
Replaying IDE Interactions to Evaluate and Improve Change Prediction Approaches

Romain Robbes
Computer Science Department (DCC)

University of Chile, Santiago, Chile

Damien Pollet
RMOD & LIFL

INRIA & University of Lille 1, France

Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Abstract—Change prediction helps developers by recom-
mending program entities that will have to be changed along-
side the entities currently being changed. To evaluate their
accuracy, current change prediction approaches use data from
versioning systems such as CVS or SVN. These data sources
provide a coarse-grained view of the development history that
flattens the sequence of changes in a single commit. They are
thus not a valid basis for evaluation in the case of development-
style prediction, where the order of the predictions has to match
the order of the changes a developer makes.

We propose a benchmark for the evaluation of change pre-
diction approaches based on fine-grained change data recorded
from IDE usage. Moreover, the change prediction approaches
themselves can use the more accurate data to fine-tune their
prediction. We present an evaluation procedure and use it on
several change prediction approaches, both novel and from the
literature, and report on the results.

I. INTRODUCTION

Integrated Development Environments (IDEs) such as
Eclipse or VisualStudio have had a major impact on how
developers see and modify code. There is a paradigm shift
taking place, with people departing from the notion that
development is equivalent to writing source code text [1],
towards a more “agile” view where systems are composed
and continuously restructured and refactored. This is done
using a plethora of tools provided by the IDE themselves, but
also by third-party plugins. In the context of modern IDEs,
recommender systems are gaining importance and gradually
fulfilling Zeller’s wish for “assistance” expressed during his
MSR 2007 keynote talk, where he stated that developers
in the future would be aided by many small visible and
invisible IDE assistants, also known as recommenders.

Among the many recommenders that have already been
built, change predictors play a prominent role. They assist
developers and maintainers by recommending entities that
may need to be modified alongside the entities currently
being changed. Change prediction is useful for both software
maintenance and forward engineering.

For software maintenance, change predictors recommend
changes to entities that may not be obvious [2], [3]. In
a software system, there often exist implicit or indirect
relationships between entities [4]. If one of the entities in
the relationship is changed, but not the other, subtle bugs
may appear that are hard to track down.

For forward engineering, change predictors enhance pro-
ductivity by easing the navigation to the entities that are
going to be changed next. In this scenario, a change predictor
maintains and proposes a set of entities of interest to help
developers focus the programming tasks [5], [6], [7].

There is a need for a benchmark with which approaches
can be compared. So far, maintenance-mode change predic-
tion has been validated using the history archives of software
systems as an oracle. For each transaction, the predictor
proposes entities to change based on parts of the transaction.
The suggestions are then compared with the remainder of
the transaction. This can be considered a benchmark as the
process is objective, measurable, cheap to run and precise. In
forward engineering, where the system is actively developed
and changes at a quick pace, the approach is not satisfactory
as the order of the changes acquires a greater importance.
As a consequence, tools adapted to the forward engineering
use case are assessed either through comparative studies
involving developers, which are much harder to repeat and
rerun, or through recorded IDE interactions, which are not
detailed enough to evaluate a large array of approaches.

We present a benchmarking procedure for forward engi-
neering, development-style change prediction. The dataset
consists of a number of fine-grained development histories,
where we recorded each elementary change made to the
systems while they were developed. Our detailed histories
are thus unaffected by large and unordered transactions. In
a nutshell, our benchmark allows us to reproducibly replay
entire development histories, thus providing (close to) real
life data without needing to perform comparative studies. We
show how change prediction approaches can be evaluated
using our procedure, and provide a comparative evaluation
of several change prediction approaches. The contributions
of this paper are:
• The definition of a benchmarking procedure for devel-

opment-style change prediction approaches based on
fine-grained, recorded IDE interactions, instead of
coarse-grained, file-based SCM transactions. We replay
the IDE interactions, emulating the actual development
with a much greater accuracy than previous benchmarks
based on SCM histories.

• The definition of a performance measurement adapted
to development-style change prediction, based on the
information retrieval measure of cumulative gain.

• The replication of several change prediction approaches
in the literature, evaluated on the same dataset.

• The introduction of novel approaches and variants,
making use of the additional fine-grained data we
recorded to improve the performance of change pre-
diction approaches beyond the state of the art.

Structure of the paper. Section II describes various change
prediction approaches existing in the literature in the two
change prediction styles. Section III justifies and presents
our benchmark for change prediction approaches, based
on fine-grained, recorded change histories. Section IV de-
tails the approaches we evaluated with our benchmark and
presents the evaluation results, which we discuss in Sec-
tion V, before concluding in Section VI.

II. RELATED WORK

We survey maintenance-oriented and development-orien-
ted change prediction approaches, and discuss strengths and
shortcomings in their evaluation procedures.

A. Maintenance-oriented Approaches

There are two main trends of maintenance-oriented ap-
proaches: Historical approaches and approaches using the
structure of the system through coupling metrics.

Historical Approaches. Zimmermann et al. [3] mined the
CVS history of several open-source systems to predict soft-
ware changes using the heuristic that entities that changed
together in the past are going to change together in the
future. They reported that on some systems there is a 64%
probability that, among the three suggestions given by the
tool when an entity is changed, one is a location that indeed
needs to be changed. Their approach works best with stable
systems, where few new features are added. Changes were
predicted at the class level, but also at the function (or
method) level, with better results at the class level.

Ying et al. employed a similar approach and mined the
history of several open source projects [2]. They classified
their recommendations by interestingness: A recommenda-
tion is obvious if two entities referencing each other are
recommended, or surprising if there was no relationships
between the changed entity and the recommended one. The
analysis was performed at the class level. Sayyad-Shirabad
et al. also mined the change history of a software system in
the same fashion [8], but stayed at the file level.

Change Prediction with Impact Analysis. Impact analysis
has been performed using a variety of techniques; we only
comment on a few. Briand et al. evaluated the effectiveness
of coupling measurements to predict ripple effect changes
on a system of 90 classes [9]. The results were verified
by using 3 years of change data from the SCM system.
One limitation is that the coupling measures were computed
only on the first version of the system, as the authors took
the assumption that it would not change enough to warrant
recomputing the coupling measures for each version. The

system was in maintenance mode. Wilkie and Kitchenham
[10] performed a similar study, validating change predic-
tions over 130 SCM transactions concerning a system of
114 classes. 44 transactions featured ripple changes. Both
analyses considered coupling among classes. Hassan and
Holt compared several change prediction approaches over
the history of several large open-source projects, and found
that historical approaches have a higher precision and recall
than other approaches [11]. Kagdi proposed a hybrid ap-
proach merging impact analysis techniques with historical
techniques [12], but no results have been published yet.

Evaluating Maintenance-Oriented Approaches. Evalua-
tion methods vary, but Hassan and Holt’s Development
Replay approach is a good representative of the techniques
in general. Evaluation is based on the data found in SCM
archives and proceeds as follows:

All the transactions in the SCM systems (e.g., the sets of
files changed in each development sessions) are extracted
from the repository and processed one by one. For each
transaction, the set of changed entities C (files, classes or
methods depending on the granularity of the approach) is
split in two sets. One is the set of initially changed entities
I and the other the set of entities to predict or oracle O.

To evaluate the quality of its predictions, the predictor
is given the set I and returns a set of predictions P. This
set is compared with the actual changed entities in O
using the information retrieval measures of precision and
recall. In this case, precision is the proportion of accurately
predicted items in the predicted set (|P∩O||P |) and recall is the
proportion of predicted items out of the entities to predict
(|P∩O||O|). The predictor then has the opportunity to update
its representation of the system when the actual changes are
given to it. Depending on the approach, the predictor can
use historical information, structural information, or both.

This evaluation approach has the advantage that a massive
amount of data is available to test the approaches, in the form
of the SCM archives of large open-source systems. Hassan
and Holt carried out their experiments on 40 years of data.
Such an amount of data gives great confidence in the results.

However, the SCM data used is not of optimal quality.
This introduces imprecisions in the evaluation process. We
documented the shortcomings of using SCM systems for
software evolution research [13]. SCM systems such as CVS
and Subversion are file-based (to be compatible with any
kind of document, they version files) and snapshot-based
(they version snapshots of the system, rather than monitoring
the developers as they work).

Being file-based means that the unit of change for the
SCM system is the file. To evaluate a change predictor
working at the level of classes or methods, extra processing
is necessary. This is possible in theory but not often done
in practice, even if the results would be more relevant to
a developer. Of the approaches we surveyed, only Zimmer-
mann’s has the ability to predict changes at the method level.

Being snapshot-based means that fine-grained information
about the exact content and sequence of the changes is
missing. It is impossible to recover this kind of information
from an SCM system, as it was never in the versioning
system to begin with. Most versioning systems simply take
snapshots of the code base at the developer’s demand. Thus
SCM-based evaluation of change prediction assumes that the
order of the changes is irrelevant, and assigns entities to the
initial set I and the oracle set O arbitrarily. In an active
development scenario, it makes sense to assume that the
initial set is made of the entities changed in the past, and
the oracle of the ones just about to change.

Further, valuable information about the changes is with-
held from the change predictors. These cannot exploit fine-
grained changes and structural information to a greater
extent, which may hamper the accuracy of their predictions.

B. Development-Oriented Approaches

The goal of development-oriented change prediction ap-
proaches is to ease the navigation to entities which are
thought to be used next by the programmer. These ap-
proaches are based on IDE monitoring and predict changes
from development session information rather than from
transactions in an SCM system. They can thus better predict
changes while new features are being built.

IDE-based approaches. Mylyn [6] maintains a task con-
text consisting of entities recently modified or viewed for
each task the programmer defined. It limits the number of
entities the IDE displays to the most relevant, easing the
navigation and modification of these entities. Mylyn uses a
Degree Of Interest (DOI) model to select entities that the
developers interacts with.

Navtracks [5] and Teamtracks [14] both record navigation
events to ease navigation of future users, and are geared
towards maintenance activities. Teamtracks features a DOI
model. Navtracks’ recommendations are at the file level.

Heatmaps [7] highlights entities of interest in the IDE’s
code browser, based on previous activity in the environment.
An entity’s interest value is encoded in a color, ranging
from blue (low value), to red (high value). Several heatmaps,
emphasizing different aspects, are available.

Evaluating IDE-based approaches. Development-oriented
prediction approaches are validated either with user studies,
in which two groups of people perform the same task with
or without the tool, or with recorded IDE interactions.

Mylyn has been validated by assessing the impact of its
usage on the edit ratio of developers, i.e., the proportion
of edit events with respect to navigation events in the
IDE. Mylyn users spent more time editing code, and less
time looking for places to edit. Teamtracks was validated
with user studies, while Navtracks was validated both with
a user study and with recorded navigation traces (around
35% of the recommendations were correct). Heatmaps were
validated on recorded navigation traces as well.

While user studies yield a good degree of confidence in
the results, they are expensive to perform and hard to repro-
duce. User studies are thus not adapted to recommending
algorithms that involve fine-tuning in order to optimize the
quality of recommendations. This makes it much harder to
compare approaches to one another.

Recorded IDE interactions is hence an evaluation mecha-
nism suited to the iterative improvement of a recommenda-
tion algorithm. However, most IDE-based monitoring tools
withhold valuable information to the change predictors.
The recorded IDE data is shallow: IDE-based approaches
do not record actual changes, only change locations. This
introduces some imprecision as all the change information
is not available. Approaches mentioned above do not have a
fully reified model of changes, i.e., these tools know where
in the system something has changed, and what a developer
is currently looking at, but they do not model how a piece of
the system is being modified. Using the full structure of the
program and the changes is hence not possible. Designing
a repeatable evaluation method as comprehensive as Hassan
and Holt’s development replay is not possible, as too much
of the data is missing.

III. A BENCHMARK FOR CHANGE PREDICTION

We claim that evaluation based on SCM data is too coarse
and does not correspond to a real-life scenario. On the other
hand, user-based evaluation of development approaches are
costly to set up and hard to compare to one another.

In contrast, we propose an evaluation approach which
takes the best of the two worlds: we record the exact
sequence of changes that happened in a project; we even
record the time stamps and the exact contents of the changes,
as we dispose of a fully reified model of changes. Put
simply, we do not lose anything about the changes that
concern a system. Replaying such IDE interactions is similar
to Hassan and Holt’s development replay approach, with
the granularity necessary to also evaluate development-style
prediction. Moreover, we provide more information to the
predictors, allowing them to increase their accuracy. Since
our interaction histories are replayable at will, we are able
to systematically evaluate the effect of any change in the
algorithm and the type of information it considers. Of
course, recording and analyzing IDE interactions is not
trouble-free, we refer to Coman et al., and Murphy et al.
for a detailed discussion of the pros and cons of such an
approach [15], [16].

Our approach is based on our previous work on change-
based software evolution (CBSE) [17] to support several
reverse and forward engineering approaches [18], [19]. We
implemented our approach as the SpyWare tool platform
[20], an IDE plugin that silently records and reifies all
changes as they happen, and stores them in a change-based
software repository.

Project Duration Number of. . . Predictions
(days) classes methods sessions changes classes methods

SpyWare 1,095 697 11,797 496 23,227 6,966 12,937
Software Animator 62 605 2,633 133 15,723 3,229 8,867
Project X 98 673 3,908 125 5,513 2,100 3,981
Student project A 7 17 228 17 903 259 670
Student project B 7 35 340 19 1,595 524 1,174
Student project C 8 20 260 19 757 215 538
Student project D 12 15 142 17 511 137 296
Student project E 7 10 159 22 597 175 376
Student project F 7 50 454 22 1,326 425 946

Total 50,152 14,030 29,785

Table I
DEVELOPMENT HISTORIES IN THE BENCHMARK

A. Data Corpus

Our data corpus contains the following systems:
• SpyWare, our prototype, monitored over a period of

three years, constitutes the largest data set. The system
has currently around 25,000 lines of code in ca. 700
classes. We recorded close to 25,000 changes so far.
Each change corresponds to one method or class edition
a developer performed.

• Software Animator, a Java project developed over
3 months. In this case, we used our Java implementation
of SpyWare, an Eclipse plugin called EclipseEye [21].

• Six one-week student projects (projects A to F) with
sizes ranging from 15 to 40 classes, with which we
tested the accuracy of approaches on limited data.
These development histories test whether an approach
can adapt quickly at the beginning of a fast-evolving
project.

• A Smalltalk project (Project X) authored by a profes-
sional Smalltalk developer, tracked during ca. 4 months.

The characteristics of each project are detailed in Table I,
namely the duration and size of each project, in terms of
classes, methods, number of changes (editions) and sessions.
A development session represents continuous activity and is
close to the granularity of a versioning system commit. We
detect development sessions by comparing the time stamp
of each change to the next: If two changes are separated by
more than one hour, we start a new development session. We
also report the number of times each change prediction algo-
rithm was tested; in total, each change prediction algorithm
was evaluated more than 40,000 times.

B. Benchmarking Procedure

Our benchmarking procedure is close to the development
replay, only at a much finer level, in order to simulate as
closely as possible the workflow of the developers as they
built the systems for which we recorded the interactions.

Our benchmarking algorithm takes as parameters a change
predictor and an interaction history, and returns lists of

predictions and expected results. These are used at a later
stage to compute the performance of the predictions. It is
applicable both at the class level (predicting changes to
classes) as a comparison point with the previous evaluations,
and at the method level. Predicting changes at the method
level gives more focused recommendations to the developer
and is hence more useful.

The first unit the algorithm considers is the development
session, equivalent in granularity to SCM transactions. We
do not split the session into two sets as other approaches do.
Instead, the changes already executed and the state of the
system constitute the knowledge available to the predictor.
The entities forming the oracle are the targets of the up-
coming changes, methods or classes. If predicting classes,
changes to methods are considered to also change the class.
We keep the order of entities, but remove duplicates. The
predictor is tested before each single change and the results
are stored for later evaluation. The change is subsequently
executed to update the information available to the predictor.

During each run, we test the accuracy of a change
prediction algorithm over a program’s history, by processing
each change individually. We first ask the algorithm for its
guess of what will change next, evaluate that guess compared
to the actual change, and then pass that change to update its
representation of the program’s state and its evolution.

Some changes are directly submitted to the prediction
engine without testing it first. They are still executed, since
the engine must have an accurate representation of the
program. These are (1) changes that create new entities,
since one cannot predict anything for them, (2) repeated
changes, i.e., if a change affects the same entity than the
previous one, it is skipped, and (3) refactorings or other
automated code transformations, since these are the result
of automated tools and not the developers themselves.

C. Evaluating Prediction Performance

Evaluating the performance of the approaches requires
careful attention. We need to define an evaluation procedure

Oracle at t1: A B E B D C B B A D A A D C
Oracle at t5: - - - - D C B B A D A A D C

Relevance of entities A B C D E F, G. . .

at t1 1 1√
2

1√
5

1√
4

1√
3

0

at t5 1√
4

1√
3

1√
2

1 0 0

Table II
ASSIGNING RELEVANCES TO ENTITIES ACCORDING TO THE ORDER OF

THEIR FIRST OCCURRENCES IN THE ORACLE (IN BOLD)

taking into account the nature of the task and the specificity
of the information at our disposal.

A characteristic our data has over SCM data is a much
stronger sense of ordering that we can exploit in the perfor-
mance evaluation. The order of changes to entities as well
as the richer structure of our data in general gives us the
possibility of giving a higher importance (what is defined
as relevance in information retrieval) to some entities with
respect to others.

In the classical definitions of precision and recall, the
relevance of an element is binary. In the case of transactions,
the entity is either changed in it, or not. In addition, precision
and recall do not take into account the rank recommenda-
tions occupy in a list. The fact that the most relevant entity
is returned first or later in the list does not matter.

We use an alternative information retrieval performance
measure called the cumulative gain [22]. Variants of the
cumulative gain measure were used in official information
retrieval benchmarks such as the ad-hoc track of INEX 2006
[23]. Cumulative Gain (CG) measures the performance of
an IR system while taking into account how relevant a
document is, and at which rank it is returned in a query.
The relevance of the retrieved document is pondered by
a discount coefficient modeling how far a user is willing
to search down a list of recommendations. High discount
factors simulate a user looking only at a few items in the
list, while lower discount factors model a more persistent
user. This variant of the CG is called Discounted Cumulative
Gain, or DCG.

Finally, the CG measure takes into account variable rel-
evances levels, i.e., the relevance of each document is a
continuous value between 0 and 1, instead of a binary value.

Reporting the cumulative gain value at rank k gives an
overall measure of the IR technique, across all the ranks up
to k. To compare several measures together, one can just
compare them to the ideal measure, which returns the most
relevant documents in the optimal order.

In the development case, the user wants to have a small
list of entities he will need to change in the near future, to
help him navigating to these entities. In this case, we set
up the relevance of each entity as a function of how soon
it will be changed, i.e., the very next entity to be changed

will have a relevance of 1, the next one of 1√
2

, and so on
until the last entity in the session is reached. In addition, we
set up a discount factor with a high value as the developer
is unwilling to look through a large list when he needs a
fast navigation. We also limit the computation of the DCG
(discounted cumulative gain) value up to the rank 9 as we
model a small list of results in order to reflect the average
processing capacities of humans [24]. This scheme takes
into account the order of changes to entities, yet is flexible
enough to reward predictors that provides predictions in a
different order, as each developer may work with slightly
different patterns.

This process is repeated for every individual test of
the predictor, and the computed values are averaged. For
comparison, they are expressed as a ratio over the ideal
measure which always returns the most relevant documents
in the optimal order.

D. How to Read the Results

We report the results like so: For each approach, we com-
pute the cumulative gain for class and method predictions
on each project. The results are reported in tables, as ratios
over the ideal case, to ease comparison between approaches.
Instead of reporting the ratios as numbers between 0 and 1,
we report values between 0 and 100 for readability. The
results are computed for each project, and an average is
reported in the last column. Note that the average is weighted
by the number of tests performed for each project.

IV. RESULTS

In this section we detail the evaluation of a number
of change prediction approaches using our benchmark. We
reproduced approaches presented in the literature and also
implemented new approaches ourselves; we mention the
eventual limitations of our reproduction and the assumptions
we make. This is followed by overall results and a brief
discussion.

A. Association Rules Mining (ARM)

Description. This is the approach employed by Zimmer-
mann et al. [3], and by Ying et al. [2]. The algorithm
analyzes past transactions to infer rules over the patterns
of changes in entities. These rules are of the type: “If A
and B change, then C changes with them 60% of the time”.
When asked for a prediction, the algorithm looks in its rule
base for rules whose antecedent corresponds to the entities
that have recently changed, and proposes the consequents
of the rules as predictions. These predictions are ordered by
the amount of support each rule has, i.e., how often it was
found valid in the past.

Like Zimmermann’s approach, our version supports in-
cremental updating of the dataset to better fit incremental
development (instead of analysing the whole history at
once). As the original approach uses SCM transactions, we

make the assumption that one session corresponds to one
commit in the versioning system.

When processing each change in the session, it is added
to the transaction that is being built. When looking for
association rules, we use the context of the 5 preceding
changes. We mine for rules with 1 to 5 antecedent entities,
and return the ones with the highest support in the previous
transactions in the history. As Zimmermann, we only look
for single-consequent rules.

Project SW SA X A–F Avg

Classes 10.17 12.88 6.46 21.24 11.82
Methods 1.66 3.35 1.15 3.90 2.41

Table III
RESULTS OF ASSOCIATION RULES MINING

Results (Table III). The performance is low overall: The
accuracy for methods is on average less than 5% of the
overall accuracy. In the case of classes, the reduced amount
of possibilities makes the approach perform better.

Variant: Immediate Rule Mining (IRM, Table IV). The
main drawback of the approach is that it does not take into
account changes in the current session. If entities are created
during it, as is the case during active development, prediction
based on previous transactions is impossible. To address this,
we incrementally build a transaction containing the changes
in the current session and mine it as well as the previous
transactions. Maintaining this transaction allows for rules in
which newly created entities can figure.

Project SW SA X A–F Avg

Classes 21.04 21.37 25.80 30.21 22.99
Methods 9.70 11.31 10.27 11.45 10.48

Table IV
RESULTS OF IMMEDIATE RULES MINING

The results of this simple addition are shown in Table IV.
The prediction accuracy at the class-level and the method-
level are much higher: Improvements range from 50% (A–
F, classes), to nearly tenfold (X, methods). Incrementally
building the current session, and mining it allows us to
quickly incorporate new entities which have been created
in the current session, something that the default approach
of Zimmermann does not support.

B. Degree of Interest (DOI)

Description. Mylyn maintains a degree-of-interest model
[25] for entities which have been recently changed and
viewed. The algorithm monitors the activity in the IDE and
detects when the programmer interacts with entities by either
viewing or changing them. Each time such an event occurs,

the algorithm increases the interest value of the entity which
is the target of the interaction. This interest value decays
over time if the entity is not interacted with anymore: Each
time an event occurs, the interest of all the other entities
drops slightly. The algorithm in [6] mentions an interest
increase of 1 for views, 2 for editions, and a decay value of
0.1. We implemented the same algorithm, with the following
limitations:
• The original algorithm takes into account navigation

data in addition to change data. Since we have recorded
navigation data only on a fraction of the history, we do
not consider it. We make the assumption that navigation
data is not essential in predicting future change. Of
course, one will probably navigate to the entity he
wants to change before changing it, but this is hardly
a useful recommendation.

• Another limitation is that more recent versions of the
algorithm [6] maintain several degrees of interest based
on manually delimited tasks. The tasks are then recalled
by the developer manually. We do not consider separate
tasks; the closest approximation of that for us is to
assume that a task corresponds to a session, maintain
a degree-of-interest model for each session, and reuse
the one most related to the entity at hand.

Project SW SA X A–F Avg

Classes 13.44 17.35 17.20 38.38 18.23
Methods 16.27 18.80 13.84 23.27 17.76

Table V
RESULTS OF DEGREE OF INTEREST

Results (Table V). At the class level, the degree of interest
is less precise than IRM. At the method level, it has however
a much higher accuracy. For finer-grained prediction, the
interest model is more precise. Since the DOI in Mylyn is
used to help development-style navigation, this finding is
not surprising. However, aggregating it to coarser entities is
worse (comparatively).

Variant: DOI with navigation (Table VI, DOIN). In the
largest project we monitor, SpyWare, we also recorded
navigation information, so we were able to run the original
version of the algorithm on this restricted set of data in order
to check our assumption that navigation information was not
essential. We indeed see an improvement, of roughly 3.5%
for classes, which is notable, and of 1% for methods, which
is slight.

C. Coupling-Based (CP)

Description. Briand et al. found that several coupling
measures were good predictors of changes [9]. Indeed a
method calling or being called by another indicates a strong
relationship between the two entities. We define the set of

Project SW SA X A–F Avg

Classes 16.75 - - - 16.75
Methods 17.30 - - - 17.30

Table VI
RESULTS OF DOI WITH NAVIGATION

methods being coupled with a method m as all the methods
calling m and all the methods that m calls. We aggregate
this measure at the class level by considering all the methods
that a class c implements.

Our algorithm makes predictions based on the list of
coupled entities with the last changing entity. These entities
are ordered by the strength of their relationship in the case
of classes. One limitation is that the Smalltalk systems do
not have any type information, due to the dynamically typed
nature of Smalltalk. Our version of the Java system also does
not have type information. Thus a degree of imprecision is
added in the case where several methods carry the same
name.

Project SW SA X A–F Avg

Classes 17.94 8.89 5.29 25.42 15.22
Methods 4.08 3.99 0.29 6.52 3.99

Table VII
RESULTS OF SENDER/IMPLEMENTOR COUPLING

Results (Table VII). The results are markedly higher than
ARM, but lower than IRM and DOI, especially at the method
level. The wide variations between SpyWare and project X
lead us to think this approach is affected greatly by the
working patterns of people.

Variant: Ordering methods by recent usage (CPOrd, Ta-
ble VIII). One major drawback of the approach is that
no order can be defined at the method level, which may
decrease the performance of the approach. To address this
issue, we can consider the change history of the system to
guide us. The set of methods coupled with a method m
can be simply ordered by the date of their last change: The
methods which changed more recently are put first. The
results show a more consistent picture across the board,
with a higher method-level accuracy overall (+68%). For
classes, the results are mixed: SpyWare experiences a great
drop, whereas other projects show slight improvements or
decreases in performance; On average, the performance
drops by 50%. Overall, this ordering still results in a quite
low performance.

Variant: Children, Parents, Siblings and Spouses (CPFam,
Table IX, and CPOrdFam, Table X). Another issue is that
the set of entities considered may be too small. Saul et
al. defined a structural recommendation algorithm which

Project SW SA X A–F Avg

Classes 7.29 10.11 5.17 24.10 9.96
Methods 7.39 6.83 0.73 9.71 6.82

Table VIII
RESULTS OF CHANGE-ORDERED COUPLING

considered 4 sets of methods related to a given method
m. The Parents are the methods which call m, while the
Children are the methods that m calls. These two sets
are included in our algorithm. However, the Siblings (the
Children of the Parents of m, excluding m), and the Spouses
(the Parents of the Children of m, excluding m) are not
included in CP. Adding these indirectly coupled methods
to our predictions gives us a higher method-level accuracy,
projects X and A-F being the clear winners. Ordering by
time yields surprising results: Project SW and X suffer, while
others are mostly unaffected. Once again, coupling-based
approaches seem less stable, and harder to aggregate, than
DOI and ARM-based approaches.

Project SW SA X A–F Avg

Classes 8.84 9.42 9.10 29.05 11.76
Methods 7.12 6.55 8.00 12.47 7.87

Table IX
RESULTS OF FAMILIAL COUPLING

Project SW SA X A–F Avg

Classes 3.00 9.22 4.93 25.61 7.77
Methods 4.17 7.99 9.92 16.61 7.78

Table X
RESULTS OF ORDERED FAMILIAL COUPLING

D. HITS

Description. The HITS algorithm [26] is used in web
searching, and is similar to Google’s PageRank [27]. It
takes as input a graph of nodes linked by their (directed)
relationships, and computes two metrics of interest for each
node: A hub value and an authority value. Good hub nodes
point to many good authority (also known as sinks) nodes,
and good authorities are referred to by many good hubs. In
the case of web searching, nodes are web pages, and edges
are links between them. An authority in that case is a page
linked to by many other pages (since many pages link to it,
it is seen as an authority on its subject), while a good hub
links to many authorities. The HITS algorithm iteratively
computes the hub values based on the authority values, and
the authority values based on the hub values, in several steps.

To adapt this algorithm to software, we need to define
what are the nodes and the edges of the graph. Several vari-
ants can be defined. The entities returned by the prediction
will then be the entities with the highest hub or authority
values in the graph.

Variant: FRAN (HITSFRAN , Table XI). FRAN is a method
investigation algorithm proposed by Saul et al. It computes
HITS on the call graph between methods in either of the
Parents, Children, Siblings and Spouses sets of the entity of
interest. In our case, the entity of interest is the one that
last changed. The best authorities are returned in all cases.
Saul et al. mention that their approach is aimed at program
investigation, where a larger number of matches is required,
more than navigation assistance. Our results concur, as its
performance for development-style change prediction is low.

Project SW SA X A–F Avg

Classes 4.54 6.69 4.74 26.11 8.00
Methods 1.21 2.35 2.65 3.86 2.09

Table XI
RESULTS OF HITS BASED ON FRAN

Variant: History-based (HITSChanges, Table XII). In this
version, graph nodes are classes and methods which have
recently changed (i.e., involved in the last 50 changes to
the system). The links between nodes are containment links
(i.e., links from classes to methods), and links from entity
to entity based on which entity changed before which other:
Change history links chain methods and classes touched
by successive changes, in chronological order. This version
gives us much better results than other approaches: It is
on average nearly twice as good as IRM for classes, and
outperforms DOI for methods by more than 5%. Further, the
performance is pretty stable across the board. Note that we
found best results by returning the best sinks (authorities),
not the best hubs (average of hubs for classes: 33.77;
methods: 21.54).

Project SW SA X A–F Avg

Classes 40.02 38.68 37.33 48.11 40.46
Methods 21.63 27.07 17.69 24.91 23.20

Table XII
RESULTS OF HITS ON CHANGES

Variant: History and Structure-based (HITSChStruct, Ta-
ble XIII). This variant overlays message senders and im-
plementors over the previous graph. If the results are good
by themselves, they are disappointing overall, as they are
roughly equivalent to the performance of HITSChanges

(decreasing for classes, and very slightly increasing for
methods), despite making use of more information. As

before, sinks yielded the best performance (average of hubs
for classes: 29.11; methods: 21.06).

Project SW SA X A–F Avg

Classes 36.84 38.48 35.36 44.38 38.05
Methods 21.75 27.12 18.02 25.45 23.39

Table XIII
RESULTS OF HITS ON CHANGES AND STRUCTURE

E. Reality Check (Recent Changes, RC)

Given the difference in performance observed between
HITSChanges and HITSChStruct, we hypothesized that if
simpler HITS graphs were performing best, then simple
approaches might work best overall. We devised an approach
based solely on recent changes: It proposes the n most
recently changed entities, ordered by recency of changes.

Project SW SA X A–F Avg

Classes 39.93 39.51 37.98 49.76 40.92
Methods 22.28 28.85 15.63 26.09 23.93

Table XIV
RESULTS OF RECENT CHANGES ONLY

Results (Table XIV). We were quite surprised to find that
this very basic approach is our best performer overall. It does
not outperform HITSChanges by much, but considering its
extreme simplicity, the performance is extremely convincing.

Variant: Introducing coupling-based ordering. We tried to
alter the ordering of the recent changes based on whether
they were part of the last changed method’s family, but
the only outcome was to slightly degrade the performance
(prioritizing recently changed senders/implementors had a
method-level of 20.54, instead of 23.93; also prioritizing
siblings and spouses yielded a performance of 22.83).

F. Discussion of the Results

We recall the average of each approach when predicting
classes and methods in Table XV. Starred items (DOIN)
have not been run on all the projects, because of missing
data.

Based on the results, we make the following observations:
Performance is low. The overall scores are quite low,

as they are fractions over the ideal approach. As a point
of comparison, the best-performing maintenance change
prediction approach that Hassan and Holt report achieved
an F-measure of 0.50 [11]. In both cases, there is still space
for improvement in the change-prediction arena.

Recent change information is key. Using recent change
information gave us the best performing approaches (DOI,
HITS on changes and recent changes), and considerably

Approach classes methods

ARM 11.82 2.41
IRM 22.99 10.48

DOI 18.23 17.76
DOIN* 16.75 17.30

CP 15.22 3.99
CPOrd 9.96 6.82
CPFam 11.76 7.87
CPOrdFam 7.77 7.78

HITSFRAN 8.00 2.09
HITSChanges 40.46 23.20
HITSChStruct 38.05 23.39

RC 40.92 23.93

Table XV
RESULTS OF ALL APPROACHES

improved some. For example, the difference between ARM
and IRM is due only to the presence of recent changes. In the
same fashion, Hits approaches based on changes outperform
those using structural information.

Coupling is unstable. Using coupling information yielded
unstable performance. Some of our projects reacted very
differently from others: Some were affected positively by
ordering of time, others negatively. We are unsure of the
reason of the differences, but hypothesize that the way
people interact with their code affects this.

In the same fashion, aggregating coupling and ordering
information from methods to classes gave mixed results. It
worked well for some projects, but not for others.

HITS performs best with sinks. HITS-based algorithms
return two values, a sink and a hub metric; returning the
best sinks consistently outperformed the best hubs.

Simple approaches work best —so far. Our best-perfor-
ming approach is simple: It simply recommends the most
recently changed entities. It matches the workflow of coding
pretty well, as one often changes code incrementally and
hence needs to return to entities he or she is working on.

We want to improve these results further; we plan to
investigate two leads. The first is to combine approaches by
merging their results, and find out empirically which merg-
ing strategy, and which combination of approaches yield best
results. The second is to further investigate context-aware
strategies, able to selectively look farther in the past history
of the project. Mylyn’s DOI has been extended to include
several task contexts in this manner [6]. We suspect we will
need to update our benchmark procedure in order to select
cases where this behavior is useful.

V. THREATS TO VALIDITY

We identified the following threats to external validity:
Not all approaches were reproduced. We did not repro-

duce the Navtracks approach, as it relies solely on navigation
data, which we do not have. Ying and Shirabad’s approaches

are close to Zimmermann’s association rule mining. DeLine
et al.’s Teamtrack is based on a DOI and as such is close to
the Mylyn DOI. Kagdi’s approach was not fully described at
this time of writing. We chose only one coupling measure to
reproduce, while many exist. The one we chose was the one
best adapted to our systems as PIM takes polymorphism into
account. In Briand et al.’s study, PIM was one the metrics
with the best correlation with actual changes.

Size of the dataset. Our dataset is fairly small, if not tiny
compared to the ones available with versioning system data.
With time, we will incorporate more data in our benchmark
in order to be more comprehensive. On the other hand,
our dataset is already larger than the ones used in previous
studies by Briand or Wilkie. Their evaluations were done on
one or two systems, and a small number of transactions.

Generalizability. We do not claim that our results are
generalizable. They however constitute good initial results
in the case of rapidly developing systems since all nine
projects fit that description with varying degrees of size.
In addition, some of the results we found were in line with
results found by other researchers. Hassan and Holt found
that coupling-based approaches are less precise than history
based approaches, and so do we.

VI. CONCLUSION

In this paper we presented a benchmark to repeatedly
evaluate the accuracy of change-prediction approaches. It is
unique since it is based on recording the history of programs
in a realistic setting by monitoring the programmers as they
build their systems.

By replaying the change history at the level of individual
changes in a development session, we feed more accurate
data to both the change prediction algorithms and the bench-
mark oracle. This allows to evaluate these change prediction
approaches without necessarily involving a controlled exper-
iment which is more expensive to perform and harder (if not
impossible) to reproduce.

As noted by Sim et al., benchmarks also need to evolve
[28]; this is our case as well. Our benchmark is still
relatively small, so we need to integrate the histories of
other programs. Additional data in the form of navigation
and typing information data is also needed to accommodate
a greater variety of approaches.

Using our benchmark, we compared several existing
approaches that we replicated (association rules mining,
degree of interest, and coupling-based impact analysis), with
other approaches we developed (variations of association
rules mining, approaches using the HITS algorithm, and a
simple approach recommending recent past changes). Our
results show that of the approaches we tested, the ones
with the most accuracy were the ones based on recent
changes: the simplest one was the best performer overall,
by a slight margin. We plan to investigate how to improve
results further, by merging the recommendations of several

approaches, and by specifically evaluating the cases when
an entity that has been changed farther in the past needs to
be changed again.

Acknowledgments. We gratefully acknowledge the finan-
cial support of the Swiss National Science foundation for
the project “REBASE” (SNF Project No. 115990).

REFERENCES

[1] G. M. Weinberg, The Psychology of Computer Programming.
Dorset House, 1998.

[2] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting
source code changes by mining change history,” Transactions
on Software Engineering, vol. 30, no. 9, pp. 573–586, 2004.

[3] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,” in
ICSE. IEEE Computer Society, 2004, pp. 563–572.

[4] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical
coupling based on product release history,” in Proceedings of
ICSM ’98, Los Alamitos CA, 1998, pp. 190–198.

[5] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting
navigation in software maintenance,” in Proceedings of ICSM
2005, sep 2005, pp. 325–335.

[6] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proceedings of SIGSOFT FSE
2006, 2006, pp. 1–11.

[7] D. Röthlisberger, O. Nierstrasz, S. Ducasse, D. Pollet, and
R. Robbes, “Supporting task-oriented navigation in IDEs with
configurable heatmaps,” in Proceedings of ICPC 2009, 2009,
pp. 253–257.

[8] J. Sayyad-Shirabad, T. Lethbridge, and S. Matwin, “Mining
the maintenance history of a legacy software system,” in
Proceedings of ICSM 2003, 2003, pp. 95–104.

[9] L. C. Briand, J. Wüst, and H. Lounis, “Using coupling
measurement for impact analysis in object-oriented systems,”
in Proceedings of ICSM 1999, 1999, pp. 475–482.

[10] F. G. Wilkie and B. A. Kitchenham, “Coupling measures
and change ripples in c++ application software,” Journal of
Systems and Software, vol. 52, no. 2-3, pp. 157–164, 2000.

[11] A. E. Hassan and R. C. Holt, “Replaying development history
to assess the effectiveness of change propagation tools,”
Empirical Software Engineering, vol. 11, no. 3, pp. 335–367,
2006.

[12] H. H. Kagdi, “Improving change prediction with fine-grained
source code mining,” in Proceedings of ASE 2007, 2007, pp.
559–562.

[13] R. Robbes and M. Lanza, “Versioning systems for evolution
research,” in Proceedings of IWPSE 2005. IEEE CS Press,
2005, pp. 155–164.

[14] R. DeLine, M. Czerwinski, and G. G. Robertson, “Easing pro-
gram comprehension by sharing navigation data,” in VL/HCC.
IEEE Computer Society, 2005, pp. 241–248.

[15] I. D. Coman, A. Sillitti, and G. Succi, “A case-study on using
an automated in-process software engineering measurement
and analysis system in an industrial environment,” in Pro-
ceedings of ICSE 2009, 2009, pp. 89–99.

[16] G. C. Murphy, P. Viriyakattiyaporn, and D. Shepherd, “Using
activity traces to characterize programming behaviour beyond
the lab,” in Proceedings of ICPC 2009, 2009, pp. 90–94.

[17] R. Robbes, “Of change and software,” Ph.D. dissertation, Uni-
versity of Lugano, December 2008. [Online]. Available: http:
//www.inf.unisi.ch/phd/robbes/OfChangeAndSoftware.pdf

[18] R. Robbes and M. Lanza, “Example-based program transfor-
mation,” in Proceedings of MODELS 2008. ACM Press,
2008, pp. 174–188.

[19] R. Robbes and M. Lanza, “How program history can improve
code completion,” in Proceedings of ASE 2008. ACM Press,
2008, pp. 317–326.

[20] R. Robbes and M. Lanza, “Spyware: A change-aware de-
velopment toolset,” in Proceedings of ICSE 2008, 2008, pp.
847–850.

[21] Y. Sharon, “Eclipseye - spying on eclipse,” University of
Lugano, Bachelor’s thesis, Jun. 2007.

[22] K. Järvelin and J. Kekäläinen, “Cumulated gain-based eval-
uation of ir techniques,” ACM Transactions on Information
Systems, vol. 20, pp. 422–446, 2002.

[23] M. Lalmas, G. Kazai, J. Kamps, J. Pehcevski, B. Piwowarski,
and S. Robertson, “Inex 2006 evaluation measures,” in Pro-
ceedings of INEX 2006, 2006, pp. 20–34.

[24] G. A. Miller, “The magical number seven, plus or minus two:
Some limits on our capacity for processing information,”
The Psychological Review, vol. 63, pp. 81–97, 1956.
[Online]. Available: http://users.ecs.soton.ac.uk/∼{}harnad/
Papers/Py104/Miller/miller.html

[25] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest
model for ides.” in Proceedings of AOSD 2005, 2005, pp.
159–168.

[26] J. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” IBM, Tech. Rep., May 1997.

[27] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the web,” Computer
Science Department, Stanford University, Tech. Rep., 1998.

[28] S. E. Sim, S. M. Easterbrook, and R. C. Holt, “Using
benchmarking to advance research: A challenge to software
engineering,” in Proceedings of ICSE 2003. IEEE Computer
Society, 2003, pp. 74–83.

http://www.inf.unisi.ch/phd/robbes/OfChangeAndSoftware.pdf
http://www.inf.unisi.ch/phd/robbes/OfChangeAndSoftware.pdf
http://users.ecs.soton.ac.uk/~{}harnad/Papers/Py104/Miller/miller.html
http://users.ecs.soton.ac.uk/~{}harnad/Papers/Py104/Miller/miller.html

	Introduction
	Related Work
	Maintenance-oriented Approaches
	Development-Oriented Approaches

	A Benchmark for Change Prediction
	Data Corpus
	Benchmarking Procedure
	Evaluating Prediction Performance
	How to Read the Results

	Results
	Association Rules Mining (ARM)
	Degree of Interest (DOI)
	Coupling-Based (CP)
	HITS
	Reality Check (Recent Changes, RC)
	Discussion of the Results

	Threats to Validity
	Conclusion
	References

