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The Java architecture - overview
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Central Process Unit
– Central Processing Unit (CPU) (or simply processor) 

executes bits operations
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The machine code 
• A machine code is a set of bits operations executed by 

the CPU 

• Instructions are patterns of bits that by physical 
design correspond to different commands to the 
machine
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Example of machine instruction

[  op  |  rs |  rt |  rd |shamt|funct]
    0     1     2     6     0     32     decimal

 000000 00001 00010 00110 00000 100000  binary

(R-type operation)  
Adding register 1 and 2 and placing to register 6; “funct” 
describes the operation 

Machine code is not that readable for human being 

You can learn more in the Architecture of Digital System 
course! 
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Machine code is not portable
– Systems may differ in some details, e.g., 

– memory arrangement,  

– operating systems, or  

– peripheral devices 

– Thus, systems will not run the same machine code 
even when the same type of processor is used
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Machine code is not portable
• Every processor or processor family has its own 

machine code instruction set  

• Each processor can manage one or more cores
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Compilation
– Machine code is not portable and human beings may 

have hard time to read it 

– Higher level languages allow to write code that 
humans can better understand, but they have to be 
translated into machine code  

– Translation has two forms: compilation and 
interpretation
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Compilation
• Compiler: faster 

– Read the code once and prepare it to be executed by the 
given CPU 

– Good compilers can perform optimisations  

• Interpreter: portable 
– It reads each code line by line and translates end executes it 

every time 

– It is independent from the CPU implementation (e.g., it does 
not need to store any code  prepared for the CPU)
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Example - Interpretation
• Example: how can the following statement be 

executed? 

– A[i][j] = 1; 

• Create a software environment that understands the 
language (in this case the 2-dimensional array)  

• Run the statement: just put 1 in the array entries
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Interpretation
• This is interpretation since the software environment 

understands the language and performs the operations 
specified by interpreting the statement in one shot 

• If the statement appears another time the interpreter 
repeat the whole process
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Example - Compilation
• Example: how can the following statement be 

executed? 

– A[i][j] = 1; 

• Translate the statements into native machine (or 
assembly language) and then run the program on the 
CPU
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Compilation
• A good compiler performs a set of optimisations:  

• for instance, while it looks up for a variable in the RAM 
(main memory), it performs other CPU operations on the 
rest of the machine code until the variable has been retrieved 

• This is possible because the whole code as been 
translated into machine code and the compiler needs 
not to translate it again
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Storage hierarchy in computer
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Example
• An if statement is always an if statement each time it's 

encountered, so that analysis can be done once.  

• Which branch will be taken depends on the runtime 
value of an expression 

• The compiler emits code to test the value of the 
expression and take the appropriate branch 

• The execution will decide which branch on the runtime 
value of an expression
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Compilation and interpretation
• In general, which approach is more efficient? 

– A[i][j] = 1;

05/05/15

Compilation:
salq    $2, %rax
addq    %rcx, %rax
leaq    0(,%rax,4), 
%rdx
addq    %rdx, %rax
salq    $2, %rax
addq    %rsi, %rax
movl    $1, A(,%rax,
4)

Interpretation:
create a software environment 
that understand the language
put 1 in the array entry A[i][j];
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Interpretation
• Interpreting a code cannot perform much optimisation 

as it knows only the instructions for part of the code 
until the line that has been interpreted 

• To interpret a code in a specific language, we need to 
have an environment that compiles and executes 
(both!) the code line by line 

• Thanks to its environment the language is portable
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Interpretation - portability
• An example are PHP or Python and many scripting 

languages (e.g., Java script) 

• Example: when we call "php -file.php” from a shell 
command, we are invoking such environment 

• The good aspects of such environment is that they can 
be easily used in web browser
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Interpretation
• Programming languages can be compiled or 

interpreted or both  

• The Java architecture is a good example to see how 
compilation and interpretation work together
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Java Standard Edition platform- JSE 
• JSE is a set of specifications for a software 

environment in which a Java program is compiled and 
runs  

• It consists of several components
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Java Standard Edition platform- JSE 
• Every implementation of JSE platform must adhere to 

the following specifications 

– Development tools to compile, run, monitor, debug, and 
document an application  

– Application Programming Interface - API 

– Deployments tools  

– User Interface Toolkits  

– Integration Libraries 
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Oracle implementation of JSE
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Java tools - shell commands
• javac - Java compiler;  javac foo.java 

• java - Java Application launcher; java foo  1 12 3 4 

• jdb - Java debugger; jdb foo  1 12 3 4 

• javadoc - Java API doc. generator; javadoc  

• jar - java archive tool; java -jar foo.jar 

• javap -  Java class file disassembler; javap foo.class
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Example with javadoc
• My project contains the package com.test and I want 

to put the generated documentation in files located in a 
specific folder like this: C:/javadoc/test 

• javadoc -d C:/javadoc/test com.test 

• javadoc -d [path to javadoc destination directory] 
[package name]
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Java compilation
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Java compilation
• In Java, we can simply write the source code in plain 

text files ending with the .java extension 

• With the help of the java compiler (javac), source files 
are then compiled into class files ending with the .class 
extension
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The Java Run-time Environment
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JRE
• The implementation of a JVM performs the following 

actions 

• Load, 

• Link, 

• Resolve, and 

• Initialise classes and interfaces
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Executing
• A .class file contains bytecode written in the language 

understandable by the Java Virtual Machine (JVM) 

• The byte code has a hardware-and-operating-system-
independent binary format 

• The class loader dynamically reads binary names 
of .class files  (i.e., package name and class name like 
java.lang.String) at run-time and search for these 
names in the file system
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Loading- class loader
• Find the binary representation of a class or interface 

type with a particular name and create a class or 
interface file from that binary representation  

• If such class file is not found the the loading throws 
the exception: ClassNotFoundException 
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Linking
• Linking verifies and prepares the correctness of a type 

so that it can be executed.  

– Preparing allocates memory for the static field of 
classes and interfaces and initialise them to their 
default values 

– Verifying ensures that the binary representation of a 
class is structurally correct
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Resolving
• Resolving associates references to run-time values
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Initialising
• Initialise classes and interfaces  

• Initialisation defines the values of class or interface 
variables 
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Java Virtual Machine - JVM
• The JVM is an abstract entity that is instantiated for 

different operating environments (Microsoft Windows, 
Solaris Operating System, Linux, or Mac OS)  

• The JVM is a "virtual machine" : it aims at emulating 
the machine (CPU) interpreting the byte code 

• The SUN JVM http://hg.openjdk.java.net/jdk8
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JVM
• As the JVM is available on many operating systems, 

the same .class can be translated into machine code on 
different OSs 

• Interpreters have been considered slow, but Java 
interpreter runs compiled byte-code  and as such it is a 
relatively fast 

• Last versions of JVM have adopted JIT compilation 
that make JVM even faster
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Just-In-Time (JIT) compilation
• The JIT translation consists of having a compiler 

which generates code for an application (or class 
library) during the execution of the application itself 

• JIT cannot be performed on the whole byte code
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Adaptive compilation
• Programs spend almost all of their time executing a 

relatively small part of the code again and again  

• The chunk of code that is executed repeatedly may 
only be a small percent of the total program, but its 
behaviour determines the program's overall 
performance
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Adaptive compilation
• The adaptive compilation first profiles the code while 

it is executing, to see what parts are being executed 
repeatedly 

• Once it knows it, it translates only these sections into  
machine code 
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Adaptive compilation
• Since it only compiles a small portion of the byte code, 

it can afford to take the time necessary to optimise 
those portions  

• The rest of the program may not need to be compiled 
at all - just interpreted - saving memory and time (JIT)
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The JIT HotSpot VM
• HotSpot http://openjdk.java.net/groups/hotspot/ is a 

JVM that uses the JIT translation and adaptive 
compilation 

• HotSpot implements the JVM Specification, it is 
written in C/C++ and is delivered as a shared library in 
JRE

41

Barbara Russo. Advanced Programming

The JIT HotSpot VM
• It allows the interpreter time to "warm up" Java 

methods, by executing them thousands of times 

• The first execution of the program can be a bit slower 

• It uses a configurable invocation-count threshold to 
decide which methods to compile
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Compiling and executing
• The java loader runs the file with an instance of the 

JVM, specific for each CPU and operating system 

• Before passing the class file loaded in the run-time 
environment, the Java verifier checks the fields for 
security
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