Language-Independent Clone Detection Applied to Plagiarism Detection

Romain Brixtel, Mathieu Fontaine, Boris Lesner, Cyril Bazin

GREYC-CNRS (UMR-6072)
University of Caen Basse-Normandie
14000 Caen, France

Email : {firstname}.{lastname} @info.unicaen.fr

Abstract—Clone detection is usually applied in the context of
detecting small-to medium scale fragments of duplicated code
in large software systems. In this paper, we address the problem
of clone detection applied to plagiarism detection in the context
of source code assignments done by computer science students.
Plagiarism detection comes with a distinct set of constraints to
usual clone detection approaches, which influenced the design
of the approach we present in this paper. For instance, the
source code can be heavily changed at a superficial level (in
an attempt to look genuine), yet be functionally very similar.

Since assignments turned in by computer science students
can be in a variety of languages, we work at the syntactic
level and do not consider the source-code semantics. Conse-
quently, the approach we propose is endogenous and makes no
assumption about the programming language being analysed.
It is based on an alignment method using the parallel principle
at local resolution (character level) to compute similarities
between documents. We tested our framework on hundreds
of real source files, involving a wide array of programming
languages (Java, C, Python, PHP, Haskell, bash). Our approach
allowed us to discover previously undetected frauds, and to
empirically evaluate its accuracy and robustness.

Keywords-Endogenous; Plagiarism Detection; Similarity
Measure; Distance; Source Code Segmentation; Source Code
Plagiarism

I. INTRODUCTION

As computer science teachers we sometimes have to deal
with unethical students who copy other’s work (ie. source
code) for their projects. Tracking this plagiarism is a time-
consuming task since it requires comparing each pair of doc-
uments containing hundreds or even thousands of lines. In
such a context, the idea to apply clone detection approaches
to the problem of plagiarism detection is appealing.

However, if clone detection and plagiarism detection
share the same goal—to detect highly similar source code
fragments—they operate under a very different set of as-
sumptions. A typical code clone is often created because
the original source code could not be reused as-is. Hence,
behavioral modifications are rather common [1].

Plagiarised code strives to keep a behavior as close to the
original as possible, while actively trying to avoid detection,
by renaming variables, altering the layout of the code,
changing code comments, etc.

Romain Robbes
DCC, University of Chile
Blanco Encalada 2120, Off. 308
837-0459 Santiago, Chile
Email : rrobbes@dcc.uchile.cl

A further complicating factor in the case of plagiarism
detection is that the process must necessarily be lightweight.
If an assignment happens to be in a programming language
that the approach does not support, the effort to adapt it is
greater than the time required to look for plagiarism man-
ually, hence the approach is useless. Language-independent
approaches are thus to be preferred.

This paper introduces a language-independent code du-
plication detection approach geared towards source code
plagiarism. We applied it on several corpora, consisting
of several hundreds of source code files, in a variety of
programming languages.

Contributions. The contributions of this paper are:

o An analysis of the different assumptions one must take

between classical code clone and plagiarism detection.

o The detailed presentation of our plagiarism detection

approach which is comprised of document segmenta-
tion, similarity measurements, and report generation.

« An empirical evaluation of its accuracy on a corpus of

several hundred documents.

Structure of the paper. Section II presents related work
on clone detection, and plagiarism detection. Section III
outlines the differences between plagiarism and clone de-
tection approaches, and presents the model of source code
plagiarism that our approach is based on. Section IV gives a
detailed account of our approach, while Section V presents
the empirical results we obtained on a corpus containing sev-
eral languages. Finally, Section VI discusses our approach,
and Section VII both concludes and outlines future work.

II. RELATED WORK

In this section, we review clone detection approaches—
focussing on language-independent ones—before reviewing
dedicated plagiarism detection approaches.

A. Clone Detection

Clone detection is a long-lasting problem in the software
maintenance field, that has spawned a number of approaches.
Approaches can be language-specific, such as the one of
Baxter et al., based on comparing abstract syntax trees [2],
or the one of Krinke, based on dependence graphs [3].
In the following, we focus on language-independent (or

more easily adaptable) approaches, as plagiarism detection
approaches should be lightweight enough to be applicable
on a variety of languages.

Baker presented a line-based approach that is able to
handle systematic renaming of variables [4]. Baker’s tool,
Dup only needs to perform lexical analysis to detect variable
substitutions, hence it can be adapted to other languages with
a moderate cost (it was validated on C code).

Kamiya et al. introduced CCFinder, another token-based
tool [5]. CCFinder can find clones in C, C++, Java, and
COBOL. The authors mention that adapting the tool to Java
took two days, and to COBOL, one week. CCFinder handles
variable substitutions in order to find clones where some
variables were renamed.

Ducasse et al. introduced an approach based on string
matching, which uses a lightweight method to be adapted
to new languages [6]. The authors mentioned that the time
to incorporate a new language was in all cases less than 45
minutes. The approach handles several code normalisation
schemes, in order to cope with renaming of variables, con-
stants and function names. The author found that excessive
normalisation was harmful to the precision of the approach.

Wettel and Marinescu introduced an approach aimed at
discovering larger code clone fragments by finding dupli-
cation chains in the source code, i.e., sequences of smaller
code clones [7]. Unfortunately, the approach does not han-
dle renames of variables. It is however truly language-
independent: only an optional feature (insensitivity to com-
ments) is language-specific.

Finally, Bellon er al. performed a through evaluation of
code clone detection tools on the same corpus of data [8].
The clones were classified in three categories: identical
clones (type-1), Clones with substitutions (type-2), and
clones with further modifications (type-3).

B. Plagiarism Detection

Many plagiarism detection frameworks exist. Plague [9],
YAP3 [10] and Jplag [11] [12] decompose the source-code
into a sequence of lexemes (the lexemes are variables,
attributes, methods, etc.). This sequence is used as a pivot
language to compare the similarity between the documents.
In the same way, MOSS [13] uses an n-gram model to
compute a fingerprint of each document. MOSS assumes
that plagiarised documents have close fingerprints. All these
methods require a priori knowledge like a list of the
language keywords or comment detection rules.

Anti-Copias [14] exploits two kind of similarities. The
first one considers a document as a repartition in a vector-
space of tokens. The idea is that two plagiarised documents,
sharing a significant amount of code, are described by a
similar vector. The other one uses the information distance
to compute the similarity between each pair of documents
in the corpus. Given two documents, it computes an ap-
proximation of the information distance using a compression

algorithm (see section I'V-C for details). This approximated
distance is easy and fast to compute as it only requires a
compression algorithm (zip, rar, 1zh, etc.). Those distances
have no assumptions on the positions of similar source-code
portion across assignments. Anti-Copias considers fraud to
be exceptional, thus highlighting documents that are found
to be very similar wrt. the rest of the corpus.

Cosma’s approach is based on language similarity, but
handles the problem of renaming through the use of La-
tent Semantic Analysis, which extracts topics based on
occurences of words together in the source code, and is as
such less sensitive to synonymy, polysemy and renamings
in general [15].

Son et al. use a large amount of source code information
and compare parse trees to detect plagiarism in order to
handle cases where a large amount of uninterpreted code is
added [16].

III. SPECIFICITIES OF SOURCE CODE PLAGIARISM
DETECTION

A. Differing Assumptions

Having seen a variety of approaches in both clone and
plagiarism detection, we can highlight the main differences
between the two kind of approaches.

Amount and kinds of transformations. How (and how
much) source code is transformed before being submitted
varies greatly. Plagiarised code usually features a large
amount of shallow transformation, in order to make the
fraud undetectable at a glance. On the other hand, the code
must behave similarly to the copied solution, as the student
assumes that it is correct. In the classification found in
Bellon’s study, this correspond to type-2 clones [8], although
the renaming might be more extensive in case of plagiarised
code. The amount of renaming involved in plagiarised code
may contradict the results found by Ducasse et al. [6], stating
that excessive normalisation of the source code might be an
issue: “excessive” normalisation might be the only way to
find some heavily edited code clones.

Code clones found in software systems are often the
results of code that can not be conveniently abstracted.
Hence the programmer might have a greater tendency to
either leave them unaltered (type-1 clones), or to modify
their behavior to adapt them to the case at hand (type-
3 clones). Type-1 clones are inherently risky for students,
while advanced plagiarisers may attempt to further change
the code and produce type-3 clones (for example by reorder-
ing statements). There has been some studies about type-1
[17] and type-3 clones [18] in software.

Size of the duplication. Clone fragments tend to be
typically small; plagiarised code on the contrary often in-
volves large scale reuse of the original code. Clone detection
approaches tend to return specific portions of the source-
code that are believed to be duplicated (some, such as
Wettel and Marinescu, would argue that they are too small

and that the fragments should be grouped [7]). Plagiarism
on the other hand is often decided at the document level.
Either the whole (or significant portions) are plagiarised, or
the document is genuine. This gives plagiarism detection
approaches a larger amount of data before deciding which
is which.

Time constraints. Duplicated code is often an issue in
large-scale software systems. Hence, the performance of
clone detection is a significant concern. Recent contribu-
tions have been focused on parallelising the clone detection
process in order to apply it to very large code bases [19].
Detecting plagiarism is on the other hand done at a smaller
scale, allowing more time-consuming algorithms to be more
practical.

Amount of results. Clone detection on large-scale sys-
tems means a lot of clone candidates. Detecting plagiarism in
assignments is however a smaller-scale endeavour. Hence the
general requirements in terms of balance between precision
and recall may vary between the approaches. If in general a
good recall is desired, a decent amount of precision is also
important in clone detection, in order to avoid looking at
thousands of irrelevant clones. In the case of plagiarism, a
high recall is even more important, even if precision has to
suffer somewhat.

Language-independence. In order to deal with the variety
of programming languages that students might have to write
in during their studies, a language-independent approach
is desired, in order to minimise the amount of time spent
in adapting the approach to new languages. Of the clone
detection approaches we surveyed, only one (the approach
of Wettel and Marinescu) was truly language independent.
All the others needed an adaptation phase to work with a new
language. This phase can take from dozens of minutes (in the
case of Ducasse et al.), up to days, or weeks (for Kamiya
et al.). This investment is often too heavy for assignment
verification.

B. A model of plagiarism

In source-code documents, we define plagiarism as the
application of successive transformations applied on an orig-
inal document. A transformation only modifies the structure
and appearance of the source code, but not the program’s
functionality. We define four kinds of transformations with
respect to which our method must be robust:

Renaming: This is a basic transformation where identi-
fiers (variables, function names, etc.) are renamed. It can be
done very easily with current development suites or even
text editors.

Code reordering: This consists in moving pieces of
source-code inside the document, such as functions, variable
declarations, etc. This is an easy transformation to achieve
in practice.

Using uninterpreted text or dead code: The most
obvious example is adding or removing comments or dead

code as well as indenting or using blank lines, that is,
anything not being interpreted by the code compiler.

Equivalent structures: This is the hardest transformation
to achieve, as it requires using different code structures or
instructions to behave similarly at execution time: a basic
example is replacing a for loop with a while loop.
Beyond some (subjective) point, this transformation may not
be considered plagiarism anymore.

We consider the more transformations are done, the less
two documents are plagiarised. If a student can achieve all
these transformations a sufficient amount of times, we will
not be able to find the plagiarism. In this case, it could have
cost him more time than required to write original work.

1V. DETECTING PLAGIARISM
A. Objectives

We built a framework to help teachers finding plagiarised
documents into a corpus of source-code files. We consider
two or more documents to be suspects if they are much
more similar than the average similarity between documents.
Sometimes students copy part of their work from external
resources (e.g., the Internet). In such a case, their work
is very different from the rest of the documents. We call
these documents “exceptional”. These documents are either
plagiarised from external resources, or written by great
students; only teachers can remove the ambiguity.

Our framework builds a report highlighting the groups of
suspicious documents and the exceptional ones. The teacher
can hence investigate plagiarism on restricted subsets of the
corpus.

Our plagiarism detection approach comprises six stages
(figure 1):

1) pre-filtering,

2) segmentation and similarity measurement stage,

3) segment matching,

4) post-filtering,

5) document-wise distance evaluation,

6) and corpus analysis presentation.

This is a bottom-up approach, in the sense that it first
operates at a character level (stages 1 and 2), then subse-
quently at the segment (string) level (stages 2, 3 , 4, and 5),
the document level (stages 5 and 6) and finally the corpus
level (stage 6).

Our framework considers that two documents are plagia-
rised if it detects an abnormal amount of similar consecutive
segments in those documents. The computation of consecu-
tive segment similarity is achieved in stage 2, 3, 4 and 5.

In this context, our framework takes care of all the
transformations presented in section III. Stage 1 aims to
takes care of variable renaming. We make the assumption
that code reordering consists in moving a group of con-
secutive segments, thus this transformation doesn’t alter the
detection. Considering that the use of equivalent structure

Filtered source code
corpus

Source code
corpus

Segment distance
matrices

segments doc T

segments doc j
segments doc j

Pre-filtering

.\

egmentation & Segment
imilarity measure matching

Character level

Figure 1.

will neither affect too much the segments composing the
structure nor their order, such a transformation doesn’t
greatly compromises the detection. For example replacing
a for loop by a while loop will not affect the content of
the loop. Finally, the use of uninterpreted text is either a local
modification of the segment (taken care in step 1 and 2) or
the addition of segments which should not modify too much
the detection of groups of similar consecutive segments.

Algorithm 1 describes how our plagiarism detection op-
erates. Similarity measures in stage 2 and subsequent stages
3, 4, and 5, form the procedure DOCUMENTDISTANCE
(algorithm 2), while stage 6 is performed in the procedure
DISPLAY whose operation is described in section IV-G.
Figure 1 shows the entire pipeline and the data entering and
exiting each stage. The following subsections will present
the six stages and their relationships.

B. Pre-filtering

The first stage makes the detection process robust to
the first transformation : remaming. For that, we rename
each token (in many languages an alphanumeric string with
underscores) by a single symbol (Figure 2). This is inspired
by the work of Urvoy et al. [20] on web spam detection.
As mentioned above, the work of Ducasse et al. found that
excessive normalisation of the source code is harmful for
the precision of clone detection, but this assumption does
not hold for plagiarism detection.

C. Segmentation and similarity measure

In the second stage, each document is divided into seg-
ments. Our approach deals with code reordering by detecting
similar segments between two documents. Therefore, we
work at different granularity levels: finer than the whole
document and coarser than characters. Intuitively, the seg-
mentation determines what will be a “unit” of code. For
example, we may want to work at the line level or the
function level.

We now introduce some notations and properties about
segments. Let X be an alphabet. A document is an element
of ¥*. For any character string s € ¥*, we write s[¢] for the

Matching matrices

segments doc T
L

String / Segment level

Document-wise
distance matrix

Filtered matrices Corpus plagiarism

presentation
segments doc T

unordered docs ordered docs

]
segments doc j
]
unordered docs
ordered docs

Document-wise
distance measure

Document level

Post-filtering

Computation
presentation

Corpus level

Overview of the process pipeline

Algorithm 1: Main algorithm

Input: D: a set of documents

Data: PreFilter : a pre-filtering function

Data: Seg : a segmentation function

Data: Dist : a segment distance function

begin

/* Pre—filter the documents, CAN BE
PARALLELISED */

D' «+ {PreFilter(d) | d € D}

/* Split each filtered document
into a set of segments, CAN BE
PARALLELISED */

foreach d; € D’ do S; + Seg(d})

/+ Compute the distance between
each pair of documents, CAN BE
PARALLELISED */

foreach d;,d; € D', i > j do

L M; j) <~ DocumMENTDIsTANCE (Dist, S;,
S;)

/* Return a human-readable result
*/
return D1spPLAY (M)

end

i'" character of s, and s[i, j] (with 4 < j) is the substring

sle]sfi + 1] ... s[4].

A segment is a contiguous subset of a document. More
formally, a segment formed on a document d is an element
(d,p,1) € ¥* x N* x N* where p and [are respectively the
starting position and the length of the segment.

A segmentation function Seg partitions a document d into
a sequence of segments Seg(d) = (s1,. .., Sm) such that the
segments are contiguous and the text of their concatenation
is equal to d.

For example, a segmentation function can split the docu-
ment at line breaks. In this case, a segment is a line of pre-
filtered source code and we try to detect an abnormal number
of similar consecutive lines in two documents. The similarity

Original source-code Pre-filtered source-code

char x* cut (char xstr) { t o*%x t(t *t) {

char d[] =" "; t tf]l ="";
char xxresult= NULL; t *xt= t;
int 1 = 0; t t =t;
int s = 10xsizeof (char *[20]) t t = txt(t *[t])
res = (char x*) malloc(s); t = (t *%) t(t);
res[0] = strtok(str, d); t[t] = t(t, t);
while (result[i] != NULL) { t (t[i] !'= t) |
i++; t++;
res[i] = strtok (NULL, d); tlt] = t(t, t);
} }
return res; t t;
} }
Figure 2. Sample of a source-code before and after pre-filtering

between two segments is given by a distance function.

A distance function Dist(s1,s2) between two segments
returns a real number in [0, 1] satisfying the usual distance
properties.

For two given segmentations S; = (si,...,sl) and Sy =
(s2,...,52) and a distance function Dist, we obtain a m xn
distance matrix M where M; ;) = Dist(s], 5?)

Figure 3 depicts distance matrices from samples of three
kinds of documents. Note that contiguous and similar sec-
tions of documents make diagonals appear like in Figure 3(a)
and less obviously in Figure 3(c) where only parts of docu-
ments are plagiarised. It’s important to see that dissimilar
documents have no diagonals in their segments distance
matrix.

(a) identical documents (b) different documents

(c) plagiarised documents

Figure 3. Distance matrices M for three pairs of documents, obtained by
segmenting the document into lines and using the Levenshtein distance. A
pixel represents the distance between two segments. The lighter the point,
the smaller the distance.

Any distance function can be used to compare segments,
such as the Hamming or Levenshtein [21] (aka. edit) dis-

tance counting the number of operations (inserts, deletes,
or replaces) to transform one segment into another. Another
interesting distance is the information distance; despite being
uncomputable, it can be approximated using data compres-
sion [22]. Let ¢ be a compressor and |c(s)| be the size of the
compressed version of s using ¢, thus the distance between
two strings can be expressed as

|e(s1)] + |e(s2)| = [e(s1, 82))
max(|e(s1)], |c(s2)])

Due to the metadata produced by a compressor such as
gzip, such a distance should not be used on short segments
(e.g., lines) since the size overhead induced by metadata is
not negligible wrt. the total compressed size. The informa-
tion distance is used in other plagiarism detectors such as
Anti-Copias [14] to compute a document-wise distance.

Dist(s1,82) =1—

D. Segment matching

At this point, we have a distance matrix M for a pair
of segmentations S; and S5. From such a matrix, we want
to find a distance between documents themselves. To that
aim, we look for a maximal matching ! of minimal distance
between the segments of both documents. A matching is a
set of pairs C' C S; X So, such that each segment of Sy
and Sy appears in at most one pair of C. A matching C' is
maximal iff all the segments of the smallest segmentation
are in C, and therefore |C| = min(]S1], |S2]). The distance
of a matching C' is defined as : Z(s},s§)ec M i j)-

This stage makes the method robust to uninterpreted text
modifications: if some comments are added, the size of the
document will be greater than the original one, making
the segments corresponding to this new text unlikely to
be matched with the original segments. Even if this new
uninterpreted text matches, it can be handled in the next
stage: filtering.

We use the Munkres algorithm [23] to perform the
matching and obtain a m X n matching matrix H such that
Higy = My if (511,3?) € C and H; ;) = 1 otherwise.
This algorithm performs in O(max(m,n)?) time.

In Figure 4, we have the matching matrices produced by
the Munkres algorithm on the distance matrices previously
shown in Figure 3. In these figures we can see how the
diagonals are emphasised, as well as how much the noise is
reduced.

E. Post-Filtering

This stage comes from the previously stated observation
that similar documents will often have consecutive segments
paired by the matching stage, yielding diagonals of elements
on the matrix containing values lesser than 1. Dissimilar
documents will mostly have isolated points with values close
to 1.

IThe matching may not be complete since the segmentations may be of
a different size

(a) identical documents (b) different documents

(c) plagiarised documents

Figure 4. Matching matrices H from the distance matrices of Figure 3.

Algorithm 2: DOCUMENTDISTANCE
Input: Dist: a segment distance function
Input: S7,S5: two sets of segments (one per document)
Data: PostFilter: A post filtering function
Data: Matcher: A matching function
begin
/+ Build the segments distance
matrix M */
foreach (s;,s;) € S1 x 52 do
L M(ihj) — Dist(si, Sj)
/+ Find the maximal segment
matching, with minimal distance
*/
H < Matcher(M)
/+ Post—-filter the matching matrix
*/
P <+ PostFilter(H)
/* Return the document-wise
distance */

1
return 1 — EUERRES) Zi,j 1 - P(ivj)

end

This observation echoes those of Veronis [24] high-
lights on paragraph and sentences alignment problem. This
problem consists of finding, in a text and its translations,
equivalent passages in a semantic way. When the sentence
or paragraph level are considered, alignment methods use the
parallel criterion which consists in two main assumptions :

o Quasi-monotonous : the order of the sentences are the
same or very close ;
o Quasi-bijectivity : the large majority of alignments are

1 : 1 (one sentence matches only another one), or the
few m : n alignments that do exists are limited to small
m and n values (usually < 2).

Back to the plagiarism detection, we assume that blocks of
instructions (for example: functions or methods) can move
without efforts across a source code but the instructions
inside those blocks are constrainted by the parallel criterion.
In order to exploit those assumptions, we use a convolution
matrix followed by a filter so that consecutive matched
segments are emphasised and isolated (poor) matches are
removed. This leads to the post-filtered matrix P.

We filter the matching matrix using a smaller identity
convolution matrix. A second filtering step is thresholding
where every element of the matrix (after convolution) is
greater than a threshold (empirically set to 0.7). Figure 5
depicts the effect of these filters on the previous matching
matrices from Figure 4. In these matrices, non-contiguous
matches are removed and diagonals are enhanced.

(a) identical documents (b) different documents

(c) plagiarised documents

Figure 5. Filtered matrices P of segments matches from figure 4, with a
5 x 5 convolution matrix and a 0.7 threshold.

F. Document-wise distance evaluation

From a filtered matching matrix P between two segmen-
tations built from two documents d; and ds we can compute
a document distance §(dy, d2) defined as:

1
I S 1—Py s
(dy,ds) mm(\51|’|52‘);j "

We sum and normalise the matrix giving a distance between
two documents in the range [0, 1]. Intuitively, the more we
see diagonals in matrix P, the closer the documents are.

G. Corpus analysis presentation

At this point we have a document-wise distance for every
pair of documents in the corpus. We put these distances in a

spreadsheet where each cell contains a distance and is em-
phasised by a color (see Figures 6 and 7 for examples). The
cell color represents the similarity between documents wrt.
the average corpus similarity. The documents are ordered in
a way that displays close documents (in terms of similarity
measure) in neighboured cells.

For coloring, we used nested means to classify pairs
of documents into 8 classes, each one colored on a scale
going from green (legitimate documents) to red (probable
plagiarism). Note that the number of classes can be extended
for large corpora.

In order to bring similar documents together, we use a
hierarchical classification algorithm to build a dendrogram
(a binary tree) whose leaves are the documents. This den-
drogram is then traversed in a depth-first fashion giving
an order on the documents. To build the dendrogram, we
first construct a leaf node for each document. Then we find
the two nodes with minimal distance: the distance between
two nodes n;, n; being the maximal distance between a leaf
(document) of n; and a leaf of n;. Next, we construct a new
node having n; and n; as children. This process is repeated
until we obtain a dendrogram of the corpus.

For the depth-first traversal, at each node the child with
the greatest number of leaves is visited first. The final scores
table will display the documents in the order they are visited.

V. EXPERIMENTS AND RESULTS INTERPRETATION

All of our experiments were conducted on source-code
submitted by computer science students as programming
homework, without them knowing that their code would be
checked for plagiarism. We tested different pipeline settings:
with or without pre-filtering, many segmentation functions
(n-grams, items may be lines, characters, etc.), different
segment distances (Levenshtein distance or approximated
information distance), efc. Even if the comparison of dif-
ferent pipelines is a very interesting experiment by itself,
in this paper we chose to demonstrate the good results
obtained using one of these pipelines only. We used the
following pipeline configuration: tokens pre-filtering, line-
by-line segmentation, Levenshtein segment distance, 5 X 5
convolution matrix and 0.7 threshold for post filtering. This
configuration was used on the experiments presented in this
paper and seems to be reliable on files having less than 1000
lines. For larger files, we also worked on a segmentation
algorithm using maximal repeats in strings to have segments
corresponding to code blocks (functions, loop bodies, etc.)
but this remains to be fully evaluated.

As shown on Figures 6 and 7, only a few pairs of docu-
ments are displayed as “suspicious” thus greatly reducing the
number of documents to be checked manually. We present
here the results obtained by processing two corpora, but our
method was also tested (and validated) on hundreds of real
students source files, with some corpora having over 100

files, in many different programming languages such as C,
Python, Haskell, Bash, PHP and Java.

The Haskell corpus on Figure 6 contains 13 documents of
about 400 lines each; plagiarism detection took around five
minutes. We can clearly see that the pairs (2,1), (5,3) and
(12, 11) are suspects. The filtered segments distance matrices
allow us to find how these documents are plagiarised.
Indeed, documents 5 and 3 are virtually identical, except a
contiguous part being moved in the copy. After a manual
check, even if documents 11 and 12 seem similar it is
difficult to decide if one inspired the other. Documents 1
and 2 on the contrary are very different from the rest of the
corpus. Document 1 was taken from the Internet: the source
code and comments are written respectively in English and
Japanese. Document 2 has been produced by a student using
successive modifications of this source-code (matching our
model). When document 1 was not present in the corpus,
we still were able to suspect document 2 due to its high
dissimilarity to the others. Our software found the suspicious
documents which turned out to be plagiarised, and also
highlights document 7 which was written by a very good
student (exceptional by our definition).

The second test corpus, written in Python, whose results
are shown in Figure 7, has 15 files of about 150 lines of
code each; computation took less than a minute. On this
figure we can see two groups of plagiarised files : (5,2) and
(1,7,13). Document 14 was a common code base given to
all students. Note how it is similar to many others, except
where students rewrote everything from scratch (documents
4,9, 12).

In the third corpus, students had to create a tiny
client/server architecture to execute shell commands. The
source code given by the students are divided in two files:
“client.c” and “server.c”. In order to use our plagiarism
detection tool, we concatenate both files, considering that
blocks of codes can be moved from one to the other. The
average size of a project is about 250 code lines. According
to the Figure 8, the couple (4,31) is suspect. When reading
the files we happened to see that the client files are pretty
much the same, only indentation and some line breaks
were modified. The server files are also plagiarised, but
in a more complex way. Assignment 31 has been written
such as the whole program is in the main function while
assignment 4 has been divided into small functions. The
others suspicious couple seem to share a similar architecture
(advised by the teacher) and several system calls, but given
that these students were in the same class, we can assume
that they kept the piece of code advised by the teacher. This
experiment shows that our tool is robust against source code
reorganisation.

These experiments were conducted on a 2Ghz Intel Dual
Core with 1Gb RAM. The memory footprint never exceeded
40Mb for these two data sets. Note that every pair of
documents can be processed in parallel on different CPUs,

2 1 5 3 12 11 9 10 6 8 4 13 7

2 074 099 099 099 099 099 100 099 099 1.00 099 099
1 0.74 098 098 099 099 098 099 097 09 099 097 098
5 0.99 0.98 0.88 090 094 097 09 098 096 095 099
3 099 098 095 095 097 09 093 098 094 095 0098
121 099 099 0.88 0.95 086 088 09 093 096 097 093 097
11} 099 099 090 095 0.86 087 095 095 098 098 095 097
9 099 098 094 097 0.88 0.87 096 095 095 097 097 097
10| 1.00 099 097 09 096 095 0.96 093 095 09 097 098
6 | 099 097 09 093 093 095 095 093 095 096 098 097
8 099 096 098 098 096 098 095 095 095 0.88 0.88 094
4 1.00 099 09 094 097 098 097 09 096 0.88 094 0.96
131 099 097 095 095 093 095 097 097 098 0.88 0.94 0.98
7 099 098 099 098 097 097 097 098 097 094 096 0098

Figure 6. Final document distance colored matrix for Haskell source code produced by CS students, using segmentation by newlines, Levenshtein segment
distance, 5x5 identity matrix with 0.7 threshold for post-filtering.

7 1 13 15 3 8 14 11 10 6 12 9 4
0.62 062 062 09 095 09 076 088 092 08 094 096 0.95
0.62 0.62 062 090 095 09 076 088 092 08 094 096 095
0.62 0.62 0.87 0.87 091 069 084 08 095 09 098 097
0.62 0.62 0.87 0.87 091 069 084 08 095 096 098 097
13| 0.62 0.62 0.87 0.87 091 069 084 08 095 09 098 0097
15| 090 090 0.87 0.87 0.87 0.60 061 066 081 074 086 094 097 097
3 095 095 0.87 0.87 0.87 0.60 075 069 083 082 092 091 096 0.96
8 090 090 091 091 091 0.61 0.75 0.62 086 0.82 086 095 098 0.96
14| 076 076 0.69 0.69 0.69 0.66 0.69 0.62 0.62 0.64 082 095 096 0.95
11| 088 088 084 084 084 081 083 0.80 0.62 0.81 096 095 096 0.96
10| 092 092 085 08 08 074 082 082 064 0.81 095 097 097
6 08 0.8 095 095 095 08 092 08 0.82 096 092 095 096 0.96
12| 094 094 09 096 096 094 091 095 095 095 095 095 0.92 0.95
9 096 096 098 098 098 097 096 098 096 096 097 096 0.92
4 1 09 09 097 097 097 097 09 096 095 096 097 096 095 096
Figure 7. Final document distance colored matrix for Python source code produced by CS students, using the same settings as in Figure 6.
Corpus name # Documents — # Couples # Suspects ~ # Plagiarised Recall Precision F» measure
HASKELL 13 78 3 3 1.0 1.0 1.0
PYTHON 15 105 20 4 1.0 0.2 0.55
C 19 171 7 4 1.0 0.57 0.87
Table I

EVALUATION ON EACH CORPUS

enabling scalability to larger corpora.

Table V summarizes the evaluation of our tool on the
corpus presented above. We consider that we detect pla-
giarism when the distance between a pair of documents is
less than the mean distances of the matrix. Note that, in
all evaluations the recall is always maximised which means
that we detected all plagiarised documents. Nevertheless,
the precision is far from prefect, especially with the Python
corpus. The false positive detection is mainly due to the
nature of the assignment : some of the students used a source

code skeleton given by their teacher and the other ones wrote
the entire project from scratch. Our tool detected the students
who used the skeleton, but note that the plagiarists were
highlighted in figure 7.

VI. DISCUSSION

In the previous section, our tool was tested against many
different programming languages. The main difficulty for
us is to correctly annotate each corpus manually. It is easily
understandable that students don’t claim that they resorted
to plagiarism.

13
22

Figure 8.

Figure 9. Final document distance colored matrix for a C++ source code
produced by CS students

Figure VI presents the results of plagiarism detection on
98 files written in C++. Each pixel of the image represents
a cell on the above figures. Annotating such a corpus means
comparing each document against each other. Even if we
spend only 10 minutes for each comparison, the corpus
annotation would take more than 13 hours. This illustrates
the complexity of plagiarism detection well and the need
for a plagiarism detection tool. Interestingly, in this corpus
many couples were plagiarised but none of the teachers
could manually detect any of the fraud.

Corpus annotation is a time consuming task and as far
as we know there are no source code plagiarism detection
challenges or annotated assignments freely available. For all
these reasons, we couldn’t formally validate our tool against
much more assignments.

We think it would be a great initiative to organise a source

31 12 5 25 13 22
0.81 0.86 0.81
0.84 086 0.81 080 0.82

code plagiarism detection challenge. This way different ap-
proaches from different communities (source code analysis,
multilingual natural language plagiarism, data-mining, etc.)
could be compared with the ultimate goal to improve the
interactions between these communities.

VII. CONCLUSION AND FUTURE WORK

We presented a source code plagiarism detection frame-
work which allowed us to discover previously undetected
frauds in some corpora, even when the students were given
a common code base to start with.

This work is still in progress. We have to work on an
interactive corpus summary to ease the corrector’s work,
allowing him to explore the corpus at both document and
segment levels, and to view the results using different
pipelines.

We interfaced the framework with the homework repos-
itory of the University of Caen’s computer science depart-
ment. This way, every teacher can now use the framework on
his own. Furthermore, the number of available assignments
for our experiments increases and we hope to be able to
build annotated source code corpora in order to set up a
plagiarism detection challenge.

The experiments presented in this paper show promising
results for a specific pipeline configuration. In order to fairly
compare different pipelines, we built a modular implemen-
tation of the framework. We aim to benchmark different
pipeline configurations in order to find the best ones and
to improve the results presented in this paper (mainly the
precision). The modular implementation of the framework
is publicly accessible online 2.

REFERENCES

[1] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An em-
pirical study of code clone genealogies,” in ESEC/SIGSOFT
FSE 2005: Proceedings of the 10th European Software En-
gineering Conference held jointly with 13th ACM SIGSOFT

2http://code.google.com/p/pypometre

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

[15]

International Symposium on Foundations of Software Engi-
neering, 2005, pp. 187-196.

I. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’ Anna, and
L. Bier, “Clone detection using abstract syntax trees,” in ICSM
1998: Proceedings of the 12th International Conference on
Software Maintenance, 1998, pp. 368-377.

J. Krinke, “Identifying similar code with program dependence
graphs,” in WCRE 2001: Proceedings of the 8th Working
Conference on Reverse Engineering, 2001, pp. 301-309.

B. S. Baker, “On finding duplication and near-duplication in
large software systems,” in WCRE 1995: Proceedings of the
2nd Working Conference on Reverse Engineering, 1995, pp.
86-95.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multi-
linguistic token-based code clone detection system for large
scale source code,” IEEE Trans. Software Eng., vol. 28, no. 7,
pp. 654-670, 2002.

S. Ducasse, O. Nierstrasz, and M. Rieger, “On the effec-
tiveness of clone detection by string matching,” Journal of
Software Maintenance, vol. 18, no. 1, pp. 37-58, 2006.

R. Wettel and R. Marinescu, “Archeology of code duplica-
tion: Recovering duplication chains from small duplication
fragments,” in SYNASC 2005: Proceedings of the 7th Inter-
national Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2005, pp. 63-70.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools,” IEEE
Trans. Software Eng., vol. 33, no. 9, pp. 577-591, 2007.

G. Whale, “Identification of program similarity in large
populations,” The Computer Journal, vol. 33, no. 2, pp. 140—
146, 1990.

M. Wise, “YAP3: Improved detection of similarities in com-
puter program and other texts,” Twenty-Seventh SIGCSE Tech-
nical Symposium, pp. 130-134, 1996.

L. Prechelt, G. Malpohl, and M. Philippsen, “Finding pla-
giarisms among a set of programs with jplag,” Journal of
Universal Computer Science, vol. 8, no. 11, pp. 1016-1038,
2002.

G. Malpohl, “Jplag, Detecting Software Plagiarism,” http://
www.ipd.uni-karlsruhe.de/jplag/.

S. Schleimer, D. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the
2003 ACM SIGMOD. ACM New York, NY, USA, 2003, pp.
76-85.

M. Freire and M. Cebrian, “Design of the ac academic
plagiarism detection system,” Technical report, Tech. rep., Es-
cuela Politecnica Superior, Universidad Autonoma de Madrid,
Madrid, Spain, Tech. Rep., 2008.

G. Cosma, “An approach o source-code plagiarism detection
and investigation using latent semantic analysis,” Ph.D. dis-
sertation, University of Warwick, 2008.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

J. W. Son, S.-B. Park, and S.-Y. Park, “Program plagiarism
detection using parse tree kernels,” in PRICAI 2006: Pro-
ceedings of the 9th,Pacific Rim International Conference on
Artificial Intelligence, 2006, pp. 1000-1004.

N. Gode, “Evolution of type-1 clones,” in SCAM 2009: Pro-
ceedings of the Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, 2009, pp. 77-86.

R. Tiarks, R. Koschke, and R. Falke, “An assessment of
type-3 clones as detected by state-of-the-art tools,” in SCAM
2009: Proceedings of the Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, 2009,
pp. 67-76.

S. Livieri, Y. Higo, M. Matsushita, and K. Inoue, “Very-
large scale code clone analysis and visualization of open
source programs using distributed ccfinder: D-ccfinder,” in
ICSE 2007: Proceedings of the 29th International Conference
on Software Engineering, 2007, pp. 106-115.

T. Urvoy, T. Lavergne, and P. Filoche, “Tracking web spam
with hidden style similarity,” AIRWeb 2006 Program, p. 25,
2006.

Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics Doklady, vol. 10,
pp. 707-710, 1966.

R. Cilibrasi and P. Vitanyi, “Clustering by compression,”
1IEEE Transactions on Information theory, vol. 51, no. 4, pp.
1523-1545, 2005.

H. Kuhn, “The hungarian method for the assignment prob-
lem,” Naval Res. Logist. Quart., vol. 2, pp. 83-97, 1955.

J. Véronis, “From the Rosetta stone to the information soci-
ety,” Parallel Text Processing-Alignment and Use of Transla-
tion Corpora, pp. 1-24, 2000.

