
A Study of Ripple Effects in Software Ecosystems
(NIER Track)

Romain Robbes
PLEIAD @ DCC—University of Chile

rrobbes@dcc.uchile.cl

Mircea Lungu
SCG—University of Bern
lungu@iam.unibe.ch

ABSTRACT
When the Application Programming Interface (API) of a frame-
work or library changes, its clients must be adapted. This change
propagation—known as a ripple effect—is a problem that has gar-
nered interest: several approaches have been proposed in the litera-
ture to react to these changes.

Although studies of ripple effects exist at the single system level,
no study has been performed on the actual extent and impact of
these API changes in practice, on an entire software ecosystem
associated with a community of developers. This paper reports on
early results of such an empirical study of API changes that led to
ripple effects across an entire ecosystem. Our case study subject
is the development community gravitating aroung the Squeak and
Pharo software ecosystems: six years of evolution, nearly 3,000
contributors, and close to 2,500 distinct systems.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance and Enhancement]: Restruc-
turing, reverse engineering, and reengineering

General Terms
Measurement, Design

Keywords
Software Ecosystems, Mining Software Repositories, Empirical
Studies

1. INTRODUCTION
In an email from July 7th, 2007, a user of Seaside, a popular web

application framework, asks:

I noticed that the Seaside 2.6 dialog classes listed below
are not in Seaside 2.8a1.390. I have not been paying
attention to Seaside 2.8 so don’t know much about
its status. I am wondering if these classes have been
dropped, have not been ported to 2.8 or does their func-
tionality exists elsewhere?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28 2011, Honolulu, Hawaii
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Soon after, the Seaside maintainers answer1:

They have been dropped. A mail went out to this list
if anybody still used them and nobody replied. [...]
Personally I don’t know of any application that uses
these dialogs.

This situation is surprisingly commonplace. A recent email from
the Moose mailing list—a reverse-engineering environment—asks
about the fate of a class in the Mondrian visualization framework2:

[...] where is MOLabelShape, why was it deleted?? I
use it and now is gone!!! I even had a specialization of
it [...]

These examples illustrate the consequences of API changes in
frameworks and librairies when the developers are not always con-
scious of how their frameworks are used. When a part of the inter-
face of a framework changes, ripple effects can occur in clients as
they react to changes [4, 11]. These are made worse by the loose
communication between users and providers of a framework: An
API-breaking change may take months to get noticed. Several works
in recent years have proposed solutions to this problem, showing
that it is known to the community [3, 1, 9, 10, 5].

However, there has been no large-scale study on the actual impact
of the problem in practice. The only studies available are performed
at smaller scales, studying frameworks in isolation without taking
their clients into account [2]. To perform such a study, one must
raise the level of abstraction to the one of software ecosystems.

Software ecosystems are collections of projects that are developed
and evolve together in the context of an organization or a develop-
ment community [6]. The projects interact with one another in
various ways: the developers that work on one project get involved
in other projects, bringing along their legacy of experience; projects
branch from one another and evolve simultaneously—sometimes
incorporating changes in other branches, sometimes diverging; last
but not least, multiple projects reuse functionality that other projects,
libraries and frameworks provide.

In this work we present early results of an analysis of such a
software ecosystem. The subject of our analysis is the ecosystem
that emerged around the Squeak and Pharo development communi-
ties, which use a common code hosting and versioning service, the
squeaksource.com website.

Structure of the paper. We describe the challenges that must be
addressed by a ripple effect detection process (Section 2). We then
introduce our ecosystem model and the way we model ripple effects
(Section 3). We continue with a presentation of the qualitative
evidence we have gathered during our preliminary study (Section 4).
We then discuss future plans and conclude the paper (Section 5).
1Entire exchange available at:http://bit.ly/gnwNfV.
2http://bit.ly/hiTeN8

http://bit.ly/gnwNfV
http://bit.ly/hiTeN8

2. MINING FOR RIPPLE EFFECTS
At the level of the ecosystem, a ripple effect is a change to a soft-

ware system’s API which originates in one system and propagates
to other systems. To detect ripple effects we need a reliable process
to detect them in the large amount of data at our disposal. This
process has three main steps: (1) gathering the data, (2) building a
model of the ecosystem, and (3) generating a list of candidate ripple
effects and their impact on clients. This process is subject to a set of
challenges:

1. Gathering the data. Determining who is actually a member
of the community can prove to be a challenge in itself. Some
communities—especially the larger ones—may spread over
multiple websites that need to be individually crawled to
gather the data. In our case, this first problem is simpler, since
the Squeak/Pharo community mainly uses a single web site
to store its source code.

2. Modelling thousands of evolving systems. An evolving
ecosystem contains a large amount of data that must be han-
dled appropriately with the correct level of abstraction. In
the case of ripple effect detection, we must model changes to
the API of systems, and do so between individual versions of
systems: The Ecco meta-model is our proposed solution.

3. Detecting ripple effects. After the model of the ecosystem—
evolving systems depending on one another—is built, the
ripple effects themselves—original API change and reactions
and adaptation of the clients over time—must be detected. In
our analysis, we have recovered an initial set of ripple effects
based on initial heuristics (e.g., deprecated methods will cause
ripple effects), and use that set of ripple effects as a basis to
define algorithms to detect other ripple effects.

3. MODELLING EVOLVING ECOSYSTEMS
To provide a meta-model of software ecoystems suitable to the

detection of ripple effects, we built on the experience we have with
two other ecosystem meta-models: RevEngE[6] and Ecco[7]

Ecco is a lightweight, language-independent representation of the
data in ecosystem snapshots, providing full (language-dependent)
access to the details on demand; we have already introduced Ecco in
our earlier work on extracting dependencies between the systems in
an ecosystem. Ecco’s unit of abstraction is the system. Each system
maintains lists of provided (defined in the system), and required
(used by the system) entities over its lifetime. An entity can be
both required and provided. The entities are identifiers of classes
and methods defined and/or used in each system. Based on these
lists of provided and required entities one can recover dependencies
between systems: if system B requires a set of entities and system
A is the only provider of these entities in the ecosysem, we can
infer that B depends on A. In previous work, we performed an
empirical evaluation of multiple techniques for recovering inter-
system dependencies [7].

To detect dependencies between systems it is sufficient to flatten
the entire evolution of a system—considering the provided and
required entities to be the union of all provided and required entities
in any version. To perform evolutionary analysis one needs to model
the individual versions of a system. The RevEngE meta-model
supports evolution; in our previous work we have proposed it as a
generic ecosystem meta-model which supports evolutionary analysis.
The previous instantiations of the model used a full FAMIX model
of every version of the individual systems. To detect ripple effects,
we need to model the entire history of every version of every system
in the ecosystem and for this RevEngE is too heavyweight.

We enhanced Ecco with a model of versions inspired by RevEngE:
we model an ecosystem with systems and versions, but for each
pair of successive versions we only keep a delta. Each version
keeps track of the changes between itself and its predecessor. These
changes are high-level, and consist in sets of additions and removals
of required and provided entities (methods and classes). In addition
to changes, the meta-model keeps track of metadata (author, time
stamp), and links to ancestors and successors versions (one of each
in the typical case, but more in case of forks, merges, or system
splits). Our model—fully built—is nearly two orders or magnitude
smaller than the initial dataset but allows on-demand access to it if
required.

4. RIPPLE EFFECTS IN PRACTICE
As a case study we use the ecosystem built around the Squeak

and Pharo open-source development communities (Pharo is a fork
of Squeak). It is hosted by the Squeaksource 3 source code reposi-
tory. Since 2004, Squeaksource hosts a large number of individual
repositories of a distributed, language-aware version control system
named Monticello. Squeaksource is the foundation for the software
ecosystem that the Squeak and Pharo communities have built over
the years. As of December 2010, Squeaksource hosts 2463 systems
in which 2924 contributors performed more than 92,000 source code
commits. The combined size of all the versions is more than 9GB
of compressed source code (Monticello stores versions as zip files).

Among the systems hosted by Squeaksource one can find multiple
widely-used frameworks and tool suites: the Seaside rapid web
application framework, the Moose reverse engineering environment,
the Croquet 3D environment, the Magma, GOODS and GLORP
databases, the Pier content management system, the Magritte meta-
description and UI generation framework, the Swazoo web server,
the Mondrian visualization toolkit, etc.

The reason for the choice of the Squeak and Pharo ecosystem
are threefold: (1) the data is easy to access and delimit—practically
Squeaksource stores all the open-source code produced by members
of the community; (2) the data is relatively easy to process, as the
versioning system in use, Monticello, stores program entities instead
of text files [8]; and (3) the recent fork in the community provides
us with an opportunity to better understand this phenomenom as it
happens at such a large scale.

4.1 Types of Ripple Effects
In our model, ripple effects are sequences of changes across

systems in the ecosystem, triggered by an earlier change to an entity
they require. We only consider syntactic changes and not semantic
changes: even detailed static analysis may not always be able to
infer that the semantics differ between two versions of a method.

When looking at the syntactic changes we consider two types of
entities, classes and methods. For each type of entity there are three
elementary changes that one can introduce in a project that can later
propagate to other projects:

• Addition of provider. The change introduces a new entity that
will be provided by a project. In most of the cases this means
extending the API of the system.

• Removal of provider. The change removes an entity that was
provided by the project. In most cases this means removing
a method from the API of the project. A special case of this
is annotating a method or class as deprecated, tagging it for
later removal.

3http://www.squeaksource.com

http://www.squeaksource.com

Origin System Deprecated Method Systematic replacement (if stated) # Aff. Syst. # Aff. Dev.
System-Support Author initials Author fullName 120 110

Seaside WACanvas bold: WACanvas strong: 61 59
Seaside WASession registerForBackgracking: (...) states 43 47

Famix-Core FAMIXNamedEntity packagedIn FAMIXNamedEntity parentPackage 22 11
Kernel ClassDescription metaclass ClassDescription theMetaClass 31 34

System-Support Utilities authorInitials Author initials 37 45
Kernel Object isKindOf:orOf: 12 24

Collections-Text Text isoToSqueak 18 22

Table 1: Eight ecosystem ripples that resulted from API deprecation

• Rename of provider. This renames a provided entity. It can
be seen as a composition of an addition and a removal.

A provider addition does not render the client incompatible with the
provider and therefore does not force him to react. Therefore, we
can not be sure that simple additions will introduce ripple effects.
On the other hand, removing or renaming a provided entity that
a client uses effectively forces them to update or use the outdated
version of the framework. Our search for ripple effects will start with
looking for ripples determined by method removals and renames.

4.2 Impact of Deprecation in the Ecosystem
To obtain a first glimpse of the ripple effects and their occurrence

in the case-study ecosystem we looked at the effects of deprecating
methods in the case-study ecosystem over its entire lifetime. These
ripple effects are easy to detect and inspect because the API changes
are explicitly marked as deprecated by the developers.

We analysed all the changes that incorporated usage of deprecated
methods to build the set of method deprecations that result in ripple
effects. These methods are: deprecated: (used in Squeak and
Pharo), deprecatedApi: (used in Seaside), and some others.
We reviewed each of the changes and recorded the deprecated meth-
ods, and, if present in the error message or the comments, which
method to use instead. Ecco allows us to efficiently query for rip-
ple effects across system versions. Searching for commits relevant
to a set of changed items of interest (classes or methods added or
removed between two versions) takes seconds.

Table 1 presents 8 of the several dozen deprecation instances
that we inspected in our study. For each API deprecation, the table
indicates: the originating system, the name of the deprecated method
and its replacement (if mentioned in the deprecation rationale), and
the numbers of systems and developers affected by the change.
These numbers are upper-bound estimates as we report on all the
users of the method over the studied interval (including new users
that appeared after the API change). Based on the table and further
inspection, we observe the following:

• Some API changes can have a wide impact. The reason for
this is that all five systems in the table are systems which
are heavily depended on: Parts of the base system (Kernel,
System-Support), standard APIs (Collections), and popular
frameworks (Seaside, Famix-Core).

• Different deprecations require different degrees of complexity
to adapt. Some deprecation messages directly mention the
new method to call; ripple number 3 requires a more complex
change (instead of calling a method, a new method must
be overriden); ripple number 6 involves both a class and a
method renaming; ripples 7 and 8 do not provide specific
instructions: the developers are “on their own”.

• Some API refactorings happen in multiple stages: ripples 1
and 6 affect the same methods.

These results provide initial evidence that ripple effects caused
by API changes do happen in practice at the ecosystem level and
can affect large numbers of developers and systems.

4.3 Four Months in the Life of a Ripple Effect
In this section, we elaborate on one of the ripple effects listed

above, specifically, the one which is the result of the renaming of
the packagedIn method to parentPackage in Famix-Core.

To support our analysis, we implemented an interactive tool—
the Ecosystem Ripple Inspector—to support detailed inspections
of ripples; it uses Ecco’s detail-on-demand approach to allow the
exploration of the effects of the ripple in terms of actual changes to
the source code. The tool also implements an ecosystem viewpoint
4 dubbed the Ripple Propagation Viewpoint which captures how a
ripple propagates across systems in the ecosystem chronologically.

Figure 1 presents the ripple propagation viewpoint as imple-
mented in the Ripple Inspector. In the figure time flows left to
right; systems are ordered from top to bottom; the top system is
the originator of the API change; the other systems are affected by
the ripple effect. For each system, we represent the succession of
versions including branching and merging. In all the systems, we
highlight the versions in which one of the methods involded in the
original API change is added or removed as required or provided:
these versions are part of the ripple effect.

The legend in the figure explains the visual conventions for high-
lighting the affected versions. We represent each version as a bipar-
tite rectangle: the left part corresponds to the removed method and
the right part to the added method. In both cases addition is green,
and removal, orange. We highlight two types of combined changes:
removal of old and addition of new method is magenta (reaction to
the ripple) and the reverse is red (reverting the reaction). We also
highlight the original API change in cyan. By analyzing the figure,
we make the following observations:

• Ripples can appear long after the original change is introduced.
The changes highlighted by mark d appear 4 months after the
original change. In other systems one can still see removals
of the old method months after the original API change.

• In one instance we see a ripple followed a few days later
by the opposite change (mark a), which means a revert to
depending on the old version of the provider system. The
final update occurs at mark d.

• Sometimes the change does not propagate at once in the entire
client system. Instead, the client remains in an inconsistent

4A visual representation of a particular aspect of the ecosystem [6]

The source of ripple effect is method
packagedIn which is renamed to
parentPackage

a

d

c

b

DecNovOctSeptAugJul

July 2009

remove

add

old

new ripple

revert

other

Figure 1: Ripples generated by renaming packagedIn to parent-
Package in Famix-Core

state until later. This is the situation in DSMCore, where there
are two ripples at a few months distance (mark c). This is also
the case in another system, OrionDevelopment, where there
are two successive ripples a few days apart from each other
(mark b).

To sum up, even a simple change such as a method rename can
take a long time—months—to propagate to all interested parties.
Such a change can leave projects in an inconsistent state if care is
not taken to properly update the clients.

5. CONCLUSIONS AND FUTURE WORK
In software engineering, managing API changes to libraries and

frameworks is a known problem for which several solutions exist in
the literature. However, we are not aware of any large-scale studies
of actual occurences of the ripple effects caused by API changes
performed so far. This paper presented initial steps in this direction:
we gathered data about an open-source development community,
built an infrastructure to detect and analyze ripple effects due to API
changes as they appear in the ecosystem, and presented examples of
actual ripple effects that occured in the ecosystem. We have shown
that ripple effects do happen in practice, and that the update process
is far from smooth.

We expect that there are other ripple effects in our ecosystems
which are not using the deprecation mechanism. In future work, we
will develop algorithms to detect all the ripple effects in an ecosys-
tem and present quantitative results. Once that step is complete
we want to work on building tools that monitor the ecosystem and
support its evolution in the presence of ripple effects.

6. REFERENCES
[1] B. Dagenais and M. P. Robillard. Recommending adaptive

changes for framework evolution. In Proceedings of ICSE
2008, pages 481–490, 2008.

[2] D. Dig and R. Johnson. How do APIs evolve? a story of
refactoring. Journal of Software Maintenance and Evolution:
Research and Practice (JSME), 18(2):83–107, Apr. 2006.

[3] D. Dig, K. Manzoor, R. E. Johnson, and T. N. Nguyen.
Refactoring-aware configuration management for
object-oriented programs. In Proceedings of ICSE 2007, pages
427–436, 2007.

[4] F. M. Haney. Module connection analysis: a tool for
scheduling software debugging activities. In Proceedings of
AFIPS 1972, pages 173–179. ACM, 1972.

[5] R. Holmes and R. J. Walker. Customized awareness:
recommending relevant external change events. In
Proceedings of ICSE 2010, pages 465–474, 2010.

[6] M. Lungu. Reverse Engineering Software Ecosystems. PhD
thesis, University of Lugano, October 2009.

[7] M. Lungu, R. Robbes, and M. Lanza. Recovering inter-project
dependencies in software ecosystems. In Proceedings of ASE
2010, pages 309–312. ACM Society Press, 2010.

[8] R. Robbes and M. Lanza. Versioning systems for evolution
research. In Proceedings of IWPSE 2005, pages 155–164,
2005.

[9] T. Schäfer, J. Jonas, and M. Mezini. Mining framework usage
changes from instantiation code. In Proceedings of ICSE
2008, pages 471–480, 2008.

[10] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim. Aura: a
hybrid approach to identify framework evolution. In
Proceedings of ICSE 2010, pages 325–334, 2010.

[11] S. Yau, J. Collofello, and T. MacGregor. Ripple effect analysis
of software maintenance. In Proceedings of COMPSAC 1978,
pages 60 – 65, 1978.

	Introduction
	Mining for Ripple Effects
	Modelling Evolving Ecosystems
	Ripple Effects in Practice
	Types of Ripple Effects
	Impact of Deprecation in the Ecosystem
	Four Months in the Life of a Ripple Effect

	Conclusions and Future Work
	References

