassing for limitation
– Subclassing for variance
– Subclassing for combination

Barbara Russo 18

 Forms of Inheritance
• The different types of inheritance depend on how the

specifications of the parent classes are respected or
modified in the child classes

4/25/16 Barbara Russo 19

Subclassing for Specialization
• The child class is a

specialized form of the parent
class but satisfies the
specifications of the parent
class completely

• The principle of
substitutability is explicitly
upheld

• Is an ideal form of
inheritance, good designs
should strive for it

Barbara Russo 20

Component

move()
resize()

TextWindow

iconify()

Subclassing for Specification
• The child class implements the

behaviour described, which it is not
implemented in the parent class though

• The parent class is an abstract class; it is
not permitted to create instances of it

• It does not break the Liskov principle
as children implement exactly the
specifications of the parent class

Barbara Russo 21

Graphical Object

move() //no impl
draw() //no impl

Ball

move()
draw()

Card

move()
draw()

Abstract

Subclassing for Construction
• The child class gets most of its

desired functionality from the
parent class only changing names
of methods or modifying arguments

• But the methods of the parent are
not part of the specifications of
the subclass

• It breaks the principle of
substitutability intentionally

• Opens a fast and easy route to new
data abstractions

Barbara Russo 22

List

add()

Set

insert()

Stack

push()

Set does not have the
ordering property of the
list

Subclassing for Generalization
• The child class modifies or extends the parent

class to obtain a more general kind of object. A
colored window generalizes a window class
that might have only white background

• At least one method of the parent must be
overridden.

• Used when building upon a base of existing
classes that are difficult to modify

• Should be avoided in favour of inverting the
class hierarchy and using subclassing for
specialization

• It is not subtyping

Barbara Russo 23

Window

display()

ColoredWindow

Color
display() //override

Subclassing for Extension
• Adds totally new abilities to

the subclass;
• new methods are added to

those of the parent with a
functionality that is not
strongly tied with the
existing methods

• As the functionality of the
parent class remains
untouched it obeys the
principle of substitutability

Barbara Russo 24

Set

insert()
is-element-of?

StringSet

searchPrefix()

Subclassing for Limitation
• The subclass modifies or

overrides methods of the
parent class to eliminate
functionality leaving a
subclass with smaller or
more restrictive behavior

• In an explicit
contravention of the
principle of substitutability

• Also used when an existing
base is hard to modify

Barbara Russo 25

Deque

pushFront()
pushBack()

Stack

pushBack() //error

Deque (short for double-
ended queue) is an
abstract data structure for
which elements can be
added to or removed from
the front or back.
The stack object can only
push front (First in Last
out)

It overrides the
method by
explicitly rising an
exception if it
pushes back

Subclassing for Variance
• It is employed when two classes have

similar implementations but no
conceptual hierarchical relation

• One of the two classes is arbitrarily
selected to be parent; the common code
in inherited, the specific code is
overridden

• Usually a better alternative is to factor
out the common code and have the two
classes inherit from a common superclass

• It breaks the substitutability principle

Barbara Russo 26

Mouse

markPosition()
select()

GraphicsTablet

markPosition()

Subclassing for Combination
• Used to give the subclass a

combination of features from
two or more parent classes

• Also known as multiple
inheritance; in java
implemented with delegation

• Becomes a problem when
clashes occur

• It does follow the Liskov
principle

Barbara Russo 27

Teaching-Assistant

Teacher
AccessPriv
giveGrade()

Student
AccessPriv
getGrade()

