
Chapter 1

The Java architecture

Compiling, Interpreting, and debugging

Major topics:

• The Java Standard Edition Platform

• The Java Virtual Machine

• The Java Compiler

• Inspecting source and byte code

• Activity: Quiz

1.1 Compiling and Interpreting

A Central Processor Unit (CPU) is part of the machine processor that exe-
cutes simple bits operations:

� Example: (R-Type operation execute by a CPU) Adding register 1 and
2 and placing to register 6. “funct” describes the operation:

[op | rs | rt | rd | shamt | funct]
0 1 2 6 0 32 decimal

000000 00001 00010 00110 00000 100000 binary

A machine code or assembly code is a set of instructions on the bits opera-
tions that can be executed by a CPU. Instructions are patterns of bits that
by physical design correspond to different commands to the machine. Writ-
ing directly machine code is hard and time expensive. Higher level languages

2

allow to write code that humans can better understand. Every processor or
processor family has its own machine code instruction set.

Compiling code translates a whole piece of code into machine code and
then executes the machine code in the CPU. The computation is therefore
delegated to HW. Systems may also differ in other details, such as memory
arrangement, operating systems, or peripheral devices. Because a program
normally relies on such factors, different systems will typically not run the
same machine code, even when the same type of processor is used. A good
compiler performs a set of optimisations: for instance while it looks up for a
variable in the main memory of a machine, it performs other CPU operations
on the rest of the machine code until the variable has been retrieved. This
is possible because the whole code as been translated into machine code.

Interpreting code compiles and executes a piece of code line by line. On
the one hand, interpreting a code cannot perform much optimisation as it
knows only the instructions for part of the code until the line that has been
interpreted. On the other hand, to interpret a code in a specific language,
we need only to have an environment that compiles and executes (both!)
the code line by line. Once we have it we do not need any CPU. Thanks to
its environment the language is portable. An example are PHP or Pynton
and many scripting languages (Java script). When we call ”php -f file.php”
from a shell command, we are invoking such environment. The good aspects
of such environment is that they can be easily used in web browser.

Programming languages can be compiled and interpreted. Java archi-
tecture is a good example to see how compilation and interpretation work.

1.1.1 Code Translations in Java

In Java, we can simply write the source code in plain text files ending with
the .java extension. With the help of a compiler, source files are then com-
piled into class files ending with the .class extension by the javac compiler.
A class file does not contain code that is native to a specific processor; it
instead contains bytecode written in the language understandable by the
Java Virtual Machine (JVM). The byte code has a hardware- and operating
system-independent binary format.

A class loader is responsible of dynamically load class files at run-time
and passing the byte code to the JVM. The java loader runs the file with
an instance of the Java VM, specific for each CPU and operating system.
Before passing the class file loaded in the run-time environment, the Java
verifier checks the fields for security.

3

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Java	
 Compiler	

(javac)	
 Class	
 Loader	

Byte	
 Code	

Verifier	

Java	
 Virtual	

Machine	
 with	
 JIT	

Compiler	
 	

HotSpot	

Source	

Code	

(.java)	

Byte	

Code	

(.class)	

Machine	

Code	

Java	
 Run	
 Time	
 Environment	
 (JRE)	

Operating	
 System	

0101111011…	

Software	
 Development	
 Kit	
 (SDK)	

Figure 1.1: The key components of a Java Platform

1.2 The Java Standard Edition Platform (JSE)
and The Standard Development Kit (SDK)

The Java Standard Edition Platform (JSE) is the software environment in
which a program is compiled and runs and consists of several components.
Each component executes in a container. To interoperate with various con-
tainers, these components require deployment descriptor files, configuration
files, property files, and/or metadata files, and other configuration files. All
these files describe the components and how they will interact with other
components and their container environment. Every implementation of JSE
must adhere to the following specifications:

• Development Tools: to compile, run, monitor, debug, and document
an application. The fundamental tools are the javac compiler, the java
launcher, and the javadoc documentation tool.

• Application Programming Interface (API): The API provides the core
functionality of the Java programming language.

• Deployments tools: Software tools with mechanisms for deploying an

4

application such as the Java Plug-In software.

• User Interface Toolkits: These are tools for Graphical User Interfaces
(GUIs) such as JavaFX, Swing, and Java 2D toolkits.

• Integration Libraries: Integration libraries enable database access and
manipulation of remote objects. Examples are JDBC API, Java Nam-
ing and Directory Interface (JNDI) API, Java Remote Method Invo-
cation (JRMI).

5

Figure 1.2: ORACLE implementation of JSE. source:
http://docs.oracle.com

6

Figure 1.2 illustrates the ORACLE implementation of JSE. It consists in
the Java Software Development Kit (JDK) and Java Runtime Environment
(JRE). The JDK is a superset of JRE. The JDK includes all the tools to
compile, run, monitor, and debug a program. The JRE is responsible of the
execution of the program and includes the Java Virtual Machine (JVM),
Figure 1.1. This JSE includes in addition all the tools and API needed to
interface the JDK with the java language.

1.2.1 The Java Virtual Machine (JVM)

A JVM is an abstract concept that is defined through its specifications that
read a class and perform the operations specified therein.

� Note: The JVM is a ”virtual machine” that is it aims at emulating the
machine (CPU)

It is implemented in a concrete program and is instantiated into an exe-
cutable program compiled into byte code. The SUN JVM is written in Java
(http://hg.openjdk.java.net/jdk8). The implementation of a JVM per-
forms the following actions:

• Load. Loading is the process of finding the binary representation of a
class or interface type with a particular name and creating a class or
interface file from that binary representation. If such class file is not
found the the loading throws the exception: ClassNotFoundException.
A class file consists of a stream of 8-bit bytes.

• Link. Linking verifies and prepares the correctness of a type so that
it can be executed.

– Prepare. Preparing allocates memory for the static field of classes
and interfaces and initialise them to their default values.

– Verify. Verification ensures that the binary representation of a
class is structurally correct.

• Resolve. Resolution associate references to run-time values.

• Initialise classes and interfaces. Initialisation defines the values of class
or interface variables.

7

http://hg.openjdk.java.net/jdk8

1.2.2 Just In Time Compilation

Historically, interpreters have been considered slow, but because the Java
interpreter runs compiled byte-code, Java is a relatively fast language.

As the JVM is available on many operating systems, the same .class can
be translated into machine code on Microsoft Windows, the Solaris Operat-
ing System, Linux, or Mac OS. In addition, Java can compile byte-code to
native machine code on the fly also called Just-In-Time (JIT) compilation.
The JIT translation consists of having a compiler which generates code for
an application (or class library) during execution of the application itself.

The JIT HotSpot VM.

HotSpot http://openjdk.java.net/groups/hotspot/ is a JVM that uses
the JIT translation and performs additional steps at runtime to increase
performance. It efficiently manages the Java heap using garbage collectors.

HotSpot implements the JVM Specification, it is written in C/C++ and
is delivered as a shared library in JRE.

HotSpot uses adaptive compilation to optimise translation. Programs
spend almost all of their time executing a relatively small part of the code
again and again. The chunk of code that is executed repeatedly may only
be a small percent of the total program, but its behaviour determines the
program’s overall performance. The adaptive compilation first profiles the
code while it is executing, to see what parts are being executed repeatedly.
It allows the interpreter time to ”warm up” Java methods, by executing
them thousands of times. It uses a configurable invocation-count threshold
to decide which methods to compile. This warm-up period allows a compiler
to make better optimisation decisions, because it can observe (after initial
class loading) a more complete class hierarchy. Once it know the frequent
executed parts, it translates only these into machine code. Since it only
compiles a small portion of the bytecode, it can afford to take the time
necessary to optimise those portions. The rest of the program may not need
to be compiled at all - just interpreted - saving memory and time.

HotSpot can also configure the platform: it will select a compiler, Java
heap configuration, and garbage collector that produce good to excellent
performance for most applications. Under special circumstances, however,
specific tuning may be required to get the best possible performance.

� Note: Sun/Oracle claims that with just-in-time compilation, Java code
can execute nearly as fast as native compiled code and maintain its trans-
portability and security. There is only one true performance hit that com-

8

http://openjdk.java.net/groups/hotspot/

piled Java code will always suffer for the sake of security: array bounds
checking.

� Quiz: What does it meant that Java HotSpot compiles just the most
executed byte code and the rest is interpreted?

� Solution: It translates into machine code the frequent code as a whole
and the rest line by line. Then it executes it.

1.3 The Java compiler

Javac is the ORACLE/SUN compiler for java. It translates the java source
code into byte code. It reads class and interfaces declarations and translate
them into byte codes.

9

1.4 Java command-line instructions

We can run, compile, and debug a Java file with command-line instructions.
To get the options for any of the commands, one types ‘-help’ soon after the
command.

1.4.1 Getting started

Open the shell environment in Mac run Terminal.app in Windows run
cmd.exe

To get where is the JDK in your file system from anywhere:

> which java

/usr/bin/java

To get the version of the JDK from anywhere:

> java -version

java version "1.8.0_25"

Java(TM) SE Runtime Environment (build 1.8.0_25-b17)

Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)

In Mac, Linux, Solaris:
To display the environment variables

> env

To see the variables in the PATH
In Mac:

> echo $PATH

In Windows:

> PATH

To set your PATH to include the JDK sub-folder named java.
In Mac:

export PATH=$PATH:/usr/java/jdk1.6.0_10/bin

In Windows: For bash, edit the startup file (/.bashrc):

PATH=/usr/local/jdk1.7.0/bin:$PATH

10

export PATH

See also
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html

� Note: If you do not set the PATH variable, you need to specify the full
path to the executable every time you run it, such as:

C:\Java\jdk1.7.0\bin\javac MyClass.java

1.4.2 Compilation: javac

The Java Compiler translates programs written in the Java into bytecode.

� Example: with the file ‘MyClass.java’:

javac MyClass.java

If the system cannot find javac, check the set path command. If javac
runs but it returns errors, check the Java text. If the program compiles, but
you get an exception, check the spelling and capitalisation in the file name
and the class name as Java is case-sensitive.

� Example: Where are my .class files? java creates files in the same folder
of the .java files. To specify the path javac uses to look up classes needed
to run or being referenced by other classes, invoke:

> javac -classpath .;C:/users/dac/classes;C:/tools/java/classes ...

1.4.3 Execution: java

The java command executes Java class files created by a Java compiler (e.g.,
java).

� Example: Example with the file ‘MyClass.class’:

> java MyClass

11

1.4.4 Disassembler: javap

One can get the bytecode information contained in a .class file with the
command line “javap” as in the following foo.java file:

[1] class foo{

[2] void for99(){

[3] for(int i=0; i<99; i++){}

[4] }

[5] void while99(){

[6] int i =0;

[7] while(i<99){

[8] i++;

[9] }

[10] }

[11] }

> javac foo.java

> javap foo.class

Compiled from "foo.java"

class foo {

foo();

void for99();

void while99();

}

12

or more verbose:

> javap -c Analyzer.class

Compiled from "foo.java"

class foo {

foo();

Code:

0: aload_0

1: invokespecial #1 // Method java/lang/Object."<init>":()V

4: return

void for99();

Code:

0: iconst_0

1: istore_1

2: iload_1

3: bipush 99

5: if_icmpge 14

8: iinc 1, 1

11: goto 2

14: return

void while99();

Code:

0: iconst_0

1: istore_1

2: iload_1

3: bipush 99

5: if_icmpge 14

8: iinc 1, 1

11: goto 2

14: return

}

� Note: It is useful to inspect the output of java. For example, we can see
that the two loops are the same in the byte code!

13

> javap Analyzer.class

Compiled from "Analyzer.java"

public abstract class org.apache.lucene.analysis.Analyzer {

protected boolean overridesTokenStreamMethod;

static java.lang.Class class$java$lang$String;

static java.lang.Class class$java$io$Reader;

public org.apache.lucene.analysis.Analyzer();

public abstract org.apache.lucene.analysis.TokenStream

tokenStream(java.lang.String, java.io.Reader);

public org.apache.lucene.analysis.TokenStream

reusableTokenStream(java.lang.String, java.io.Reader) throws

java.io.IOException;

protected java.lang.Object getPreviousTokenStream();

protected void setPreviousTokenStream(java.lang.Object);

protected void setOverridesTokenStreamMethod(java.lang.Class);

public int getPositionIncrementGap(java.lang.String);

public int getOffsetGap(org.apache.lucene.document.Fieldable);

public void close();

static java.lang.Class class$(java.lang.String);

}

The javap command disassembles a class file. Its output depends on the
options used. If no options are used, javap prints out the public fields and
methods of the classes passed to it and prints its output to stdout (standard
output).

With the command

javap -c Analyzer

one gets the full description of the class file by method:

14

public abstract class org.apache.lucene.analysis.Analyzer

implements java.io.Closeable {

static final boolean $assertionsDisabled;

protected org.apache.lucene.analysis.Analyzer();

Code:

0: aload_0

1: invokespecial #1 // Method java/lang/Object."<init>":()V

4: aload_0

5: new #2 // class

org/apache/lucene/util/CloseableThreadLocal

8: dup

9: invokespecial #3 // Method

org/apache/lucene/util/CloseableThreadLocal."<init>":()V

12: putfield #4 // Field

tokenStreams:Lorg/apache/lucene/util/CloseableThreadLocal;

15: getstatic #5 // Field $assertionsDisabled:Z

18: ifne 36

21: aload_0

22: invokespecial #6 // Method assertFinal:()Z

25: ifne 36

28: new #7 // class java/lang/AssertionError

31: dup

32: invokespecial #8 // Method

java/lang/AssertionError."<init>":()V

35: athrow

36: return

public abstract org.apache.lucene.analysis.TokenStream

tokenStream(java.lang.String, java.io.Reader);

public org.apache.lucene.analysis.TokenStream

reusableTokenStream(java.lang.String, java.io.Reader) throws

java.io.IOException;

Code:

0: aload_0

1: aload_1

2: aload_2

3: invokevirtual #24 // Method tokenStream:...;

6: areturn

protected java.lang.Object getPreviousTokenStream();

Code:

0: aload_0

15

1: getfield #4 // Field

tokenStreams:Lorg/apache/lucene/util/CloseableThreadLocal;

4: invokevirtual #25 // Method

org/apache/lucene/util/CloseableThreadLocal.get:()Ljava/lang/Object;

7: areturn

8: astore_1

9: aload_0

10: getfield #4 // Field

tokenStreams:Lorg/apache/lucene/util/CloseableThreadLocal;

13: ifnonnull 26

16: new #27 // class

org/apache/lucene/store/AlreadyClosedException

19: dup

20: ldc #28 // String this Analyzer is closed

22: invokespecial #29 // Method

org/apache/lucene/store/AlreadyClosedException."<init>":(Ljava/lang/String;)V

25: athrow

26: aload_1

27: athrow

Exception table:

from to target type

0 7 8 Class java/lang/NullPointerException

protected void setPreviousTokenStream(java.lang.Object);

Code:

0: aload_0

1: getfield #4 // Field

tokenStreams:Lorg/apache/lucene/util/CloseableThreadLocal;

4: aload_1

5: invokevirtual #30 // Method

org/apache/lucene/util/CloseableThreadLocal.set:(Ljava/lang/Object;)V

8: goto 31

11: astore_2

12: aload_0

13: getfield #4 // Field

tokenStreams:Lorg/apache/lucene/util/CloseableThreadLocal;

16: ifnonnull 29

19: new #27 // class

org/apache/lucene/store/AlreadyClosedException

22: dup

23: ldc #28 // String this Analyzer is closed

25: invokespecial #29 // Method

org/apache/lucene/store/AlreadyClosedException."<init>":(Ljava/lang/String;)V

28: athrow

29: aload_2

16

30: athrow

31: return

Exception table:

from to target type

0 8 11 Class java/lang/NullPointerException

public int getPositionIncrementGap(java.lang.String);

Code:

0: iconst_0

1: ireturn

public int getOffsetGap(org.apache.lucene.document.Fieldable);

Code:

0: aload_1

1: invokeinterface #31, 1 // InterfaceMethod

org/apache/lucene/document/Fieldable.isTokenized:()Z

6: ifeq 11

9: iconst_1

10: ireturn

11: iconst_0

12: ireturn

public void close();

Code:

0: aload_0

1: getfield #4 // Field

tokenStreams:Lorg/apache/lucene/util/CloseableThreadLocal;

4: invokevirtual #32 // Method

org/apache/lucene/util/CloseableThreadLocal.close:()V

7: aload_0

8: aconst_null

9: putfield #4 // Field

tokenStreams:Lorg/apache/lucene/util/CloseableThreadLocal;

12: return

static {};

Code:

0: ldc_w #33 // class

org/apache/lucene/analysis/Analyzer

3: invokevirtual #10 // Method

java/lang/Class.desiredAssertionStatus:()Z

6: ifne 13

9: iconst_1

10: goto 14

13: iconst_0

17

14: putstatic #5 // Field $assertionsDisabled:Z

17: return

}

18

1.4.5 Debugger: jdb

The Java Debugger helps find and fix bugs in Java programs. There are
two major categories of errors: compiler errors and execution (or run-time)
errors and then there are failures. In the following we will see compiler errors
and failures. In the following, we learn how to discover them.

� Example: The following file DatesBuggy.java contains some syntax er-
rors1:

1Thank to prof. Mary K. Vernon http://pages.cs.wisc.edu/ ver-
non/cs367/tutorials/jdb.tutorial.html

19

1 import java.io.*;

2 class DatesBuggy {

3 public static int daysInMonth (int month) {

4 if (month == 9) || (month == 4) || (month == 6) || (month ==

11)) {

5 return 30;

6 }

7 else if (month == 2)

8 return 28;

9 else return 31;

10 }

11 public static void main (String[] args) {

12 int someMonth, someDay;

13 int laterMonth, laterDay;

14 int aMonth;

15 someMonth = Integer.parseInt(args[0]);

16 someDay = Integer.parseInt(args[1]);

17 laterMonth = Integer.parseInt(args[2]);

18 laterDay = Integer.parseInt(args[3]);

19 /* Used to record what day in the year the first day */

20 /* of someMonth and laterMonth are. */

21 int someDayInYear = 0;

22 int laterDayInYear = 0;

23 for (aMonth = 0, aMonth < someMonth; aMonth = aMonth + 1) {

24 someDayInYear = someDayInYear + daysInMonth(aMonth);

25 }

26 for (aMonth = 1; aMonth < laterMonth; aMonth = aMonth + 1) {

27 laterDayInYear = laterDayInYear + daysInMonth(aMonth);

28 }

29 /* The answer */

30 int daysBetween = 0;

31 System.out.println("The difference in days between " +

32 someMonth + "/" + someDay + " and " +

33 laterMonth + "/" + laterDay + " is: ");

34 daysBetween = laterDayInYear - someDayInYear;

35 daysBetween = daysBetween + laterDay - someDay;

36 System.out.println(daysBetween);

37 }

38 }

20

Compile the file with javac:

> javac DatesBuggy.java

DatesBuggy.java:6: error: illegal start of expression

if (month == 9) || (month == 4) || (month == 6) || (month ==

11)) {

^

DatesBuggy.java:6: error: not a statement

if (month == 9) || (month == 4) || (month == 6) || (month ==

11)) {

^

DatesBuggy.java:6: error: ’;’ expected

if (month == 9) || (month == 4) || (month == 6) || (month ==

11)) {

^

DatesBuggy.java:9: error: ’else’ without ’if’

else if (month == 2)

^

DatesBuggy.java:29: error: not a statement

for (aMonth = 0, aMonth < someMonth; aMonth = aMonth + 1) {

^

DatesBuggy.java:29: error: ’;’ expected

for (aMonth = 0, aMonth < someMonth; aMonth = aMonth + 1) {

^

6 errors

Look at the code and notice that:
Compiler Error1: The code lacks a parenthesis in the first if condition.
Compiler Error2: The code lacks a semicolon in the first for condition.

Fix the compiler errors, compile and run it again:

> javac DatesBuggy.java

> java DatesBuggy 1 12 3 4

The difference in days between 1/12 and 3/4 is:

20

Now you do not get and error but wrong answer!
Failure1: number of days is wrong. (Correct output is 51. Where is the
error in the code?)
Recompile the program with the ‘-g’ option to tell the compiler to provide
information that jdb can use to display local (stack) variables:

>javac -g DatesBuggy.java

21

Run your program by having jdb start the Java interpreter:

>jdb DatesBuggy 1 12 3 4

At this point, jdb has invoked the Java interpreter, the DatesBuggy class is
loaded, and the interpreter stops before entering main().
Give the command ‘stop in DatesBuggy.main’ and then ‘run’. The inter-
preter will continue executing for a very short time until just after it enters
main().

> jdb DatesBuggy 1 12 3 4

Initializing jdb ...

> stop in DatesBuggy.main

Deferring breakpoint DatesBuggy.main.

It will be set after the class is loaded.

> run

run DatesBuggy 1 12 3 4

Set uncaught java.lang.Throwable

Set deferred uncaught java.lang.Throwable

>

VM Started: Set deferred breakpoint DatesBuggy.main

Breakpoint hit: "thread=main", DatesBuggy.main(), line=18 bci=0

18 someMonth = Integer.parseInt(args[0]);

main[1]

Type list to see the source code for the instructions that are about to
execute, or you can type print args to see the value of the variable called
”args”

main[1] list

14 int someMonth, someDay;

15 int laterMonth, laterDay;

16

17 int aMonth;

18 => someMonth = Integer.parseInt(args[0]);

19 someDay = Integer.parseInt(args[1]);

20

21 laterMonth = Integer.parseInt(args[2]);

22 laterDay = Integer.parseInt(args[3]);

23

One tricky point about jdb is that if you use the step command to execute
one instruction at a time, you will step into the instructions for the method

22

called Integer.parseInt. The source code for predefined Java classes is not
available to jdb, so jdb cannot list the lines of code or print the values of
any variables in that method. Thus, you should set a breakpoint after the
arguments are parsed, using the command stop at DatesBuggy:30 and then
type ‘cont’ to let the interpreter continue executing until it again reaches a
breakpoint (i.e., until it is about to execute line 24). You will get null after
the command locals or print below if you did not run the compiler java with
”-g”.

> jdb DatesBuggy 1 12 3 4

Initializing jdb ...

> stop at DatesBuggy:24

Deferring breakpoint DatesBuggy:241.

It will be set after the class is loaded.

> run

run DatesBuggy 1 12 3 4

Set uncaught java.lang.Throwable

Set deferred uncaught java.lang.Throwable

>

VM Started: Set deferred breakpoint DatesBuggy:24

Breakpoint hit: "thread=main", DatesBuggy.main(), line=24 bci=44

24 someDayInYear = someDayInYear + daysInMonth(aMonth);

main[1] print laterMonth

laterMonth = 3

main[1] locals

Method arguments:

args = instance of java.lang.String[4] (id=439)

Local variables:

someMonth = 1

someDay = 12

laterMonth = 3

laterDay = 4

someDayInYear = 0

laterDayInYear = 0

aMonth = 0

main[1]

One should continue to examine the program’s behaviour as it executes
by setting further breakpoints, or using step to execute one instruction at a
time. At each breakpoint, use the print or locals command to examine the
values of program variables, until you isolate the error. Note that when the

23

method called daysInMonth is called, jdb can stop at a breakpoint in that
method (e.g., if you say stop in DatesBuggy.daysInMonth) and it can list
the code or print variable values in that method. The error in DatesBuggy
can be corrected by changing only ONE line.

When you think you have found the error: copy the file to another file
in case you need to use it later, correct the error, and recompile and execute
it to see if the problem is solved. Type exit to exit the debugging.

24

	CourseDescription 3
	CourseDescription 4
	CourseDescription 5
	CourseDescription 6
	CourseDescription 7
	CourseDescription 8
	CourseDescription 9
	CourseDescription 10
	CourseDescription 11
	CourseDescription 12
	CourseDescription 13
	CourseDescription 14
	CourseDescription 15
	CourseDescription 16
	CourseDescription 17
	CourseDescription 18
	CourseDescription 19
	CourseDescription 20
	CourseDescription 21
	CourseDescription 22
	CourseDescription 23
	CourseDescription 24
	CourseDescription 25

