
Barbara Russo. Advanced Programming

The Java architecture

Advanced Programming

1

Barbara Russo. Advanced Programming

The Java architecture - overview
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!

Java!Compiler!
(javac)! Class!Loader!

Byte!Code!
Verifier!

Java!Virtual!
Machine!with!JIT!

Compiler!!
HotSpot!

Source!
Code!
(.java)!

Byte!
Code!
(.class)!

Machine!
Code!

Java!Run!Time!Environment!(JRE)!

Operating!System!

0101111011…!

Software!Development!Kit!(SDK)!

2

Barbara Russo. Advanced Programming

Central Process Unit
– Central Processing Unit (CPU) (or simply processor)

executes bits operations

3

Barbara Russo. Advanced Programming

The machine code
• A machine code is a set of bits operations executed by

the CPU

• Instructions are patterns of bits that by physical
design correspond to different commands to the
machine

4

Barbara Russo. Advanced Programming

Example of machine instruction

[op | rs | rt | rd |shamt|funct]
 0 1 2 6 0 32 decimal

 000000 00001 00010 00110 00000 100000 binary

(R-type operation)
Adding register 1 and 2 and placing to register 6; “funct”
describes the operation

Machine code is not that readable for human being

You can learn more in the Architecture of Digital System
course!

5

Barbara Russo. Advanced Programming

Machine code is not portable
– Systems may differ in some details, e.g.,

– memory arrangement,

– operating systems, or

– peripheral devices

– Thus, systems will not run the same machine code
even when the same type of processor is used

6

Barbara Russo. Advanced Programming

Machine code is not portable
• Every processor or processor family has its own

machine code instruction set

• Each processor can manage one or more cores

7

Barbara Russo. Advanced Programming

Compilation
– Machine code is not portable and human beings may

have hard time to read it

– Higher level languages allow to write code that
humans can better understand, but they have to be
translated into machine code

– Translation has two forms: compilation and
interpretation

8

Barbara Russo. Advanced Programming

Compilation
• Compiler: faster

– Read the code once and prepare it to be executed by the
given CPU

– Good compilers can perform optimisations

• Interpreter: portable
– It reads each code line by line and translates end executes it

every time

– It is independent from the CPU implementation (e.g., it does
not need to store any code prepared for the CPU)

9

Barbara Russo. Advanced Programming

Example - Interpretation
• Example: how can the following statement be

executed?

– A[i][j] = 1;

• Create a software environment that understands the
language (in this case the 2-dimensional array)

• Run the statement: just put 1 in the array entries

10

Barbara Russo. Advanced Programming

Interpretation
• This is interpretation since the software environment

understands the language and performs the operations
specified by interpreting the statement in one shot

• If the statement appears another time the interpreter
repeat the whole process

11

Barbara Russo. Advanced Programming

Example - Compilation
• Example: how can the following statement be

executed?

– A[i][j] = 1;

• Translate the statements into native machine (or
assembly language) and then run the program on the
CPU

12

Barbara Russo. Advanced Programming

Compilation
• A good compiler performs a set of optimisations:

• for instance, while it looks up for a variable in the RAM
(main memory), it performs other CPU operations on the
rest of the machine code until the variable has been retrieved

• This is possible because the whole code as been
translated into machine code and the compiler needs
not to translate it again

13

Storage hierarchy in computer

14

Barbara Russo. Advanced Programming

Example
• An if statement is always an if statement each time it's

encountered, so that analysis can be done once.

• Which branch will be taken depends on the runtime
value of an expression

• The compiler emits code to test the value of the
expression and take the appropriate branch

• The execution will decide which branch on the runtime
value of an expression

15

Barbara Russo. Advanced Programming

Compilation and interpretation
• In general, which approach is more efficient?

– A[i][j] = 1;

05/05/15

Compilation:
salq $2, %rax
addq %rcx, %rax
leaq 0(,%rax,4),
%rdx
addq %rdx, %rax
salq $2, %rax
addq %rsi, %rax
movl $1, A(,%rax,
4)

Interpretation:
create a software environment
that understand the language
put 1 in the array entry A[i][j];

16

Barbara Russo. Advanced Programming

Interpretation
• Interpreting a code cannot perform much optimisation

as it knows only the instructions for part of the code
until the line that has been interpreted

• To interpret a code in a specific language, we need to
have an environment that compiles and executes
(both!) the code line by line

• Thanks to its environment the language is portable

17

Barbara Russo. Advanced Programming

Interpretation - portability
• An example are PHP or Python and many scripting

languages (e.g., Java script)

• Example: when we call "php -file.php” from a shell
command, we are invoking such environment

• The good aspects of such environment is that they can
be easily used in web browser

18

Barbara Russo. Advanced Programming

Interpretation
• Programming languages can be compiled or

interpreted or both

• The Java architecture is a good example to see how
compilation and interpretation work together

19

Barbara Russo. Advanced Programming

Java Standard Edition platform- JSE
• JSE is a set of specifications for a software

environment in which a Java program is compiled and
runs

• It consists of several components

20

Barbara Russo. Advanced Programming

Java Standard Edition platform- JSE
• Every implementation of JSE platform must adhere to

the following specifications

– Development tools to compile, run, monitor, debug, and
document an application

– Application Programming Interface - API

– Deployments tools

– User Interface Toolkits

– Integration Libraries

21

The Java architecture
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!

Java!Compiler!
(javac)! Class!Loader!

Byte!Code!
Verifier!

Java!Virtual!
Machine!with!JIT!

Compiler!!
HotSpot!

Source!
Code!
(.java)!

Byte!
Code!
(.class)!

Machine!
Code!

Java!Run!Time!Environment!(JRE)!

Operating!System!

0101111011…!

Software!Development!Kit!(SDK)!

22

Barbara Russo. Advanced Programming

Oracle implementation of JSE

23

Barbara Russo. Advanced Programming

Java tools - shell commands
• javac - Java compiler; javac foo.java

• java - Java Application launcher; java foo 1 12 3 4

• jdb - Java debugger; jdb foo 1 12 3 4

• javadoc - Java API doc. generator; javadoc

• jar - java archive tool; java -jar foo.jar

• javap - Java class file disassembler; javap foo.class

24

Barbara Russo. Advanced Programming

Example with javadoc
• My project contains the package com.test and I want

to put the generated documentation in files located in a
specific folder like this: C:/javadoc/test

• javadoc -d C:/javadoc/test com.test

• javadoc -d [path to javadoc destination directory]
[package name]

25

Barbara Russo. Advanced Programming

Java compilation

26

!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!

Java!Compiler!
(javac)! Class!Loader!

Byte!Code!
Verifier!

Java!Virtual!
Machine!with!JIT!

Compiler!!
HotSpot!

Source!
Code!
(.java)!

Byte!
Code!
(.class)!

Machine!
Code!

Java!Run!Time!Environment!(JRE)!

Operating!System!

0101111011…!

Software!Development!Kit!(SDK)!

Barbara Russo. Advanced Programming

Java compilation
• In Java, we can simply write the source code in plain

text files ending with the .java extension

• With the help of the java compiler (javac), source files
are then compiled into class files ending with the .class
extension

27

Barbara Russo. Advanced Programming

The Java Run-time Environment

28

!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!

Java!Compiler!
(javac)! Class!Loader!

Byte!Code!
Verifier!

Java!Virtual!
Machine!with!JIT!

Compiler!!
HotSpot!

Source!
Code!
(.java)!

Byte!
Code!
(.class)!

Machine!
Code!

Java!Run!Time!Environment!(JRE)!

Operating!System!

0101111011…!

Software!Development!Kit!(SDK)!

Barbara Russo. Advanced Programming

JRE
• The implementation of a JVM performs the following

actions

• Load,

• Link,

• Resolve, and

• Initialise classes and interfaces

29

Barbara Russo. Advanced Programming

Executing
• A .class file contains bytecode written in the language

understandable by the Java Virtual Machine (JVM)

• The byte code has a hardware-and-operating-system-
independent binary format

• The class loader dynamically reads binary names
of .class files (i.e., package name and class name like
java.lang.String) at run-time and search for these
names in the file system

30

Barbara Russo. Advanced Programming

Loading- class loader
• Find the binary representation of a class or interface

type with a particular name and create a class or
interface file from that binary representation

• If such class file is not found the the loading throws
the exception: ClassNotFoundException

31

Barbara Russo. Advanced Programming

Linking
• Linking verifies and prepares the correctness of a type

so that it can be executed.

– Preparing allocates memory for the static field of
classes and interfaces and initialise them to their
default values

– Verifying ensures that the binary representation of a
class is structurally correct

32

Barbara Russo. Advanced Programming

Resolving
• Resolving associates references to run-time values

33

Barbara Russo. Advanced Programming

Initialising
• Initialise classes and interfaces

• Initialisation defines the values of class or interface
variables

34

Barbara Russo. Advanced Programming

Java Virtual Machine - JVM
• The JVM is an abstract entity that is instantiated for

different operating environments (Microsoft Windows,
Solaris Operating System, Linux, or Mac OS)

• The JVM is a "virtual machine" : it aims at emulating
the machine (CPU) interpreting the byte code

• The SUN JVM http://hg.openjdk.java.net/jdk8

35

Barbara Russo. Advanced Programming

JVM
• As the JVM is available on many operating systems,

the same .class can be translated into machine code on
different OSs

• Interpreters have been considered slow, but Java
interpreter runs compiled byte-code and as such it is a
relatively fast

• Last versions of JVM have adopted JIT compilation
that make JVM even faster

36

Barbara Russo. Advanced Programming

Just-In-Time (JIT) compilation
• The JIT translation consists of having a compiler

which generates code for an application (or class
library) during the execution of the application itself

• JIT cannot be performed on the whole byte code

37

Barbara Russo. Advanced Programming

Adaptive compilation
• Programs spend almost all of their time executing a

relatively small part of the code again and again

• The chunk of code that is executed repeatedly may
only be a small percent of the total program, but its
behaviour determines the program's overall
performance

38

Barbara Russo. Advanced Programming

Adaptive compilation
• The adaptive compilation first profiles the code while

it is executing, to see what parts are being executed
repeatedly

• Once it knows it, it translates only these sections into
machine code

39

Barbara Russo. Advanced Programming

Adaptive compilation
• Since it only compiles a small portion of the byte code,

it can afford to take the time necessary to optimise
those portions

• The rest of the program may not need to be compiled
at all - just interpreted - saving memory and time (JIT)

40

Barbara Russo. Advanced Programming

The JIT HotSpot VM
• HotSpot http://openjdk.java.net/groups/hotspot/ is a

JVM that uses the JIT translation and adaptive
compilation

• HotSpot implements the JVM Specification, it is
written in C/C++ and is delivered as a shared library in
JRE

41

Barbara Russo. Advanced Programming

The JIT HotSpot VM
• It allows the interpreter time to "warm up" Java

methods, by executing them thousands of times

• The first execution of the program can be a bit slower

• It uses a configurable invocation-count threshold to
decide which methods to compile

42

Barbara Russo. Advanced Programming

Compiling and executing
• The java loader runs the file with an instance of the

JVM, specific for each CPU and operating system

• Before passing the class file loaded in the run-time
environment, the Java verifier checks the fields for
security

43

