
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

On Porting Software Visualization Tools to the Web
Marco D’Ambros1, Michele Lanza1, Mircea Lungu2, Romain Robbes3

1 REVEAL @ Faculty of Informatics, University of Lugano, Switzerland
e-mail: {marco.dambros, michele.lanza}@usi.ch

2 Software Composition Group (SCG), University of Bern, Switzerland
e-mail: lungu@iam.unibe.ch

3 PLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile
e-mail: rrobbes@dcc.uchile.cl

Received: date / Revised version: date

Abstract. Software systems are hard to understand due to
the complexity and the sheer size of the data to be analyzed.
Software visualization tools are a great help as they can sum
up large quantities of data in dense, meaningful pictures. Tra-
ditionally such tools come in the form of desktop applica-
tions. Modern web frameworks are about to change this sta-
tus quo, as building software visualization tools as web ap-
plications can help in making them available to a larger audi-
ence in a collaborative setting. Such a migration comes with
a number of promises, perils and technical implications that
must be considered before starting any migration process.

In this paper we share our experiences in porting two such
tools to the web and provide guidelines about the porting.
In particular, we discuss promises and perils that go hand in
hand with such an endeavour and present a number of techno-
logical alternatives that are available to implement web based
visualizations.

Key words: Software Visualization, Software Analysis Tools,
Web Applications

1 Introduction

Developing tools is an important part of software engineer-
ing research as they provide a proof-of-concept for an ap-
proach. Further, the tool itself can be considered a research
contribution. However, tools remain often at the stage of pro-
totypes, not maintained anymore after the corresponding arti-
cle is published. Little effort is spent in making tools long-
lived and used in an industrial context, with a number of
notable exceptions such as the Moose reverse engineering
framework [13], visualization tools such as Rigi [1, 44], and
recommender systems like Mylyn [28].

The vast majority of tools do not survive after research
has been published and concluded. One of the reasons is that,
unlike in the industry, there is little incentive to keep tools

running as most of the times there are few users. In his keynote
address at the 31st International Conference on Software En-
gineering, Carlo Ghezzi stated that a survey of all the papers
that appeared in ACM Transactions on Software Engineering
and Methodology between 2000 and 2008 showed that 60%
of them dealt directly or indirectly with tools. Of those only
20% were actually installable, let alone functional.

In the past years, we have developed a number of software
visualizations tools, such as CodeCrawler [31], Softwarenaut
[36], BugCrawler [8], Evolution Radar [10], Bug’s Life [11],
CodeCity [60], Churrasco [7], The Small Project Observatory
[38], and Spyware [48]. Many of these tools are available,
but some effort from accidental users to make them work is
required, decreasing their adoption and impact. A solution is
to exploit the web and the available modern technologies. We
see the web as an opportunity to improve the accessibility and
adoption of research prototypes, since the cost for people to
“give it a try” is minimal.

Developing web-based software visualization tools is not
easy, and comes with a number of promises to embrace and
perils to avoid. In this paper we discuss our experience in
building two web-based software visualization tools and dis-
till a number of considerations that need to be made if one
wants to port such tools to the web. We present available tech-
nologies to develop web based visualizations, discussing their
benefits and limitations. The goal is to provide guidance to re-
searchers who want to move their (visualization) tools to the
web, or want to create new web-based tools from scratch.

Contributions. The main contributions of this paper are:

– The identification, via our empirical experience building
two large-scale, web-based software visualization tools,
of 8 promises and 7 perils to be aware of when designing
and implementing web-based visualization tools.

– The evaluation of a subset of the perils as they hold in
practice, based on two usability studies of our web-based
visualization tools.

2 Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web

External
components

Target System

MOOSE
Reengineering
Environment

Churrasco core

Database

Visualization
Module

Annotation
Module

1
4

5

3

System
Complexity

Evolution Radar

Correlation View

Web Portal

VisualizerImporter

Mondrian

Users

Churrasco

Evolution
Radar

SVN
Repository

Bugzilla
Repository

Source Code

SVN Module

Bugzilla
Module

2

Bugzilla bugs &
activities

SVN

Fig. 1. The architecture of Churrasco.

– An overall discussion of the promises and perils, followed
by a detailed survey at the current and incoming tech-
nologies in web software development, in order to pro-
vide guidance over one of the most important perils, the
peril of rapidly changing technologies.

Structure of the paper. In Section 2 we introduce two web-
based software visualization tools that we have developed:
Churrasco and the Small Project Observatory, and distill a
number of promises and perils for porting such tools to the
web in Section 3. We report on two small-scale experiments
involving our web based tools, highlighting the impact of
some of the promises and perils in practice Section 4. We
summarize the lessons learned in developing our tools in Sec-
tion 5. In Section 6 we present the technologies one can use
to implement a web-based visual application. We then look at
related work on software visualization tools in and out of the
web (Section 7), and conclude in Section 8.

2 Churrasco and SPO

In the last years we have developed two web-based software
visualization tools: Churrasco and the Small Project Obser-
vatory), available respectively at http://churrasco.inf.usi.ch and
http://spo.inf.usi.ch.

2.1 Churrasco

Churrasco [7] is a web platform for collaborative software
analysis with the following characteristics:

– It provides a web interface to create models of software
systems and of their evolution, and to store them in a
database for subsequent analysis.

– It provides a set of visual analyses and supports collab-
oration by allowing several users to annotate the shared
analyzed data.

– It stores the findings into a central database to create an
incrementally enriched body of knowledge about a sys-
tem, which can be exploited by subsequent users.

2.1.1 Architecture

Figure 1 depicts Churrasco’s architecture, consisting of1:

1. The core connects the various modules of Churrasco and
external components. It includes the internal representa-
tion of a software system’s evolution and manages the
connection with the database to write models imported
from the web interface and to read models to be visual-
ized in the web portal.

2. The Bugzilla and SVN modules retrieve and process the
data from SVN and Bugzilla repositories.

3. The Web portal represents the front-end of the framework
(developed using the Seaside framework [12]) accessible
through a web browser. It allows users to create the mod-
els and to analyze them by means of different web-based
visualizations.

4. The Visualization module supports software evolution anal-
ysis by creating and exporting interactive Scalable Vec-
tor Graphics (SVG) visualizations. The visualizations are
created by two external tools: Mondrian [42] and the Evo-
lution Radar [10] . The visualization module converts these
visualization to SVG graphics. To make them interactive
within the web portal, Churrasco attaches Asynchronous
Javascript And XML (AJAX) callbacks to the figures, al-
lowing server-side code to be executed when the user se-
lects a figure.

5. The Annotation module supports collaborative analysis
by enriching any entity in the system with annotations.
It communicates with the web visualizations to integrate
the annotations within the visualizations.

1 Churrasco itself, without the external components, is made of 259
classes.

http://churrasco.inf.usi.ch
http://spo.inf.usi.ch

Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web 3

Recent annotations
added

People participating
to the collaboration

Selected figure
information

Metrics mapping
configurator

Package selector

Regular expression
matcher

Report generator

SVG Interactive
Visualization

Selected figure

User

Context menu

Fig. 2. A screenshot of the Churrasco web portal showing a System Complexity visualization of ArgoUML (http://argouml.tigris.org).

2.1.2 Visualizations

Churrasco offers the following interactive visualizations to
support software evolution analysis:

– The Evolution Radar [6, 9] supports software evolution
analysis by depicting change coupling information. Change
coupling is the implicit dependency between two or more
software artifacts that have been observed to frequently
change together.

– The System Complexity [31] view supports the understand-
ing of object-oriented systems, by enriching a simple two-
dimensional depiction of classes and inheritance relation-
ships with software metrics.

– The Correlation View shows all classes of a software sys-
tem using a scatterplot layout and mapping up to five soft-
ware metrics on them: On the vertical and horizontal po-
sition, on the size and on the color.

Figure 2 shows an example of a System Complexity vi-
sualization [31] rendered in the Churrasco web portal. The
main panel is the view where all the figures are rendered as
SVG graphics. The figures are interactive: Clicking on one of
them will highlight the figure (red boundary), generate a con-
text menu, and show the figure details (the name, type and
metrics values) in the figure information panel on the left.

Under the information panel Churrasco provides three other
panels useful to configure and interact with the visualization:

1. The metrics mapping configurator to customize the view
by changing the metrics mapping.

2. The package selector to select, and then visualize, multi-
ple packages or the entire system.

3. The regular expression matcher with which the user can
select entities in the visualization.

http://argouml.tigris.org

4 Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web

1

2

3

Fig. 3. The user interface of SPO: (1) Detail on the main project overview; (2) the View panel which allows selecting various visual perspectives on the analyzed
super-repository; (3) the filter composition panel.

2.1.3 Collaboration Support

A key idea behind Churrasco is collaboration: Each model
entity can be enriched with annotations to (1) store findings
and results incrementally into the model, and to (2) let differ-
ent users collaborate in the analysis of a system.

Annotations can be attached to any visualized model en-
tity, and each entity can have several annotations. An anno-
tation is composed of the author who wrote it, the creation
timestamp and the text. Since the annotations are stored in
a central database, any new annotation is immediately visi-
ble to all the people using Churrasco, thus allowing different
users to collaborate in the analysis. Churrasco features three
panels aimed at supporting collaboration:

1. The “Recent annotations” panel displays the most recent
annotations added, together with the name of the anno-
tated entity. By clicking on it the user can highlight the
corresponding figure in the visualization.

2. The “Participants” panel lists all the people who anno-
tated the visualizations. When one of these names is se-
lected, all figures annotated by the corresponding person
are highlighted in the view, to see which part of the sys-
tem that person is working on.

3. The “Create pdf report” panel generates a pdf document
containing the visualization and all the annotations refer-
ring to the visualized entities.

2.2 The Small Project Observatory

The Small Project Observatory (SPO from hereafter) is an
interactive web application targeted at the visualization and
analysis of entire software ecosystems.

Software Ecosystems. Software systems are seldom devel-
oped in isolation. On the contrary, many companies, research
institutions and open-source communities deal with software
projects developed in parallel and depending on one another.
Such collections of projects represent assets and analyzing
them as a whole can provide useful insights into the struc-
ture of the organization and its projects. We define a software
ecosystem as a collection of software projects which are de-
veloped and evolved together in the same environment.

The large amounts of code that is developed in an ecosys-
tem makes it hard, if not impossible for a single person to
keep track of the complete picture. Many times, even if there
exists documentation to describe the inter-dependencies be-
tween the projects and the way the developers and teams are
supposed to collaborate, it is out of date or inaccurate. Thus,
the only reliable source of information about the ecosystem is
the data present in the versioning repositories of the projects.
Such a collection of version control repositories for the projects
of an ecosystem is called a super-repository.

Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web 5

Fig. 4. Size and activity evolution for the projects in the SCG ecosystem.

2.2.1 SPO Overview

Figure 3 shows a screen capture of SPO. The figure presents
three concepts that are fundamental to the philosophy of SPO:

Multiple Perspectives. SPO provides multiple visual perspec-
tives on a super-repository. The focus of each perspective
can be either on the developers or on the projects in the sys-
tem. Each perspective can present an overview of the entire
ecosystem or a detailed view on an individual element (de-
veloper or project) which is to be understood in the broader
context of the entire ecosystem.

Figure 3 presents the Views panel (labeled 1) which con-
tains a list of all the available perspectives. Once the user has
selected one perspective, the central view (labeled 2) displays
a specific perspective on a super-repository. In this case it is
a table that presents metrics about the projects in the super-
repository. The view is interactive: The user can select and
filter the available projects, sort the displayed projects, obtain
contextual menus for the projects or navigate between various
perspectives.

Figure 4 shows a visual perspective of a super-repository
hosted by the Software Composition Group from the Uni-
versity of Bern, in Switzerland. The perspective presents two
timelines displayed in parallel: the growth of the size (top
graph) and the fluctuation of the activity (bottom graph). The
size is measured in number of classes while the activity is
measured in number of commits. The figure shows that size
is monotonically increasing while the activity fluctuates over
time with regularities and with a general trend being visible.
One of the regularities is the dip in activity towards the end of
every year and in the summer. This rhythm corresponds to the
holiday periods of students. The general trend shows increase
in activity until the peak of January 2007 when there are 700
commits. After that date, the overall activity level seems to
have fallen.

Filtering. Given the sheer amount of information residing
in a super-repository, filters need to be applied to the super-
repository data. The panel labeled (3) in Figure 3 lists the ac-
tive filters. The only active filter is “In-house projects”. The

Fig. 5. Two ways of setting project filters in SPO: by composing rules and
by interactively eliminating elements from the active viewpoint.

user can choose and combine existing filters. A user can also
apply filters through the interactive view, for example by re-
moving a project or focusing on a specific project using the
contextual menu (see Figure 5).

Interaction. The visual perspectives are interactive in SPO,
meaning that every element of the view can be selected either
for navigation, or filtering. The right side of Figure 5 shows a
pop-up menu that appears when the user interacts with indi-
vidual elements in one of the visual perspectives of SPO.

2.2.2 Navigation

Navigation is at the core of every information visualization
tool, and this is the case also with SPO. Initially SPO was de-
signed to support navigation between the different perspec-
tives on the system. However, as we were using the tool we
realized that one type of navigation it misses is vertical navi-
gation: navigating between views which present information
at different levels of abstraction. One example would be, nav-
igating from a view which presents the inter-dependencies
between all the systems in an ecosystem to a view which
presents the architecture of one of these systems. We already
had a tool that was supporting the visualization of software
architecture at the individual system level. To support vertical
navigation, SPO requests architectural views from Software-
naut. Softwarenaut, which runs in the background, can export
its output to SVG and deliver it to SPO to depict it in the user
interface. Figure 6 presents an architectural view loaded in
SPO. The two user interface elements highlighted are:

– The list of available architectural views presenting all views
that are available for the given system. In Figure 6 there
are two views available: the one called main, and the one
called main with tests.

– The list of available queries that can be used for selection.
Currently two types of queries are available:
1. Queries that detect elements of the system that inter-

act with the ecosystem. For example, all the classes
that have methods that are called from the ecosystem,
or all the classes that are subclassed in the ecosystem.

6 Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web

2. Highlight
Queries

1. Available
Architectural

Views

Fig. 6. Visualizing in SPO an architectural view that was generated in Soft-
warenaut.

Super-
Repository

SVN

CVS

Store

Super-
Repository

SPO

Analysis
Metrics,

Aggregation

Visualization
Layout Engine,

JS/SVG
Generator

Import and Automatic Update
CVS

Store

Super-
Repository

Cache

SVN

dot
graph layouting

Softwarenaut
Architecture
recovery tool

Internal Representation
Projects, Developers, Histories

Web
portal

Users

1

2

3

4

5 6

Fig. 7. The architecture of SPO.

2. Queries that detect elements that were active at certain
periods in the lifetime of the system. For example, all
the classes that were active recently.

2.2.3 Architecture of SPO

Figure 7 presents SPO’s architecture, consisting of2:

1. The import module is responsible for interfacing with the
super-repository. Currently SPO supports two types of
super-repositories: one based on SVN and another one
based on Store, a Smalltalk-specific repository.

2. The internal representation is a meta-model [35] for rep-
resenting super-repositories and ecosystems. SPO supports
the analysis of multiple models at the same time.

3. The analysis module is responsible with computing met-
rics, discovering collaborations, analyzing developer and
project vocabularies, aggregating dependencies, and all
the other types of analysis that are be performed on an
ecosystem model.

4. The cache module. Due to the highly interactive and ex-
ploratory nature of the tool, SPO generates dynamically

2 SPO itself, without dot and Softwarenaut, is composed of 110 classes.

Target

Internal representation
Meta-model

Users

Importers

Data n

Data1

Internal analysis
(measures, metrics etc.)

Visualization
engine

Visualization
exporter Cache

Web portal

Optional
component

1 2

3

65

4

7

9

8

A

Web based software visualization tool

Fig. 8. General architecture of a web-based software visualization tool.

all the web pages and all the visualizations they contain.
This module caches across sessions all the information
that is needed in order to speed-up the view generation.

5. The visualization module takes as input information from
the internal representation, analysis and cache modules
and generates views from it. The module contains the
layout engine, which delegates the layouting to the Dot
external tool3, and the SVG generator. The generator pro-
duces the SVG graphics and the associated Javascript in-
teraction.

6. The web portal is the user interface of SPO. Like Chur-
rasco, it is built on top of the Seaside framework, a web
application framework which emphasizes a component
based approach to web application development.

2.3 Beyond Churrasco and SPO

Figure 1 and Figure 7 show the architecture of Churrasco
and SPO. We abstracted a general architecture for web-based
software visualization tools displayed in Figure 8.

Dashed elements are optional components. Software vi-
sualization tools provide views on one or more aspects (e.g.,
source code, bug report, mail archive, etc.) of a software.
Therefore, they have an importer module (1) which retrieves
the data and stores it according to an internal representation
(2). The data is then optionally processed to compute metrics
(3) about the considered aspects. The data is finally visual-
ized by means of a visualization engine (4): In case the engine
does not produce a web suitable visualization, an exporter (5)
is used to create the web visualization. To improve the perfor-
mances one can use a cache component (6) which avoids re-
computing the visualizations. The software visualization tool
has a web portal which displays the visualizations (7), im-
ports the data (8), accesses the models (9), and computes the
metrics (A).

3 See http://www.graphviz.org

Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web 7

Availability and Privacy
Promise 1 Porting software visualization tools (SVT) to the web makes them more available than desktop applications
Peril 1 Sensitive information about software systems should not be available for not authorized people

Collaboration and Performance
Promise 2 Porting SVT to the web eases making them collaborative
Peril 2 Web-based software visualization applications (WBSVA) have to serve large amounts of data to several users, which

can be a performance bottleneck impacting all users
Promise 3 WBSVA ease the creation of an incrementally enriched knowledge about a software

Error Handling
Peril 3 WBSVA are single points of failure
Peril 4 Debugging and testing web applications is hard
Promise 4 WBSVA provide feedback about errors
Promise 5 WBSVA make it possible to gather usage data

Development
Peril 5 WBSVA have to tackle cross browser issues
Peril 6 Developing interactive web applications is hard
Peril 7 Web technologies are changing fast
Promise 6 WBSVA can use external tools to perform a number of tasks, exposing only the results as services
Promise 7 Updating an WBSVA is easy since it is only done once for all the users

Measurements
Promise 8 One can selectively deploy changes to a group of users and measure their effect

Table 1. Summary of promises and perils.

3 Promises and Perils

In this section, we recall our experience building Churrasco
and SPO and extract various aspects in the form of promises
and perils, summarized in Table 1.

Promise 1 - Availability: Porting software visualization
tools to the web makes them more available than desktop
applications.

Many research prototypes have problems with respect to
their availability. Often such prototypes are hard to install be-
cause of compatibility issues, missing libraries, missing doc-
umentation, etc. Among the various reasons behind the avail-
ability problem, one is that researchers do not have the man-
power required to create and update documentation, main-
tain the software, keep the web site (when existing) up-to-
date, etc. Moreover, academic research is mostly publication-
driven, and not tool-driven, i.e., there is little direct benefit
that comes with maintaining tools.

Tracking the evolution of systems and components re-
quires further effort, as compatibility issues occur over time
when new versions of components the tool depends on are
released. Having the application running on a Web server
means that the environment can be frozen, so that support-
ing the latest version of a component is not a priority.

Indeed, porting research prototypes to the web increases
the availability of such tools and avoids installation problems.
In the case of both Churrasco and SPO all that needs to be
given to users is the url.

Peril 1 - Privacy: Sensitive information about software
systems should not be available for unauthorized people.

Having a tool available on the web implies that anybody
can access it. Web-based software visualization tools might
have access to sensitive information about a software system,
which should be accessible only by authorized people. For
this reason, such tools should provide an authorization mech-
anism that is not required for desktop applications.

In Churrasco we tackled this problem by letting only reg-
istered users access the visualizations, and by giving different
users different privileges. SPO does not implement authen-
tication yet. As a result, when we approached an industrial
partner for a case study on the ecosystem of the company, the
partner declined to import their data in the online version of
SPO. They installed a local version of SPO on their intranet
and performed the analysis themselves.

Promise 2 - Collaboration: Porting software visualization
tools to the web eases the process of making them collab-
orative.

Sharing the data among users naturally leads to collabo-
ration. Virtually all software is nowadays built in a collabora-
tive fashion. This ranges from the usage of software config-
uration management systems (SCM) supporting distributed
development, now widely used in practice [18], awareness
tools to prevent upcoming conflicts [50], to fully integrated
solutions such as IBM’s Jazz [21].

Just as the software development teams are geographi-
cally distributed, consultants and analysts are too. Analysis
tools supporting collaboration would allow different experts
with a distinct range of skills to collaboratively analyze a soft-
ware system from various locations and/or time zones.

Churrasco supports collaboration using a central database:
Different users access the same web portal, and analyze the

8 Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web

same models of software systems. Users collaborate by an-
notating the model entities and by looking at other people’s
annotations. This simple collaboration facility proved useful
in the experiment we report on in Section 4. Improving it via
the addition of richer communication channels, such as chat
or tagging, is easy to achieve in a web application.

Desktop applications can also support collaboration, but
we argue that this is harder to implement. In this case, the
various instances of the application need a communication
channel among themselves directly in a peer-to-peer fashion
or using a centralized server. This leads to networking issues
due to firewalls. We are not aware of software visualization
tools which support collaboration, but a number of visualiza-
tion tools in other domains support it [2, 17].

Peril 2 - Performance and Scalability: Collaborative, vi-
sual web applications have to serve large amounts of data
to several users at the same time, which can be a perfor-
mance bottleneck impacting all users.

Web applications have to serve several users at the same
time, and collaborative applications even more so. Depend-
ing on the number of users and the type of application, the
performance per user might decrease. This is especially true
for visualization applications, where for large datasets both
the computation time and the size of the data to be sent to the
user’s browser might be large, increasing the user’s waiting
time and thus decreasing the usability of the application.

Visualization must scale up as it is most useful to deal
with large amounts of data. Since the visualizations are ren-
dered on the client side, bandwidth can become and issue.
For example, in Churrasco an SVG graphic visualizing the
ArgoUML software system (ca. 1800 classes) is larger than
1 MB, while SPO generated SVG images going up to 2MB.
SPO however reduces the bandwidth by compressing the data
to be sent, effectively trading CPU usage for increased band-
width. In that case the 2MB file was reduced to 150KB.

The standard way of rendering a web visualization is that
every time something changes in the page, the whole page is
refreshed. In the context menu example, whenever the user
clicks on a figure the page changes because a new figure ap-
pears, and therefore the page needs to be refreshed to show
the menu. Refreshing the entire web page for every action
introduces latencies which make the web application slow
when it comes to rendering large SVG files. One way to avoid
this problem is to use semantic zoom and details on demand
to keep the rendered image small. Churrasco can focus on
a single package of a system, while SPO allows the defini-
tion of filters. Another possibility is to minimize the page re-
freshes by using AJAX updates, which refresh only the changed
part of the page, as Churrasco does. However, while the use
of AJAX has been simplified, it is still non-trivial. The current
standard is to use libraries such as Prototype or jQuery.

Concurrent usage is an issue in the context of collabora-
tive work. With Churrasco and SPO we performed two ex-
periments, with 8 participants each, with mixed results with

respect to performance (see Section 4). Due to the small num-
ber of participants we refrain from making general statements.

This peril can be tackled by having several instances of
the web application running on several servers, with a web
server responsible of dispatching the requests and balancing
the CPU and bandwidth loads. While this solution is standard
fare in web applications, for research prototypes such a hard-
ware infrastructure is often not available. However, when in-
frastructure is an issue, one can exploit cloud computing ser-
vices which provide data replication and scalability transpar-
ently. Typical examples of cloud computing service providers
are Google, Amazon and Salesforce.

Promise 3 - Incremental results: Web-based software vi-
sualization tools ease the creation of an incrementally en-
riched body of knowledge on software systems.

Despite performance and scalability issues, sharing the
data paves the way for new possibilities. Results of analy-
ses on software systems produced by tools are often written
into files and/or manually crafted reports, and have therefore
a limited reusability. To maximize their reuse, analysis results
should be incrementally and consistently stored back into the
analyzed models. This would allow researchers to develop
novel analyses that exploit the results of previous analyses,
leading to a cross-fertilization of ideas and results. It can also
serve as a basis for a benchmark for analyses targeting the
same problem (i.e., by tagging entities that a candidate anal-
ysis should detect, we can compare approaches), and ulti-
mately would also allow one to combine techniques targeting
different problems.

By using a central database where all the models are stored,
and by letting users annotate the entities composing the mod-
els, the users can store the results of the analysis on the model
itself, thus supporting the incremental storage of results. This
is supported in Churrasco, and can be easily implemented in
other web-based software visualization applications, in the
same fashion.

Peril 3 - Single point of failure: Web-based applications
are single points of failure.

Excessive centralization reduces the reliability of the ap-
plication. Web-based applications run on a server, and usually
have a unique instance of the application which all the users
access. As a consequence, if the application crashes it will
lock out all its users, i.e., the application represents a single
point of failure, whereas in desktop applications each user
has a private instance of the application, where a crash does
not impact the other users. This peril can be tackled, together
with performance, by distributing the computation on several
servers for redundancy.

Peril 4 - Debugging and testing: Debugging and testing
web applications is hard.

Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web 9

A barrier to develop web applications is the lack of sup-
port for debugging. Even if there are some applications like
Firebug (http://getfirebug.com) providing HTML inspection,
Javascript debugging and DOM exploration, the debugging
support is not comparable with the one given in mainstream
IDE such as Eclipse. Moreover, the testing of a web-based
system is hard to perform, due to the lack of consolidated
techniques and supporting tools.

Promise 4 - Feedback: Web-based software visualization
tools provide feedback about errors and failures.

If debugging a web application is more difficult than a
desktop one, being notified of bugs and deploying the fixes is
actually easier. Because of the restricted manpower available
when developing them, research prototypes are far from be-
ing mature and stable applications. Indeed, researchers do not
have the resources to invest a significant amount of time test-
ing their application. These problems impact the usage of the
tools and therefore their adoption by other researchers or peo-
ple from industry. One way to be notified about these issues
is to instrument the tool so that if it crashes, it collects infor-
mation about the run-time scenario and then asks the users
to send this information back to the developers. This widely
adopted approach requires a significant infrastructure and is
therefore mostly used in commercial applications.

By having the tool as a web service, the tool is always
running on the server, and therefore the tool developer can be
notified of all bugs and failures. Bug fixes also do not need to
be distributed to individual users, but are available to all users
at once.

Promise 5 - Usage report: Web applications make it pos-
sible to gather precise usage data.

Similarly to error notifications, gathering usage data is
easy. With desktop applications it is possible to track the num-
ber of downloads of a tool, and the tool might be instrumented
to send back feedback about how it is used. This is however
not straightforward to implement. Web-based applications of-
fer the possibility to exploit standard solutions to the usage
statistics problem, such as Google analytics. This allows de-
velopers to easily gather usage statistics and infer popular
features or usability problems, to continuously improve the
tool. As with bug fixes, deploying updates is transparent.

Peril 5 - Browser compatibility: Web applications have
to tackle cross browser issues.

Web browsers are a rather diverse crowd, and the fact that
a web application works with one browser does not guarantee
that it works with other browsers. While many compatibil-
ity issues can be solved, such as how CSS (Cascading Style
Sheets) are interpreted, others cannot. In these cases the users
have to focus on a particular web browser to exploit the full
functionality of the web application.

Visualization applications have requirements which make
this situation more probable: For instance, Churrasco uses
AJAX callbacks to update SVG depictions without refresh-
ing the entire web page. The SVG DOM update in AJAX is
supported only by Firefox and, as a consequence, Churrasco
is only fully functional with Firefox.

SVG is a W3C specification and most of the recent ver-
sions of major web browsers support it: Opera and Safari
support it without AJAX update and Internet Explorer sup-
ports it through a third party plug-in. However, not all the
browsers have the same speed in rendering it, which makes
the user experience unpredictable. To test this, we wrote a
simple Javascript program which calculates the rendering speed
of various browsers. We ran the script in OS X on a Power-
Book G4 running at 1.5GHz with 1GB of RAM. The dif-
ferences between the browsers are very large. For example,
in one second Opera 9.50 renders 595 polygons while Sa-
fari only renders 77. This simple benchmark shows two of
the greatest limitations of SVG: The amount of visual ele-
ments that one can render is limited (at least currently) and
the user experience is hard to predict, as the timings will be
different for users with different system configurations. Also,
we encountered problems with the same pop-up menu being
rendered differently in two browsers.

Other technical choices such as Flash or Javascript (with
APIs such as Processing.js or the Javascript InfoVis Toolkit)
may alleviate these problems. Javascript in particular has seen
a resurgence of interest among web browser builders who
now compete over their Javascript performance (see Section 6
for details about these issues).

Finally, it is not unreasonable to require a widespread
browser such as Firefox over Internet Explorer if the bene-
fits of the application are promising enough.

Peril 6 - Interaction: Developing interactive web applica-
tions is harder than desktop applications.

Supporting interaction through a web browser is a non-
trivial task, and even supposedly simple features, such as con-
text menus, must be implemented from scratch. In Churrasco
context menus are implemented as SVG composite figures,
with callbacks attached, which are rendered on top of the
SVG visualization. In SPO such menus are dynamically gen-
erated by Javascript. It is hard to guarantee a responsive user
interface, since every web application introduces a latency
due to the transport of information.

However, libraries of reusable components are quickly
developing, such as Prototype, script.aculo.us and jQuery for
Javascript, which should alleviate this problem. We provide a
more detailed discussion on this in Section 6.

Peril 7 - Rapid evolution: Web technologies are changing
fast.

The dust is far from settled in the web technology arena.
As we saw above, several technologies (SVG, Flash, Javascript,
etc.) are currently competing. These technologies are rapidly

10 Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web

Web
interface

Mondrian

Visualization (SVG) request

Churrasco

SVG
converter

Visualization request

Visualization SVG
1

2

3 4

(a) Churrasco uses the Mondrian framework in the backend to create visual-
izations and then it converts them as SVG interactive graphics.

Web
interface

Dot

Visualization (SVG) request

SPO

Viz module
Laid out viz

Layout request

SVG 1

3 2

4 5

(b) SPO uses the Dot external tool to layout its visualization.

Fig. 9. Two examples of using external tools in Churrasco and SPO.

Web
interface

External tool
running on the server

Web based visualization application

Conversion
module 1

2

3 4
Viz request

Viz request

Viz web-suitable viz

Fig. 10. The general schema for using external tools in web-based visualiza-
tion applications and hiding them behind the web interface.

evolving: New possibilities are emerging, and the amount of
support among browsers varies. This rapid evolution makes it
difficult to choose which tools/libraries/technologies to use,
and to maintain the web application aligned with the rapidly
evolving technologies. Developers must be watchful of new
opportunities and potentially capable to switch to newer tech-
nologies when needed. We hope that, with time, standard so-
lutions will emerge for highly interactive, graphical web ap-
plications.

Promise 6 - Hiding tasks and exposing services: Web-
based visualization applications can use external tools to
perform tasks, exposing the results as services.

Some aspects of web application development are how-
ever easier. Implementing software visualization tools as web
applications allows the developer to use external tools in the
backend, hiding them from the users. On the contrary, in desk-
top applications external tools have to be included in the ap-
plication distribution, and they should run on the client ma-
chine (which might also have installation problems like the
application itself). In short, the web application developer has
total control over the environment the application is execut-
ing in.

The use of external tools offers a lot of reuse opportuni-
ties, such as layout engines. For example, Churrasco reuses
two external tools (Mondrian [42] and the Evolution Radar
[10]) to create visualizations, which are then converted to
SVG by a dedicated module of Churrasco (see Figure 9(a)).
This enables us to freely reuse all the visualizations and lay-
outs provided by Mondrian and the Evolution Radar. SPO is
dispatching the layouting of its visualizations to Dot, a Unix
command line layout algorithm library (see Figure 9(b)).

SPO also exposes the service of Softwarenaut [36], an ar-
chitecture recovery tool whose visualizations where adapted
to the Web. Moreover, SPO is processing huge amounts of
data (entire super repositories) when there are no user con-
nected, i.e., exploiting idle time, caching the results and pre-
senting them on-demand to the users. In this way, SPO is
hiding heavy computations and presenting only the results as
a lightweight service. Churrasco does the same thing when,
given the url of a SVN or Bugzilla repository, it sends an
email to the user when the data is imported.

Figure 10 shows how the usage of external tools can be
generalized: The web interface gets the request for a visual-
ization and dispatches it to an external tool. The result is then
converted in a web-suitable format and sent back through the
web interface to the clients’ web browsers.

Promise 7 - Updating and maintaining: Updating a web-
based visualization application is easy since it is only done
once for all the users.

In our experience with developing visualization tools as desk-
top applications, usually deploying a new version takes weeks
or months, since one needs to put up a new release and then
inform all the users.

One of the main advantages of having a visualization tool
available for the web is the ability to update and maintain
the application without distributing and installing software on
numerous client computers. The updates can be done only
once on the server. This promise is one of the building blocks
of promises 4 and 5, as they rely on the instant availability
of updates. The associated risk is that defective updates will
also propagate instantly to all users; careful testing is needed.

This promise is more general then just for visualization
applications, but we feel like this is one of the strong argu-
ments that will bring more software visualization applications
to the web in the future.

Promise 8 - Selective deployment and feedback: One
can selectively deploy changes to a group of users and
measure their effect.

Web applications being easier to update and providing
feedback allows one to measure the effects of changes on the
users. Assuming an application has a steady amount of users,
and gathers usage statistics about how the users are using it,
one can measure the effect of changes in the following way:

Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web 11

– The users are divided in two groups, one using the ap-
plication with the change (such as the introduction of a
novel visualization, or changes to an existing one), while
the second group uses the application without the change.
The possibility of deploying updates transparently, thanks
to Promise 7, makes this possible.

– The application gathers usage statistics about both groups
of users as they are using the application (using Promise 5
in order to do so). The monitoring can be as fine-grained
as needed (i.e., recording individual mouse clicks on web
page elements, with their time stamps). If the monitoring
already in place is insufficient, it can be deployed as an-
other update as well (and removed later on if it proves
to be detrimental to performance, such as if it increases
communications between clients and the server beyond
what is expected).

– A suitable performance metric can be devised and com-
puted on the collected data, in order to assess the impact
of the change introduced. One could for example measure
if a novel visualization produces a statistically significant
decrease of the time needed to perform a given task by
comparing the timestamps of events, or evaluate differ-
ences in correctness if one took time to tag beforehand
the entities that a given task is supposed to uncover (as
mentioned in Promise 3).

This promise is important for visualization techniques,
which are usually hard to evaluate without performing a con-
trolled experiment. Such a technique could allow one to de-
ploy enhancements and measure their impact using a lighter
and more automated process than a regular controlled exper-
iment would allow.

4 Promises and Perils in Practice

We report on two experiments we performed on small groups
of users, in order to test some of the promises and perils we
described in a real-life setting. In particular, we test the im-
pact of Peril 2 (performance), and the benefits of Promise
1 (availability), Promise 2 (Collaboration), and Promise 7
(Ease of updates).

4.1 A Collaboration Experiment with Churrasco

We performed a collaboration experiment using Churrasco,
with the following goals: (1) evaluate whether Churrasco is
a good means to support collaboration in software evolution
analysis (Promise 2), (2) test the usability of the tool as an ex-
emplar of a web-based reverse engineering and visualization
tool (Promise 1), and (3) test the scalability of the tool with
respect to the number of participants (Peril 2).

We performed the experiment in the context of a univer-
sity course on software design and evolution. The experiment
lasted 3 hours: During the first 30 minutes we explained the
concept of the tool and how to use it, in the following two
hours (with a 15 minutes break in the middle) the students

performed the actual experiment and in the last 15 minutes
they filled out a questionnaire about the experiment and the
tool. The participants were: 5 master students, 2 doctoral stu-
dents working in the software evolution domain and 1 profes-
sor. The Master students were lectured on reverse engineering
topics before the experiment.

4.1.1 Case study and tasks

The task consisted in using two Churrasco visualizations (Sys-
tem Complexity and Correlation View) and looking at the
source code to (1) discover classes on which one would focus
reengineering efforts (explaining why), and to (2) discover
classes with a big change impact. The target system chosen
for the experiment was JMol, a 3D viewer for chemical struc-
tures, consisting of ca. 900 Java classes. Among the partici-
pants only one possessed some knowledge about the system.

Figure 11 shows a System Complexity of JMol in which
the size of nodes maps to the number of attributes (width) and
methods (height) and the nodes’ color represents the amount
of annotations they received (the darker the color, the more
the annotations), i.e., number of annotations weighted with
their length. We see that the most annotated class is Viewer,
the one with the highest number of methods (465). However,
we can also see that not only the big classes (with respect
to methods and/or attributes) were commented, but also very
small classes.

4.1.2 Usage of collaborative annotations

In the assigned time the participants annotated 15 different
classes for a total of 31 annotations, distributed among the
different participants, i.e., everybody actively participates in
the collaboration. The average number of annotations per au-
thor was 3.87, with a minimum of 2 and a maximum of 13.

The annotations were also used to discuss about certain
properties of the analyzed classes. In most of the cases the
discussion consisted in combining different pieces of knowl-
edge about the class (local properties as number of methods
with properties of the hierarchy with dependency etc.).

4.1.3 User survey

At the end of the experiment all participants but one filled
out a survey about the tool and the collaboration experience.
The survey used a Likert scale [33]; its results are shown in
Table 2.

Although not a full-fledged user experiment, it provided
us with information about our initial goals. The survey shows
that the participants found the tool easy to use: This is im-
portant in the context of web-based tools, and especially with
respect to Promise 1 as the goal is to lower the users’ barrier
to entry. Moreover, the survey provides us feedback about
Promise 2: Participants found collaboration important in re-
verse engineering and Churrasco as a good means to support
collaboration (for the participants the experiment was the first
collaborative reverse engineering experience). Informal user

12 Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web

JMolViewer

Viewer

Graphics3D

Eval

JMolSimpleViewer

JMol
PngEncoder

BondIterator

Fig. 11. A System Complexity of JMol. The color denotes the amount of annotations made by the users. The highlighted classes (thick boundaries) are annotated
classes.

Assertion SA
(%)

A
(%)

N
(%)

D
(%)

SD
(%)

Churrasco is easy to use 33 50 17
System Complexity view is
useful

73 27

Correlation view is useful 72 14 14
Churrasco is a good means to
collaborate

100

Collaboration is important in
reverse engineering

14 72 14

Table 2. Evaluating the usability and collaboration support of Churrasco
(SA=strongly agree, A=agree, N=Neutral, D=disagree, SD=strongly dis-
agree).

comments from the users stated that they especially liked to
be notified of annotations from other people on the entity they
already commented, or to see what was going on in the sys-
tem and which classes were annotated, to also personally look
at them. Further, Churrasco scaled well with 8 people access-
ing the same model on the web portal at the same time, with-
out any performance issue, even if we did not implement any
load-balancing scheme: Churrasco was running on a 3 GHz,
dual-processor server at the time. This alleviates our concerns
about the scalability peril somewhat.

4.2 A Usability Experiment with SPO

To verify the usability and usefulness of SPO, we conducted
an experimental study in the context of the Software Evo-
lution course at the University of Lugano. The course is a
master level course.

During one of the labs we introduced the students to the
concept of a software ecosystem and then presented the Project
Observatory. After that, we gave the students one hour of time

to analyze an academic ecosystem and report on their under-
standing as well as the usability of the tool. The ecosystem
that we used as case study is the one hosted by the Soft-
ware Composition Group from the University of Berne, an
ecosystem which contains tens of developers and hundreds
of projects.

At the end of the analysis the students had to answer sev-
eral questions that were testing their understanding of the re-
lationships between the developers in the ecosystem as well
as the importance and relationships between the projects in
the ecosystem (e.g., Which project is more important in for
the ecosystem A, or B? Which developer is more critical to
the ecosystem?).

During the experiment, we had the chance of testing Promise
7. At one point, soon after the beginning of the experiment,
one of the students discovered a bug in the application. We
immediately fixed the bug and updated the application on the
server, such that all the participants could benefit from the fix.

After answering the questions regarding the ecosystem,
the students had to rate on a Likert scale their own under-
standing of the various aspects of the ecosystem. The major-
ity felt that the analysis session was useful in supporting their
understanding of the analyzed ecosystem.

At the end of the experiment, we asked the participants
to fill out a survey on the usability of the tool. Table 3 shows
that in general the participants were happy with the UI and
ease of use of the tool. We report more on the case-study
elsewhere [39].

The main complaint was the slowness of the tool and the
lack of scalability when presenting large graphs. These prob-
lems were not inherent in the web-based nature of the appli-
cation, but rather they were problems with the back-end im-
plementation which represented a computational bottleneck.
In fact the application was not slow in our previous tests, but

Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web 13

Assertion SA
(%)

A
(%)

N
(%)

D
(%)

SD
(%)

Application was easy to use 20 70 10
Application was responsive
enough

10 30 40 20

Interaction features were satis-
fying

30 60 10

Table 3. Evaluating the usability of SPO (SA=strongly agree, A=agree,
N=Neutral, D=disagree, SD=strongly disagree).

that was because we only tried it with a single user at a time
before. This was a confirmation of Peril 2 - the use of the tool
by multiple users at the same time resulted in a performance
degradation that we did not see before.

When asked about the interaction capabilities of the tool
30% of the students were satisfied, 60% were neutral and
10% were not satisfied. This means that we have to work
more on the interaction aspects of SPO. Students also men-
tioned that the filtering capacities were very important and
the current filtering that SPO offers needs to be improved.
However, none of the observations were really specific to the
fact that the tool was run in the browser. In fact, the high ex-
pectations that the students had from the tool were probably
the result of being used to highly interactive web-based ap-
plications.

5 Discussion

We argue that in developing a web-based software visual-
ization tool the benefits of the promises are greater than the
mostly technical issues and challenges of the perils. In partic-
ular, we argue that the most important promises are:

– Availability. In the Introduction we observed that 80% of
tools presented in TOSEM in the last 8 years are not even
installable. The web can improve this situation.

– Reuse. We showed that with web applications it is possi-
ble to hide tasks and provide services. Porting or creating
a web visualization requires a smaller implementation ef-
fort, as not only libraries but even entire external tools can
be reused.

– Collaboration. Collaboration is getting more and more at-
tention both in forward and reverse engineering. We be-
lieve that this trend will continue and collaboration will
play a key role in these domains in the following years.
We discussed how and why, with web applications, sup-
porting collaboration is easier with respect to desktop ap-
plications. Our experiment with Churrasco showed that
users used the collaborative annotions when presented with
the option to do so.

– Selective Deployment. Once an application gathers a steady
stream of users, selective deployment of enhancements
allows one to measure their effect in a convenient fash-
ion. The ease of access of a web application allows one to
easily recruit potential users to evaluate the enhancement
on as well.

To increase their survival chances, every software visu-
alization tool, in the long run, should have a web front-end.
This does not require a huge implementation effort because
many existing tools can be just reused, and it will increase the
accessibility of the application and its adoption.

The perils of developing web applications should be how-
ever taken into account. The peril of performance in particu-
lar is one we were confronted with when we performed our
experiments on Churrasco and SPO: Not all the users found
the applications responsive enough for their tastes. However,
no measure was taken to ensure performance at the time.
Standard techniques such as load-balancing can alleviate this
problem. Finally, the peril of rapid evolution is also a con-
cern: In such a rapidly evolving domain, it is especially im-
portant to evaluate which technology fits best the developer
needs when it comes to porting or creating a web visualiza-
tion. Nowadays the choice is among a number of technologies
that we discuss in the next section.

6 Technologies

In this section, we list the array of technologies available
presently to implement software visualization applications,
with a focus on the ones allowing rich presentations with
graphical and interactive elements. The technologies we con-
sider are Javascript (using Canvas and/or SVG), Flash, Sil-
verlight, and Java applets. We summarize all the libraries and
frameworks that we mention in this section in Table 4.

6.1 Javascript and DHTML

Javascript is the standard scripting language of web pages. It
is a powerful language which combines functional and pro-
totypical paradigms. Historically, the support for Javascript
was variable among browsers, with some browsers providing
the same functionality differently. With time the browser im-
plementations of the language became better and more per-
formant and the popularity of the language increased. With
the standardization of the DOM by the W3C the way was
paved for building interactive web applications by dynami-
cally modifying the content of a page; This combination of
Javascript and DOM manipulation is called Dynamic HTML
(DHTML).

Once DHTML started to get traction, frameworks and
libraries that mask the quirks and differences of individual
browsers have emerged, offering a unified front to the pro-
grammer. Two of the most widespread libraries are Proto-
type and jQuery, which simplify the operations needed to
manipulate the contents of a web page, and do so while ab-
stracting the behavior differences of browsers. Several frame-
works also exist to ease the building of applications featur-
ing a graphical user interface, such as Dojo, script.aculo.us,
Sprout Core, Mootools, the Yahoo UI Library, or the Google
Web Toolkit. All these frameworks provide both traditional
GUI widgets and advanced graphics, charting, and interac-
tion widgets.

14 Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web

Library/Framework Available at Goal License
Prototype http://www.prototypejs.org Simplify Javascript programming and DOM manipulation MIT
Dojo http://dojotoolkit.org Provide basic language extensions, and a rich set of widgets BSD
jQuery http://www.jquery.com Ease DOM traversing, event handling, animating, Ajax interactions GPL, MIT
script.aculo.us http://script.aculo.us Improve user interface MIT
Sprout Core http://www.sproutcore.com Move the app logic to the client (the server deliveries only the data) MIT
Mootools http://mootools.net Simplify and improve Javascript programming MIT
Yahoo UI Library http://developer.yahoo.com/yui/ Build scalable, fast, robust and interactive web applications BSD
Google Web Toolkit http://code.google.com/webtoolkit/ Create JavaScript front-end applications in Java Apache 2.0
Processing.js http://processingjs.org Program visualizations, animations, and interactions in Javascript MIT
Cake http://code.google.com/p/cakejs/ Support scene graph visualizations in Javascript MIT
Raphael http://raphaeljs.com Simplify working with vector graphics in Javascript MIT
InfoVis Toolkit http://thejit.org Create interactive data visualizations for the web BSD
Flare http://flare.prefuse.org Create interactive visualizations in Flash BSD
Google Data Explorer http://www.google.com/publicdata/home Explore datasets with interactive Flash-based visualizations -

Table 4. Libraries and frameworks available to improve the web experience and to support web-based visualization.

With Javascript one can dynamically modify a page based
on interaction events triggered by the user, allowing for the
production of interactive graphics on a web page. At the mo-
ment, there are two main supporting technologies that allow
the insertion of graphics in a page. The first is SVG (Scalable
Vector Graphics), a declarative XML-based language for vec-
tor graphics specification. The second is the Canvas element
introduced by Apple in their WebKit component and part of
the forthcoming HTML 5 standard.

SVG has a tree structure just as the HTML DOM, and
this allows current browsers to make SVG elements become
part of the DOM. This means that approaches that generate
and manipulate HTML can be easily adapted to integrate with
SVG as well. One can attach event handlers to SVG elements,
and use Javascript to add or alter the structure of the SVG
graphic. SVG also supports animations.

The canvas tag allows one to define a zone on the web
page where one can draw programmatically through Javascript.
Several visualization libraries have been built on top of the
HTML canvas to abstract commonly used functionalities, such
as Processing.js, Cake, Raphael and the InfoVis Toolkit. All
these libraries allow one to build event handlers on top of
graphical elements as well.

These technologies are based on standards, yet the sup-
port for those is not complete. For example, as of February
2010 in a sample of web accesses retrieved by Stat Owl4,
67% were performed by browsers not supporting SVG. In-
ternet Explorer’s support for SVG and the canvas element is
weak. There exist workarounds, but they are not fully sat-
isfactory yet. Version 9 of Internet Explorer should address
these issues, but it is far from being released at this moment
of writing. On the subject of performance, Javascript and es-
pecially SVG are slower than Flash, Java applets and Sil-
verlight, although the situation is changing as browsers are
competing on Javascript performance nowadays. According
to the JS Benchmark5 Chrome 4.0 is the browser with the
best Javascript performance, followed by Safari 4.0 (1.1 times
slower), Opera 10.50 (1.4 times slower), Firefox 3.6 (2.6 times

4 http://www.statowl.com
5 http://jsbenchmark.celtickane.com

slower), Konqueror 4.3 (5.2 times slower) and IE 8.0 (5.6
times slower).

6.2 Java applets, Flash and Silverlight

Java applets are Java applications that can run in a web browser
through a Java Virtual Machine. They were designed to pro-
vide interactive features to web applications that could not
be provided by HTML alone. Applets were introduced in
the first version of the Java language in 1995. Although ap-
plets were supported by the majority of web browsers, and
had the advantage of being cross-platform, they did not be-
come mainstream. Another Java technology that makes ap-
plications easier to deploy and install is Java Web Start. It
allows applications to be downloaded in the browser, and to
be run in an independent sandbox. However, as applications
deployed with Java Web Start do not run in a web browser,
they do not benefit from the novel advantages offered by web
technologies.

Adobe Flash and Microsoft Silverlight are multimedia
platforms that integrate graphics, animations, multimedia and
interactivity into a single runtime environment. While Flash
is an well-established technology, introduced in 1996, Sil-
verlight is relatively new, as its first version was released in
April 2007.

The Flash, Silverlight and Java technologies require the
installation of plugins to launch the applications that they are
written in, as they are not natively supported by browsers. Of
the three, Flash has the most significant market-share: Ac-
cording to Stat Owl, 96% of the browsers have Flash support,
while for Java and SilverLight the percentages are respec-
tively 81% and 39%6. Two popular Flash-based visualization
frameworks are Flare and Google Public Data Explorer. The
latter is an application which provides four types of interac-
tive visualizations to “explore” datasets: Line chart, bar chart,
maps and bubble chart. Flare is an ActionScript (the language
to write Flash application) library for creating visualizations:
from simple charts to complex interactive graphics.

6 In a sample population of web accesses retrieved from September 2009
to February 2010.

Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web 15

Fig. 12. Technological trends over the last year (as of March 2010), in terms
of Google searches and mentions in news articles of Javascript, Adobe Flash,
Java applets, SVG and Silverlight.

One downside of these technologies is their weak integra-
tion with the browser. A Flash application is usually seen as a
“black box”, which does not communicate with the rest of the
web page. This implies that a web visualization tool would
probably need to be implemented either entirely in Flash, or
suffer from the limitations of the communication between the
components of the application. Using Javascript on the other
hand allows one to access all the elements of the web page at
once. Churrasco and SPO use SVG graphics, that, in response
to user interactions, alter also the HTML content of the page.
Were the visualizations to be implemented in Flash, most of
the HTML content would have to be rewritten in Flash as
well, in order to be updated in response to interactions.

6.3 The Bottom Line

Figure 12 shows the result of Google Trends on how much
the technologies we present in this section are discussed over
time. We can consider it as a predictor of how these technolo-
gies are supported among developers. In the figure, we clearly
see that the two main contenders are Flash and Javascript.
This is reflected in terms of available libraries: For instance,
considerable effort has been invested to make Javascript frame-
works able to support cross-browser compatibility, while other
solutions, such as Java applets and SVG graphics, do not have
such a support.

Deciding between a Javascript solution and a Flash-based
solution depends on several factors. For example, in terms
of current and future compatibility with browsers, at the mo-
ment Flash enjoys a wider compatibility. However, this might
not continue, since, on the one hand, several mobile devices
do not support Flash and, on the other hand, the support for
the HTML 5 standard is growing. Other two factors against
Flash are its proprietary technology and the fact that its con-
tent does not cooperate well with the host HTML. However,
Flash still offers better performances and multimedia capa-
bilities (although a visualization application may not need to
perform advanced tasks, such as playing back video).

7 Related Work

7.1 Software Visualization

The goal of software visualization is to support the under-
standing of large amounts of data, when the question one
wants to answer about the data cannot be expressed as queries.
Software visualization approaches vary with respect to two
dimensions. The first dimension is the type of visualized data,
for which visualizations can be classified as: Static (using the
system’s structure), dynamic (using it’s runtime behavior),
or evolutionary (using it’s history). The second dimension is
the level of abstraction on the data. Different levels exist for
each visualization type of the first dimension. Based on their
abstraction level, we distinguish three main classes of soft-
ware visualization approaches: Code-level, design-level and
architectural-level.

Code-Level Visualization Line-based software visualization
has been addressed in a number of approaches. The first tool
which uses a direct code line to pixel line visual mapping to
represent files in a software system is SeeSoft, proposed by
Eick et al. in 1992 [16]. On top of this mapping, SeeSoft su-
perimposes other types of information such as which devel-
oper worked on a given line of code or which code fragments
correspond to a given modification request. Later, Ball and
Eick focused on the visualization of different source code
evolution statistics such as code version history, difference
between releases, static properties of code, code profiling and
execution hot spots, and program slices [3]. Marcus et al. ex-
tended the visualization techniques of SeeSoft by exploiting
the third dimension in a tool called sv3D [41].

Ducasse et al. worked at a finer granularity level, using a
character to pixel representation of methods in object-oriented
systems. The authors enriched this mapping with semantic
information to provide overviews of the methods in a sys-
tem [15].

Telea et al. proposed a code level visualization technique
called Code Flows, which displays the evolution of source
code over several versions [53]. The visualization, based on
a code matching technique which detects correspondences in
consecutive ASTs, is useful to both follow unchanged code
and detect important events such as code drift, splits, merges,
insertions and deletions.

Augur [20] is a code level visualization tool which com-
bines, within one visual frame, information about both soft-
ware artifacts and the activities of a software project at a given
moment (extracted from SCM logs). Another tool working at
the code level is CVSscan [58].

Design-Level Visualization The next level of abstraction, af-
ter code, is the design level where visualizations focus on
self contained pieces of code, such as classes in object ori-
ented systems. UML diagrams are the industry standard for
representing object-oriented design. Researchers investigated
techniques to enrich and extend standard UML diagrams. Ter-
meer et al. developed the MetricView tool which augments

16 Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web

UML class diagrams with visual representation of class met-
rics extracted from the source code [54].

Researchers also investigated different visualization tech-
niques to represent source code at the design level. Lanza in-
troduced the polymetric views [31], a lightweight software
visualization technique which renders software entities and
software relationships enriched with software metrics. Poly-
metric views can be enriched with dynamic or semantical in-
formation. Orla et al. exploited a 3D visualization to add ex-
ecution trace information to polymetric views in a tool called
TraceCrawler [24]. The tool is a 3D extension of CodeCrawler
[32], the tool where Lanza originally implemeted polymetric
views. Ducasse et al. enriched polymetric views with infor-
mation extracted from control flow analysis in a visualization
called class blueprint [14].

Cornelissen et al. proposed a trace visualization method
[5] based on a massive sequence and circular bundle view
[25], implemented in a tool called ExtraVis. ExtraVis shows
the systems structural decomposition (e.g., in terms of pack-
age structures) and renders traces on top of it as bundled
splines, enabling the user to interactively explore and analyze
program execution traces.

Another direction of research is the use of metaphors to
represent software. Wettel et al. argue that a city is an appro-
priate metaphor for the visual representation of software sys-
tems [59] and implement it in their CodeCity tool [60], where
buildings represent classes and districts represent packages.
Kuhn et al. used a cartography metaphor to represent soft-
ware systems [30]. In their Software Cartographer tool the
authors use a consistent layout for software maps in which
the position of a software artifact reflects its vocabulary, and
distance corresponds to similarity of vocabulary.

A number of evolutionary visualizations were proposed at
the design level, rendering information extracted from SCM
logs. Taylor and Munro used visualization together with ani-
mation to study the evolution of a CVS repository [52]. Rys-
selberghe and Demeyer used a simple visualization of CVS
data [56] to recognize relevant changes in the software sys-
tem. Wu et al. used the spectograph metaphor to visualize
how changes occur in software systems [61]. The Ownership
Map [23], introduced by Gı̂rba et al., visualizes code owner-
ship of files over time, based on information extracted from
CVS logs. The Evolution Radar visualizes co-change infor-
mation extracted from SCM logs, integrating different levels
of abstraction, to support the analysis of the coupling at the
module level and the understanding of the causes at the file
level [10].

Architectural-Level Visualization The highest level of abstrac-
tion is the architecture level, consisting of system’s modules
and relationships among them. In 1988 Müller et al. intro-
duced Rigi [43], the first architectural visualization tool. Rigi
is a programmable reverse engineering environment which
provides interactive visualizations of hierarchical typed graphs
and a Tcl interpreter for manipulating the graph data. Other
architecture visualization tools were built on top of it [27,46]
and it inspired other architectural visualization projects. Two

of them were Shrimp [51] and its Eclipse-based continuation
Creole [34]. These tools display architectural diagrams using
nested graphs where graph nodes embed source code frag-
ments.

Lungu et al. introduced Softwarenaut [36], an architec-
tural visualization and exploration platform on top of which
they experimented with automatic exploration mechanisms
[37]. Knodel et al. proposed a tool called SAVE [29] which
uses UML-like figures to represent architectural components.
Jazayeri et al. used a three-dimensional visual representation
at the architectural level for analyzing a software system’s re-
lease history [26]. Gall et al. used a graph based representa-
tion to visualize historical relationships among system’s mod-
ules extracted from the release history of a system [22]. The
authors applied the visualization to analyze historical rela-
tionships among modules of a large telecommunications sys-
tem and showed that it supported the understanding of the
system architecture. Pinzger et al. proposed a visualization
technique based on Kiviat diagrams [47]. The visualization
provides integrated views on source code metrics in different
releases of a software system together with coupling infor-
mation computed from CVS log files.

Summing Up We surveyed software visualization approaches
and tools in the literature: They vary with respect to the data
they visualize and the abstraction level they address. How-
ever, none of the mentioned approaches is web based, while
both Churrasco and SPO are. Concerning the classification of
our tools as software visualization approaches, Churrasco is
an evolutionary approach at the design level, while SPO is an
evolutionary approach at the architecture level.

7.2 Web Based Software Visualization

There is a wide range of visualization tools that work on the
web. One of the most well-known is ManyEyes, a web site
where users may upload data, create interactive visualiza-
tions, and carry on discussions [57]. The goal of the site is
to support collaboration around visualizations at a large scale
by fostering a social style of data analysis. Recently Google
introduced the Data Explorer, another application targeted at
general data visualization.

To our knowledge, besides Churrasco and SPO, the only
web-based software visualization tools are Tesseract [49] and
the Java applet version of Shrimp7. Tesseract is a Flash-based
tool which provides interactive visualizations of relationships
between files, developers, bugs and e-mails. The main dif-
ference between our tools and Tesseract is that Churrasco
and SPO address the problem of understanding a system’s
(or eco-system’s) evolution, while the goal of Tesseract is to
support the analysis of the socio-technical relations between
code, developers, and issues. Shrimp running as a Java ap-
plet is identical to the desktop version, functionality wise, but
slower in terms of performance. While Shrimp supports the

7 Available at http://www.thechiselgroup.com/shrimp

Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web 17

exploration of software architecture, our tools focus on soft-
ware evolution analysis.

Apart from Tesseract and Shrimp, the most related work
are software visualization tools which produce outputs read-
able by web browsers, and web-based software analysis tools
without visualizations. Beyer and Hassan proposed Evolu-
tion Storyboards [4], a technique that offers dynamic views.
The storyboards, rendered as SVG files, depict the history
of a project using a sequence of panels, each representing a
particular time period. These visualizations are partially in-
teractive: They only show the names of the entities in the
figures. In contrast the views offered in Churrasco and SPO
are fully interactive, providing context menus for the figures
and navigation capabilities. The Evolution Storyboard is not
a web application, but a tool producing SVG files readable by
browsers.

Nentwich et al. introduced BOX, a portable, distributed
and interoperable approach to browse UML models [45]. BOX
translates a UML model in XMI to VML (Vector Markup
Language), which can be directly displayed in a web browser.
BOX enables software engineers to access and review UML
models without the need to purchase licenses of tools that
produced the models. As the Evolution Storyboard, BOX is
not a web application but a tool which can produce output
readable by some web browsers.

Mancoridis et al. presented REportal, a web-based por-
tal site for the reverse engineering of software systems [40].
REportal allows users to upload their code (Java or C++)
and then to browse, analyze and query it. These services are
implemented by reverse engineering tools developed by the
authors over the years. For doing that the authors exploited
promise 6 - Hiding tasks and exposing services. REportal
supports software analysis through browsing and querying,
but does not offer interactive visualizations.

Finnigan et al. developed the Software Bookshelf, a web-
based paradigm for the presentation and navigation of infor-
mation representing large software systems [19].

While we are aware of one research project that aims at
developing a web-based IDE [55], we believe that this trend
will continue and this kind of efforts will be duplicated by
other researchers in the future.

8 Conclusion

Building software visualization tools for the web is a daunt-
ing task that we experienced first-hand when we implemented
two web-based tools, Churrasco and SPO. We documented
our experiences in the form of promises and perils of such a
transition, and evaluated some of these promises and perils in
practice by means of two usabilities studies of the tools we
implemented.

The transition to the web has a variety of technologi-
cal consequences making some tasks harder (e.g., debugging,
scaling), but some other easier (e.g., error reporting, mainte-
nance). The web is a moving target: Technologies and stan-
dards are rapidly changing, and one must regularly assess the

technological choices made in the light of changing support
across browsers. We did such an assessment, as of March
2010, and found that the leading contenders are Javascript
and Flash. Flash is currently more performant, but tends to
not cooperate well with the rest of the web page, hence limit-
ing its usefulness if the visualizations and the rest of the page
need to communicate.

If completed, a transition to the web is rewarding: A web-
based tool has a greater visibility and potential impact, as
people can work with it without needing to install it. A web
platform also makes collaboration a more probable possibil-
ity, as the costs to implement it are lower than in standalone
applications. As our experiment showed, once given the pos-
sibility, people will effortlessly use the collaborative facili-
ties.

Acknowledgements. We gratefully acknowledge the financial sup-
port of the Swiss National Science foundation for the project “Di-
CoSA” (SNF Project No. 118063).

References

1. Rigi–an environment for software reverse engineering, explo-
ration, visualization, and redocumentation. Science of Com-
puter Programming, 75(4):247 – 263, 2010. Experimental Soft-
ware and Toolkits (EST 3): A special issue of the Workshop on
Academic Software Development Tools and Techniques (WAS-
DeTT 2008).

2. C. Bajaj and S. Cutchin. Web based collaborative visualization
of distributed and parallel simulation. In Proceedings of the
IEEE symposium on Parallel visualization and graphics (PVGS
1999), pages 47–54. IEEE Computer Society, 1999.

3. Timothy Ball and Stephen Eick. Software visualization in the
large. IEEE Computer, 29(4):33–43, 1996.

4. Dirk Beyer and Ahmed E. Hassan. Animated visualization of
software history using evolution storyboards. In Proceedings of
the 13th Working Conference on Reverse Engineering (WCRE
2006), pages 199–210. IEEE CS Press, 2006.

5. Bas Cornelissen, Andy Zaidman, Danny Holten, Leon Moonen,
Arie van Deursen, and Jarke J. van Wijk. Execution trace anal-
ysis through massive sequence and circular bundle views. J.
Syst. Softw., 81(12):2252–2268, 2008.

6. Marco D’Ambros and Michele Lanza. Reverse engineering
with logical coupling. In Proceedings of WCRE 2006 (13th
Working Conference on Reverse Engineering), pages 189–198.
IEEE CS Press, 2006.

7. Marco D’Ambros and Michele Lanza. A flexible framework
to support collaborative software evolution analysis. In Pro-
ceedings of CSMR 2008 (12th IEEE European Conference on
Software Maintenance and Reengineering), pages 3–12. IEEE
CS Press, 2008.

8. Marco D’Ambros and Michele Lanza. Visual software evo-
lution reconstruction. Journal of Software Maintenance and
Evolution: Research and Practice (JSME), 21(3):217–232, May
2009.

9. Marco D’Ambros, Michele Lanza, and Mircea Lungu. The evo-
lution radar: Visualizing integrated logical coupling informa-
tion. In Proceedings of MSR 2006 (3rd International Workshop
on Mining Software Repositories), pages 26–32, 2006.

18 Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web

10. Marco D’Ambros, Michele Lanza, and Mircea Lungu. Visual-
izing co-change information with the evolution radar. Transac-
tions on Software Engineering (TSE), 35(5):720 – 735, 2009.

11. Marco D’Ambros, Michele Lanza, and Martin Pinzger. “a bug’s
life” — visualizing a bug database. In Proceedings of VISSOFT
2007 (4th IEEE International Workshop on Visualizing Soft-
ware For Understanding and Analysis), pages 113–120. IEEE
CS Press, 2007.

12. S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and I. Alloui. Pack-
age surface blueprints: Visually supporting the understanding of
package relationships. In Proceedings IEEE International Con-
ference on Software Maintainance (ICSM 2007), pages 94–103,
Los Alamitos CA, October 2007. IEEE CS Press.

13. Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz. Moose:
an agile reengineering environment. In Proceedings of
ESEC/FSE 2005, pages 99–102, 2005.

14. Stéphane Ducasse and Michele Lanza. The class blueprint: Vi-
sually supporting the understanding of classes. Transactions on
Software Engineering (TSE), 31(1):75–90, January 2005.

15. Stéphane Ducasse, Michele Lanza, and Romain Robbes. Multi-
level method understanding using microprints. In Proceedings
of VISSOFT 2005 (3rd IEEE International Workshop on Visual-
izing Software for Understanding and Analysis), pages 33–38,
2005.

16. Stephen G. Eick, Joseph L. Steffen, and Sumner Eric E., Jr.
SeeSoft—a tool for visualizing line oriented software statistics.
IEEE Transactions on Software Engineering, 18(11):957–968,
November 1992.

17. Klaus Engel and Thomas Ertl. Texture-based volume visualiza-
tion for multiple users on the world wide web. In Michael Ger-
vaut, Dieter Schmalstieg, and Axel Hildebrand, editors, Pro-
ceedings of the Eurographics Workshop in Vienna, Austria,
pages 115–124, 1999.

18. Jacky Estublier, David Leblang, André van der Hoek, Reidar
Conradi, Geoffrey Clemm, Walter Tichy, and Darcy Wiborg-
Weber. Impact of software engineering research on the practice
of software configuration management. ACM Transactions on
Software Engineering and Methodology, 14(4):383–430, Octo-
ber 2005.

19. P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4):564–593, November 1997.

20. Jon Froehlich and Paul Dourish. Unifying artifacts and ac-
tivities in a visual tool for distributed software development
teams. In ICSE ’04: Proceedings of the 26th International Con-
ference on Software Engineering, pages 387–396, Washington,
DC, USA, 2004. IEEE Computer Society.

21. Randall Frost. Jazz and the eclipse way of collaboration. IEEE
Software, 24(6):114–117, 2007.

22. Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of
logical coupling based on product release history. In Proceed-
ings International Conference on Software Maintenance (ICSM
’98), pages 190–198, Los Alamitos CA, 1998. IEEE Computer
Society Press.

23. Tudor Gı̂rba, Adrian Kuhn, Mauricio Seeberger, and Stéphane
Ducasse. How developers drive software evolution. In Pro-
ceedings of International Workshop on Principles of Software
Evolution (IWPSE 2005), pages 113–122. IEEE Computer So-
ciety Press, 2005.

24. Orla Greevy, Michele Lanza, and Christoph Wysseier. Visual-
izing live software systems in 3d. In SoftVis ’06: Proceedings

of the 2006 ACM symposium on Software visualization, pages
47–56, New York, NY, USA, 2006. ACM.

25. Danny Holten. Hierarchical edge bundles: Visualization of ad-
jacency relations in hierarchical data. IEEE Transactions on
Visualization and Computer Graphics, 12(5):741–748, 2006.

26. Mehdi Jazayeri, Harald Gall, and Claudio Riva. Visualizing
Software Release Histories: The Use of Color and Third Di-
mension. In Proceedings of ICSM ’99 (International Confer-
ence on Software Maintenance), pages 99–108. IEEE Computer
Society Press, 1999.

27. R. Kazman and S. J. Carrière. View extraction and view fusion
in architectural understanding. In Proceedings of the 5th Inter-
national Conference on Software Reuse (ICSR 1998), page 290,
Washington, DC, USA, 1998. IEEE Computer Society.

28. Mik Kersten and Gail C. Murphy. Using task context to improve
programmer productivity. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT 2006/FSE-14), pages 1–11, New York,
NY, USA, 2006. ACM.

29. Jens Knodel, Dirk Muthig, Matthias Naab, and Mikael Lindvall.
Static evaluation of software architectures. In CSMR’06, pages
279–294, Los Alamitos, CA, USA, 2006. IEEE Computer So-
ciety.

30. Adrian Kuhn, Peter Loretan, and Oscar Nierstrasz. Consistent
layout for thematic software maps. In WCRE ’08: Proceedings
of the 2008 15th Working Conference on Reverse Engineering,
pages 209–218, Washington, DC, USA, 2008. IEEE Computer
Society.

31. Michele Lanza and Stéphane Ducasse. Polymetric views — a
lightweight visual approach to reverse engineering. Transac-
tions on Software Engineering (TSE), 29(9):782–795, Septem-
ber 2003.

32. Michele Lanza, Stéphane Ducasse, Harald Gall, and Martin
Pinzger. Codecrawler — an information visualization tool
for program comprehension. In Proceedings of ICSE 2005
(27th IEEE International Conference on Software Engineer-
ing), pages 672–673. ACM Press, 2005.

33. R. Likert. A technique for the measurement of attitudes.
Archives of Psychology, 22(140):1–55, 1932.

34. Rob Lintern, Jeff Michaud, Margaret-Anne Storey, and Xi-
aomin Wu. Plugging-in visualization: experiences integrating
a visualization tool with eclipse. In SoftVis ’03: Proceedings
of the 2003 ACM symposium on Software visualization, pages
47–ff, New York, NY, USA, 2003. ACM.

35. Mircea Lungu. Reverse Engineering Software Ecosystems. PhD
thesis, University of Lugano, Switzerland, October 2009.

36. Mircea Lungu and Michele Lanza. Softwarenaut: Exploring hi-
erarchical system decompositions. In Proceedings of CSMR
2006 (10th IEEE European Conference on Software Mainte-
nance and Reengineering), pages 349–350. IEEE CS Press,
2006.

37. Mircea Lungu, Michele Lanza, and Tudor Gı̂rba. Package pat-
terns for visual architecture recovery. In Proceedings of CSMR
2006 (10th IEEE European Conference on Software Mainte-
nance and Reengineering), pages 183–192. IEEE CS Press,
2006.

38. Mircea Lungu, Michele Lanza, Tudor Gı̂rba, and Reinout
Heeck. Reverse engineering super-repositories. In Proceedings
of WCRE 2007 (14th IEEE Working Conference on Reverse En-
gineering), pages 120–129. IEEE CS Press, 2007.

39. Mircea Lungu, Michele Lanza, Tudor Girba, and Romain
Robbes. The small project observatory: Visualizing software

Marco D’Ambros et al.: On Porting Software Visualization Tools to the Web 19

ecosystems. Journal of Science of Computer Programming
(SCP), 75(4):264–275, April 2010.

40. Spiros Mancoridis, Timothy S. Souder, Yih-Farn Chen, Em-
den R. Gansner, and Jeffrey L. Korn. Reportal: A web-based
portal site for reverse engineering. In Proceedings of the 8th
Working Conference on Reverse Engineering (WCRE 2001),
page 221. IEEE Computer Society, 2001.

41. Andrian Marcus, Louis Feng, and Jonathan I. Maletic. 3d rep-
resentations for software visualization. In Proceedings of the
ACM Symposium on Software Visualization, pages 27–ff. IEEE,
2003.

42. Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: An
agile visualization framework. In Proceedings of Softvis 2006
(3rd International ACM Symposium on Software Visualization),
pages 135–144. ACM Press, 2006.

43. H. A. Müller and K. Klashinsky. Rigi-a system for
programming-in-the-large. In ICSE ’88: Proceedings of the
10th international conference on Software engineering, pages
80–86, Los Alamitos, CA, USA, 1988. IEEE Computer Society
Press.

44. Hausi A. Müller. Rigi — A Model for Software System Con-
struction, Integration, and Evaluation based on Module Inter-
face Specifications. PhD thesis, Rice University, 1986.

45. Christian Nentwich, Wolfgang Emmerich, Anthony Finkel-
stein, and Andrea Zisman. BOX: Browsing objects in XML.
Software Practice and Experience, 30(15):1661–1676, 2000.

46. Liam O’Brien and Christoph Stoermer. Architecture recon-
struction case study. Technical report, CMU/SEI-2001-TR-026,
2001.

47. Martin Pinzger, Harald Gall, Michael Fischer, and Michele
Lanza. Visualizing multiple evolution metrics. In Proceedings
of SoftVis 2005 (2nd ACM Symposium on Software Visualiza-
tion), pages 67–75, St. Louis, Missouri, USA, May 2005.

48. Romain Robbes and Michele Lanza. Spyware: A change-
aware development toolset. In Proceedings of ICSE 2008 (30th
ACM/IEEE International Conference in Software Engineering),
pages 847–850. ACM Press, 2008.

49. Anita Sarma, Larry Maccherone, Patrick Wagstrom, and James
Herbsleb. Tesseract: Interactive visual exploration of socio-
technical relationships in software development. Software En-
gineering, International Conference on, 0:23–33, 2009.

50. Anita Sarma, Zahra Noroozi, and André van der Hoek.
Palantı́r: Raising awareness among configuration management
workspaces. In Proceedings of the 25th International Confer-
ence on Software Engineering (ICSE 2003), pages 444–454,
2003.

51. Margaret-Anne D. Storey and Hausi A. Müller. Manipulating
and documenting software structures using SHriMP Views. In
Proceedings of ICSM ’95 (International Conference on Soft-
ware Maintenance), pages 275–284. IEEE Computer Society
Press, 1995.

52. Christopher Taylor and Malcolm Munro. Revision towers. In
Proceedings 1st International Workshop on Visualizing Soft-
ware for Understanding and Analysis, pages 43–50, Los Alami-
tos CA, 2002. IEEE Computer Society.

53. Alexandru Telea and David Auber. Code flows: Visualizing
structural evolution of source code. In Proc. 10th Eurograph-
ics/IEEE Symposium on Data Visualization (EuroVis 2008),
volume 27, pages 831–838. Eurographics, 2008.

54. M. Termeer, C. F. J. Lange, A. Telea, and M. R. V. Chaudron.
Visual exploration of combined architectural and metric infor-
mation. In VISSOFT ’05: Proceedings of the 3rd IEEE Interna-
tional Workshop on Visualizing Software for Understanding and

Analysis, page 11, Washington, DC, USA, 2005. IEEE Com-
puter Society.

55. Arie van Deursen, Ali Mesbah, Bas Cornelissen, Andy Zaid-
man, Martin Pinzger, and Anja Guzzi. Adinda: A knowledge-
able, browser-based ide. In Companion Proceedings of the
32nd International Conference on Software Engineering (ICSE
NIER). ACM, 2010.

56. Filip Van Rysselberghe and Serge Demeyer. Studying software
evolution information by visualizing the change history. In
Proceedings 20th IEEE International Conference on Software
Maintenance (ICSM ’04), pages 328–337, Los Alamitos CA,
September 2004. IEEE Computer Society Press.

57. Fernanda B. Viegas, Martin Wattenberg, Frank van Ham, Jesse
Kriss, and Matt McKeon. Manyeyes: a site for visualization at
internet scale. IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1121–1128, 2007.

58. Lucian Voinea, Alex Telea, and Jarke J. van Wijk. CVSscan:
visualization of code evolution. In Proceedings of 2005 ACM
Symposium on Software Visualization (Softviz 2005), pages 47–
56, St. Louis, Missouri, USA, May 2005.

59. Richard Wettel and Michele Lanza. Program comprehension
through software habitability. In Proceedings of ICPC 2007
(15th IEEE International Conference on Program Comprehen-
sion), pages 231–240. IEEE CS Press, 2007.

60. Richard Wettel and Michele Lanza. Codecity: 3d visualization
of large-scale software. In ICSE Companion ’08: Companion
of the 30th ACM/IEEE International Conference on Software
Engineering, pages 921–922. ACM, 2008.

61. Jingwei Wu, Richard Holt, and Ahmed Hassan. Exploring soft-
ware evolution using spectrographs. In Proceedings of 11th
Working Conference on Reverse Engineering (WCRE 2004),
pages 80–89, Los Alamitos CA, November 2004. IEEE Com-
puter Society Press.

	Introduction
	Churrasco and SPO
	Promises and Perils
	Promises and Perils in Practice
	Discussion
	Technologies
	Related Work
	Conclusion

