
An Empirical Comparison of Static and Dynamic Type
Systems on API Usage in the Presence of an IDE: Java vs.

Groovy with Eclipse

Pujan Petersen
University of Duisburg-Essen

Institute for Computer Science
and Business Information
Systems, Essen, Germany

pujan.petersen@stud.uni-
due.de

Stefan Hanenberg
University of Duisburg-Essen

Institute for Computer Science
and Business Information
Systems, Essen, Germany

stefan.hanenberg@icb.uni-
due.de

Romain Robbes
University of Chile
Computer Science
Department (DCC)

Santiago de Chile, Chile
rrobbes@dcc.uchile.cl

ABSTRACT
Several studies have concluded that static type systems offer an ad-
vantage over dynamic type systems for programming tasks involv-
ing the discovery of a new API. However, these studies did not take
into account modern IDE features; the advanced navigation and
code completion techniques available in modern IDEs could dras-
tically alter their conclusions. This study describes an experiment
that compares the usage of an unknown API using Java and Groovy
using the IDE Eclipse. It turns out, that the previous findings that
static type systems improve the usability of an unknown API still
hold, even in the presence of a modern IDE.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures

General Terms
Human Factors, Languages

Keywords
programming languages, type systems, empirical research

1. INTRODUCTION
The relative merits of static and dynamic type systems (see [21,

2]) are still subject to discussions, both in academia and in industry.
Since languages with dynamic type systems are used in industry—
especially in the area of web-programming, where dynamic lan-
guages such as JavaScript, PHP or Ruby are being used—, this dis-
cussion is very relevant to the practice. The argument that a static
type system increases the development performance of developers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC ’14, June 2-3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

has been made many times. For instance, TypeScript has been pro-
posed as an alternative to Javascript partly for those reasons 1.

This phenomenon is also studied in academia. A number of ex-
periments [10, 11, 28, 27, 14, 16, 13] indicate that the application
of statically typed languages has indeed a measureable benefit for
software developers—especially in those situations, where a previ-
ously unknown API has to be used in order to conclude a given pro-
gramming task (see [14]). However, controlled experiments have
to fix some variables in order to measure the effect of other vari-
ables. Some of these choices may reduce the generalizability of
the results. From a practical perspective, the previous studies have
some weaknesses:

• the studies did not take the existence of IDEs into account,

• the studies did not document the code in a Java-like fashion
(using JavaDocs), and

• the studies did use to a certain degree artificial parameter
names, which made it possibly harder to use the dynamically
typed API.

Each of these criticisms is a valid point in order to argue against
the generalizability of these experiments. In particular, the absence
of IDEs is a serious threat to the validity of previous experiments.
IDEs offer many tools that boost programmer productivity, which
possibly counterbalance the effects observed in previous experi-
ments. In particular, in the presence of code completion, the IDE
gives already a number of hints on how a class of an API could
be used. Consequently, in the presence of code completion, there
is less of a need to manually explore the source code in order to
search for methods that are appropriate in a given situation. In-
deed, the study of Murphy et al. found that code completion was
one of the most frequently used features of the Eclipse IDE [17].

In order to verify the findings of these previous experiments,
each of the mentioned critiques could be checked individually with
an additional controlled experiment. However, running controlled
experiments is a costly endeavour. Given that the measured differ-
ences between static and dynamic languages on API usage were
relatively large, it seems straight forward to design a single ex-
periment that considers all mentioned points together in order to

1See http://blogs.msdn.com/b/somasegar/
archive/2012/10/01/typescript-javascript-
development-at-application-scale.aspx

check, whether in the presence of an appropriate IDE, correspond-
ing JavaDocs, and non-artificial parameter names there is still a
measureable difference between the API usage of statically and dy-
namically typed languages.

This paper reports on an experiment that is closely related to the
experiment by Kleinschmager et al. [14] and which compares the
development times of Java and Groovy using the Eclipse IDE. The
tasks are programming tasks where a previously unknown API has
to be applied. Classes and methods of this API were documented
using JavaDocs, and the parameter names were chosen in a way,
that seemed most appropriate for the given situation: type names
as part of parameter names were chosen whenever it seemed ap-
propriate.

The results of the experiment are that even under these condi-
tions, a measurable positive effect of the statically typed program-
ming language Java is observed. Further, the differences between
Java/Eclipse and Groovy/Eclipse are (still) quite large.

The paper is structured as follows. In section 2 we give an
overview of existing related work. Section 3 describes the design
of the experiment. The results of the experiment are then shown
and discussed (section 4). Then, we perform an exploratory study
in order to test, what effects might be potentially responsible for
the measured differences. After discussing the paper in section 6,
section 7 summarizes and concludes the paper.

2. RELATED WORK
There are three different kinds of work that we consider mainly

related to the here described experiment. First, works about IDEs
and code completion, works about API usability, and works about
the usability of type systems. Each of these kinds of work is de-
scribed below in a separate section.

2.1 IDEs and Code Completion
There has been studies on the effect of integrated development

environments, and of code completion in particular, on develop-
ment productivity.

Most recently, Zayour and Hajjdiab performed a qualitative study
of the usage of Visual Studio in a company [29]. In it they found de-
veloper productivity improvements, which were however tempered
by additional complexities in libraries and components, leading to
mixed results.

Alternative IDEs have been shown to be improvements over state
of the practice IDEs. A study comparing Code Bubbles with Eclipse
[1] showed that programming tasks done with Code Bubbles were
done in less time and were more correct than when they were done
with Eclipse. Similarly, Code Canvas [7], Debugger Canvas [6],
and Gaucho [19]showed varying degree of improvement over their
respective baselines.

There has been several studies focused on the code completion
component of IDEs since Murphy’s study that showed that code
completion was comprehensively used by developers [17]. Robbes
and Lanza [23] showed that history-aware code completion yielded
both quantitative and qualitative improvements, while Omar et al.
[20] and Nguyen et al. [18] showed that contextual and structural
improvements to code completion were well-perceived and useful
to developers.

2.2 API usage
Several studies have shown that API documentation can be both

a blessing and a curse to software developers. A qualitative study
by Robillard and DeLine highlighted that the type of documenta-
tion that was perceived as most useful contains common use cases
of the API and examples using several API elements [24]. On

the other hand, the study by Roehm et al. showed that most in-
dustrial developers in the observed sample preferred to query the
source code if available, as the documentation risked being out of
data [25]. Additionally the study by Maalej and Robillard of .Net
and the JDK showed that nearly half of the documentation of these
frameworks was not useful [15].

Nevertheless, a controlled experiment by Dekel and Herbsleb
[4], and a subsequent qualitative study of the same data [5] showed
that highlighting relevant information in an API yielded an increase
in the correctness of tasks. For a more thorough survey on the re-
lated work in the area of API usage, we refer to our previous paper
[8].

2.3 Usability of static and dynamic type sys-
tems

The here described related work for the usability of type systems
corresponds to the descriptions that were done in previous papers
by some of the authors (see for example [14, 16]). The only differ-
ences are experiments that have been performed more recently.

Studies by other authors: The first experiment we are aware of
about the usability of type systems was performed by Gannon [9].
It revealed a positive influence of a static type system in comparison
to an untyped system: An increase in programming reliability for
subjects using the language with static type checking was detected.

Approximately 20 year later, Prechelt and Tichy run a study
about the impact of static type checking on procedure arguments
(see [22]). The study used ANSI C and K&R C as programming
languages. The result of the study was, that for one task subjects
using the statically type checked ANSI C were faster in solving the
programming task.

In a qualitative pilot-study on a static type system for the pro-
gramming language Ruby, the authors Daly et al. concluded that
the benefits of static typing could not be shown [3].

Studies by this paper’s authors: The study presented here is
part of a larger experiment series that started about 10 year after
the study by Prechelt and Tichy. The series studies the influence of
static and type systems on software development time. So far, eight
experiments have been executed:

1. The first study of this series (see [11]) revealed a significant
positive time benefit for a smaller task for dynamically typed
languages, while no significant difference between dynam-
ically and statically typed languages on development time
could be measured for a larger task.

2. Stuchlik and Hanenberg analyzed the influence of type casts
on development time for simple programming tasks [28].
The results of the study were that type casts influence the
development time of rather completely trivial programming
tasks in a negative way, while already for code longer than
eleven LOC no significant difference was measured.

3. An experiment by Steinberg and Hanenberg analyzed to what
extent static type systems help to identify and fix type errors
as well as semantic errors in an application [27]. The result
of the experiment was that static type systems have a positive
impact on the time required to fix type errors, but no differ-
ences with respect to fixing semantic errors were measured.

4. Mayer et al. studied the influence of static types to help us-
ing undocumented APIs [16]. For most of the programming
tasks static types were beneficial.

5. Kleinschmager et al. performed a repetition of previous ex-
periments [14, 12]. Among others, the key findings from

[16]—that static type systems help using undocumented APIs—
were confirmed; this time without any exception.

6. Hoppe and Hanenberg showed in an empirical study that the
additional type information given in generic types help using
unknown APIs compared to raw types in Java [13].

7. Spiza and Hanenberg studied whether the finding from pre-
vious experiments could be reduced to the question, whether
the pure syntactical representation of type declarations (with-
out a static type check) already helps developers when using
unknown APIs [26]. The result was, that they help indeed –
but when one of these unchecked declarations uses a wrong
type name, it has a measurable negative effect on develop-
ment time.

8. Endrikat et al. [8] showed in an experiment, that the effect of
type systems in the presense of documentation (available as
external documents with code examples) is still measurable—
and even larger than the effect of documentation.

From the experiment series it can be concluded (among other state-
ments), that there is quite strong empirical evidence for the usabil-
ity of static type systems when unknown APIs have to be applied
(from the experiments [16, 14, 13, 26, 8]). However, none of these
experiments used a state of the practice IDE in the experimental
setting—a fact that is mentioned in each paper’s threats to validity
section.

3. EXPERIMENT DESCRIPTION
This experiment can be considered as a partial replication of the

experiment by Kleinschmager et al. [14]. Because of this, we start
this section with a more detailed description of the previous exper-
iment. Then, we describe our adaptions to the experimental design.
Then, we describe threats to validity.

3.1 Background: Initial Experiment by Klein-
schmager et al. [14, 12]

The starting point for this experiment was the experiment per-
formed by Kleinschmager et al. [14, 12] which itself was based
on previous experiments ([27, 16]): while the experiment focused
on three different possible characteristics of type systems (time for
fixing type errors, time for fixing semantic errors, time for using
unknown APIs), the main outcome of the experiment was, that the
benefits of static type systems for using unknown APIs was shown
without exception.

The experiment was performed as a within–subject design where
each participant solved the programming task twice. Thereto, each
participant first solved all programming tasks in one language, then
he switched to the different language and again solved all program-
ming tasks. The tasks were solved using a statically typed pro-
gramming language (which was Java) and with a dynamically typed
language (Groovy). The dynamically typed language Groovy was
used as a dynamically typed Java by ignoring the additional lan-
guage features Groovy provides in addition to Java and by declar-
ing each variable and parameter as def – i.e. without giving them
a named type.

3.1.1 Constraints
The experiment set a number of constraints in its design in order

to study only the effect of type systems:
Programming environment: As a programming environment,

the participants were given a text editor with an additional tree
view, which contained all files required for the programming tasks.

d e f c r e a t e P r o t o t y p e N e t w o r k F u n c t i o n a l i t y () {
d e f p a s t E v e n t s = new E v e n t H i s t o r y () ;
d e f i n c i d e n t M a n a g e r =

new NetworkEven tHand le r (p a s t E v e n t s) ;
d e f t r a n s m i s s i o n M e t h o d = T r a n s p o r t P r o t o c o l . TCP ;
d e f e n d P o i n t = new IPAddre s s () ;
d e f s e r v e r F a c a d e = new S e r v e r P r o x y (

t r a n s m i s s i o n M e t h o d , e n d P o i n t) ;
d e f i o = new F i l e A c c e s s () ;
d e f p a r s e r = new GameLeve lParse r () ;
d e f f o r m a t t e r = new S e r i a l i z e r (io , p a r s e r) ;
d e f r e s u l t = new NetworkAccess (

i n c i d e n t M a n a g e r , s e r v e r F a c a d e , f o r m a t t e r) ;
d e f gameInfo = new GameData (GameState . I d l e) ;
r e s u l t . s e t N e x t C o n t e n t (new GamePackage (gameInfo)) ;
re turn r e s u l t ;

}

Figure 1: Possible solution code for a class identification class
(taken from [12])

That the intention of the experiment was to study the effect of the
type system—not the possible different maturity levels of IDEs that
could be found for statically or dynamically typed languages.

Variable and Parameter Names: Furthermore, all variable and
parameter names were given artificial names: while these names
were still meaningful in the programming context, they were de-
fined in a way that developers could not directly conclude from the
parameter names, what the names of the classes were, that could
be passed to the API. The intention for this design choice was, that
we intented to measure the possible documentation effect of type
systems—without disturbing this possible effect by giving the same
information in parameter or variable names.

Documentation: Finally, it was decided that no documentation
was given to the subjects about the API (except the API source
code). The motivation for this was, that we assumed that the effect
to be measured would be stronger without documentation.

3.1.2 Programming tasks
The three different characteristics of type systems were covered

by nine different programming tasks: five tasks to test whether the
declared types in the (unknown) API help using the API; two tasks
to check whether type errors can be fixed faster with a statically
typed language; and two tasks to check whether semantic error can
be fixed faster with a statically typed language.

j
All programming tasks had in common, that they did not require

the participant to apply conditionals or loops, because it was as-
sumed that each of these constructs potentially increases the devi-
ation in the measurements – which would possibly make it harder
to measure the effect that the experiment was intended to measure.
From the perspective of LOC the programming tasks could be con-
sidered as trivial – up to 15 LOC were required to solve the pro-
gramming tasks.

Figure 1 illustrates one possible solution code for one of those
tasks, which tested the documentation characteristics of static type
systems (the given example is the solution for Groovy).

3.1.3 Results
The results of the study were, that a positive impact of the stat-

ically typed language could be measured for API usability as well
as for type error fixing time. No difference could be measured for
fixing semantic errors.

The primary measurement for the experiment was development
time – the time between delivering the programming task until a

valid solution was provided. In an additional exploratory study,
the number of file switches, i.e. how often subjects switched from
one file to another one turned out to reveal comparable results pro
static type system as the development time. One interpretation of
this measurement was, that such file switches indicate how largely
developers explore the code.

3.2 Changes for the replication
The general idea was to replicate the experiment to a certain ex-

tent, but trying at the same time to add a number of changes to the
experiment in order to get additional insights.

The obvious changes for a repetion were to remove the given
constraints from the experiment, because each of these constraints
represent some threat to validity (especially it’s external validity).

Hence, the intention was to give participants in the experiment
an IDE, to give them some documentation and to remove the con-
straint, that parameter and variable names must not directly refer to
type names (especially for the dynamically typed solution).

While changes to the parameter and the variable names are rela-
tively straight forward (just by giving each parameter a correspond-
ing name where we think that such name is more appropriate), this
is not the case for the programming environment and documenta-
tion.

Programming environment: With respect to the programming
environment, it is necessary to find an appropriate IDE for the ex-
periment. One alternative could be to use just one IDE for the Java
group and a different one for the Groovy group – with the poten-
tial problem, that both are not directly comparable. We took two
IDEs into account. The first one was IntelliJ2 which provides sup-
port for Java as well as for Groovy. The other alternative we took
into account was Eclipse3 for which also a Groovy plug-in exists4.
Our main concern here was the Groovy IDE – although IDE sup-
port is available for Groovy, it turns out that in both cases, the IDE
is not that strong, as it should be. Especially for code completion,
the Groovy IDEs are relatively weak, because the underlying IDEs
hardly infer types in order to approximate for the purpose of code
completion the at least possible methods that could be send to an
object. However, it turns out that this weakness exists on both IDEs
taken into account. Additionally, just by reading comments from
developers in a number of forums, we considered both IDEs valid
for the experiment, because it looks like both are being actually
used by Groovy developers. For the purpose of our experiment, we
then decided to use Eclipse for Java and with the additional plug-in
for Groovy. The motivation for this was, that we were aware that
probably most of our participants in the experiment would come
from the University of Duisburg–Essen, and most of them are al-
ready trained using Eclipse.

Programming tasks: With respect to the programming tasks,
our intention was to concentrate on those tasks, where we expected
the largest effect from the IDE: those tasks where the API had to be
used and where we expected code completion (which we consider
as one of the main features as IDEs) play a major role – because
developers do not have to navigate to a classes source code in order
to detect, which methods are provided by this class. We used the
largest development task from the previous experiment (the tasks,
whose code is illustrated in Figure 1). Additionally, we create a
new comparable programming tasks with a comparable number of
parameters, etc. Again, we provided this additional task in a stati-
cally typed as well as in a dynamically typed way. I.e. in constrast

2http://www.jetbrains.com/idea/
3http://www.eclipse.org/
4http://groovy.codehaus.org/Eclipse+Plugin

to the previous experiment, we just used two programming tasks,
here. Both focused on the (possible) documentation characteristic
of static type systems. The original programming task is the one
that we will refer to as task 1 in the rest of the paper, the new task
as task 2.

Documentation: While the previous experiment did not provide
any documentation to the developers, our goal was to provide a kind
of documentation, developers using the experiment’s programming
languages are typically familiar with. In the Java world, it is com-
mon to document classes and methods using JavaDocs, a technique
to add documentation to the source code and which the IDEs in use
are able to handly by highlighting the documentation in the code
completion window.

Round 1 Round 2

Group 1 Java/Task 1,
Groovy/Task2

Groovy/Task1,
Java/Task2

Group 2 Groovy/Task 1,
Java/Task2

Java/Task 1,
Groovy/Task2

Table 1: General experimental design

General experiment design: The previous experiment was a
two-group experiment where one group started with one language
and solved all programming tasks with it, then switched the lan-
guage and solved the same programming tasks with the different
language. A potential problem of this approach is, that there is
probably a larger carry–over effect when all tasks are first being
done using the first language before switching to the other lan-
guage. In order to reduce this possible carry–over effect, we de-
cided to make one change to the experimental design: instead of
letting the participant solve both tasks with the same language first,
we gave him the first task with the first language, then let him solve
the second task with the second language. Then, the first task is
solved by the second language, and finally the second task is solved
with the first language – we did not let participants switch the lan-
guage after the second task in order to no confuse them. Figure 1
illustrates the resulting 2-group within–subject experiment.

3.3 Threats to validity
The original experiment description already reported on a large

number of threats to validity [12, 14], that we do not repeat here
(because they have actually not changed). Instead we only discuss
the possible threats that are caused by our changes to the experi-
ment.

IDE maturity (exteral threat): The IDE being used in the ex-
periment represents an IDE that is currently used in industry. How-
ever, taking into account that the programming language Java is
available since approximately 20 year (while Groovy is approxi-
mately only 10 years old) and that it is highly probable that many
more developers use Java instead of Groovy, it is also obvious
that much more effort was spent on IDE support for Java than for
Groovy. Consequently, nowadays Groovy IDEs have the tendency
to be rather weak compared to the Java support available in the
same or a comparable IDE. Hence, it is possible that the possibly
measured difference between static and dynamic languages is only
caused by the difference in the maturity of the IDEs.

Dynamic IDE functionality (exteral threat): Another closely
related threat is the functionality provided by current IDEs for dy-
namic programming languages such as Groovy. Although in prin-
ciple it would be possible that the IDE does a lot of code inferenc-
ing in order to improve code completion and other features of the
IDE, it turns out that this is – at least currently – hardly the case.
Even nowadays, IDEs for dynamic languages have troubles to in-

fer for example the return type of a method call – even though the
corresponding method just consists of a single statement such as
return new A(), which obviously returns type A. Hence, it is
possible and maybe even likely that in the future the functionality
of dynamic IDEs will significantly improve – which in that case is
not covered by the here introduced experiment.

Documentation (external threat): While we introduced with
JavaDocs one kind of possible documentation, it is unclear what the
“right” way of documenting software is, i.e. it is unclear whether
our choice really increases the external validity of the experiment,
or whether it just introduces a different external threat. However,
our argument here is that at least JavaDocs is currently an applied
technique – independent of how large of a benefit is provided by it.

Experiment design (internal threat): We intentially changed
the design in the experiment in order to reduce the potenial larger
carry–over effect of the first experiment. However, it is possible,
that this goal was actually not achieved by the change in the ex-
periment design. And more important, in case the here described
experiment has a different result than the previous experiment, this
could be just an implication of the change in the experimental de-
sign.

4. MEASUREMENTS AND ANALYSIS
The experiment was executed at the University of Duisburg-Essen,

Germany. The participants were bachelor students as well as mas-
ter students. The students were not selected based on their edu-
cational background, but simply because of their availability (but
making sure upfront, that the students already passed programming
lectures). Altogether, 23 subjects participated in the experiment.

Because of its similarity and comparability to the previous ex-
periment by Kleinschmager et al. (see [14]), we illustrate the mea-
surements and the results in a comparable way: We start with a
description of the raw measurements and corresponding graphical
illustrations. Afterwards, we run for each round (i.e. when the
subjects processed the tasks for the first time, respectively for the
second time) as well as for the individual tasks corresponding sig-
nificance tests.

4.1 Measurements and Descriptive Statistics
Table 2 contains all primary measurements from the experiment,

namely the development times. In addition to the raw data, the
differences between Java and Groovy for each task, as well as the
complete development times, i.e. programming task 1 and 2 alto-
gether, are shown—assuming that both programming tasks repre-
sent just one atomic task.

Just by watching the raw data it is possible to make a number of
interesting statements.

• First, not a single subject required for the first programming
task more time using Java/Eclipse than using Groovy/Eclipse
- and the differences are between 1.5 minutes (92 seconds)
and 50 minutes (3033 seconds)

• Second, only two of 23 subjects required for the second task
more time using Java/Eclipse than Groovy/Eclipse. In both
cases, the subjects began task 2 with Java, i.e. it seems plau-
sible that this is the result of some learning effects for these
subjects.

• Third, if the development times are summed up, each re-
quired more time using Groovy/Eclipse compared to Java/E-
clipse for both tasks. The differences between these sums

Table 2: Measured development times (time in seconds) and de-
scriptive statistics. Column Start describes the technique each
subject (row) started with for the first task (J = Java/Eclipse,
G = Groovy/Eclipse) – the second task started with the other
technique

Development time (in seconds)
Task1 Task2 Sum

Su
bj

ec
t

St
ar

t

Ja
va

G
ro

ov
y

D
iff

Ja
va

G
ro

ov
y

D
iff

Ja
va

G
ro

ov
y

D
iff

1 J 952 1045 -92 670 1810 -1140 1623 2855 -1232
2 J 1148 1447 -299 493 1236 -743 1642 2683 -1041
3 J 1075 2708 -1633 590 1274 -685 1665 3983 -2318
4 J 1076 2128 -1052 502 1102 -600 1578 3230 -1652
5 J 1422 1677 -255 440 1723 -1284 1861 3400 -1539
6 J 1101 2164 -1063 733 2471 -1738 1834 4635 -2801
7 J 1003 1321 -318 656 1562 -906 1659 2883 -1224
8 J 814 2075 -1261 900 1406 -506 1714 3480 -1766
9 J 1264 1629 -365 680 1590 -910 1944 3219 -1275

10 J 1346 1651 -305 655 1625 -970 2001 3276 -1275
11 J 1475 1982 -507 523 1723 -1200 1998 3705 -1706
12 J 2115 3730 -1615 560 2067 -1508 2674 5797 -3123
13 G 717 2758 -2041 747 1353 -606 1464 4111 -2647
14 G 539 2742 -2203 418 1242 -824 957 3984 -3026
15 G 326 1367 -1042 285 571 -286 611 1939 -1328
16 G 327 1012 -685 382 560 -178 710 1572 -862
17 G 1262 3576 -2314 1228 2878 -1649 2490 6454 -3963
18 G 1507 3913 -2405 1096 2089 -994 2603 6002 -3399
19 G 922 3324 -2402 876 1340 -464 1798 4665 -2866
20 G 1723 3834 -2111 1398 2476 -1078 3121 6310 -3189
21 G 467 2438 -1970 533 770 -236 1001 3207 -2206
22 G 1093 3708 -2615 1309 844 465 2402 4552 -2150
23 G 649 3682 -3033 1093 716 377 1742 4398 -2656

Min 326 1012 -3033 285 560 -1738 611 1572 -3963
Max 2115 3913 -92 1398 2878 465 3121 6454 -862

Mean 1058 2431 -1373 729 1497 -768 1787 3928 -2141
Median 1076 2164 -1261 656 1406 -824 1742 3705 -2150

Std. Dev. 443 977 913 309 618 564 615 1302 876

were between 14 minutes (862 seconds) and 66 minutes (3936
seconds).

The boxplot (see Figure 2) shows all measured data for both pro-
gramming tasks in a single boxplot, i.e. although the data is col-
lected within-subject, the data is shown as if the data is measured
between-subject. It appears relatively clear that for both program-
ming tasks the development times using Groovy/Eclipse is higher
than Java/Eclipse.

4.2 Repeated Measures ANOVAs
The previous section described only descriptive statistics and

does not consider that the data was measured twice. From the scep-
tical point of view, it seems at least possible that the within–subject
measurement influenced the measurements in an undesired way,
i.e. that it appears as if the Groovy/Eclipse has a negative effect
on development time, but that this is caused by the possible carry–
over effect. Hence, it is worthwhile to compare the between-subject
data, too.

Figure 3 illustrates a boxplot for the between–subject measure-
ments when the tasks were processed first, i.e. the measured data
does not contain any carry–over effect so far. The boxplot seems to
imply that the results are comparable to the within-subject measure-
ments as illustrated in Figure 2. In contrast to the within–subject
measurements, it looks like the differences for task 2 are not that
large without the within–subject measurement.

Figure 4 illustrates the boxplot for the second round, i.e. after
the subjects already fulfilled the programming tasks with one lan-
guage. This is the measurement after the carry–over effect took

Programming Task

21

D
e

v
e

lo
p

m
e

n
t

ti
m

e
 (

in
 s

e
c

o
n

d
s

)

4000

3000

2000

1000

0

12

86

Java

Groovy

Language

Figure 2: Boxplot for all measurements (within-subject mea-
surement treated as between-subject measurement

Programming Task

21

D
e

v
e

lo
p

m
e

n
t

T
im

e
 (

S
e

c
o

n
d

s
)

4000

3000

2000

1000

0

12

30

Java

Groovy

Language

Figure 3: Boxplot for first round (between–subject measure-
ment, when tasks were processed first)

place. Again, the boxplot looks comparable to the previous ones,
i.e. the within–subject and the between–subject measurements for
the first round.

In order to test, whether these visual impressions match the re-
sults of the experiment, we run a repeated measures ANOVA for
the first, as well as for the second round.5

Two languages per subject (within–subject variable task and
between subject–variable group): The results for the first round
correspond to the impressions from the boxplots. First, the within–
subject variable programming task is a significant factor (with p<.001,
η2
p=.72). The between–subject variable group is significant, too

(p=.044, η2
p=.18). Even more important, the interaction between

programming task and group is significant (p<.001, η2
p=.85).

The interaction diagram in Figure 5 illustrates the detected in-
teraction of the analysis. The group starting with Groovy required
more time than the group starting with Java. When both groups
switched programming language, the Groovy starter group (group
2, which now worked with Java) took less time than the group start-
ing originally with Java (group 1, which now worked with Groovy).

The diagram 6 is another interaction diagram, where the x-axis
shows the group and each task is represented in a separate line.
Again, we see the same situation: While the development time for
task 1 is less than task 2 for group 1 (Java starters), it is the opposite
for the second task (again, Java requires less time). Hence, neither
the task nor the group can be interpreted separately from each other.

5Note, that in contrast to previous experiments, each round is not
equivalent to the programming language. Instead, group 1 starts
task 1 with Java, but switches to Groovy for task 2, the other group
vice versa.

Programmign Task

21

D
e

v
e

lo
p

m
e

n
t

T
im

e

4000

3000

2000

1000

0

24

Java

Groovy

Language

Figure 4: Boxplot for second round (between–subject measure-
ment, when tasks were processed second)

Programming Task

21

A
v

e
ra

g
e

 T
im

e
s

 (
s

e
c

o
n

d
s

)

3000

2500

2000

1500

1000

500

Groovy Starters

Java Starters

Group

Figure 5: Interaction diagram for round 1 on programming
task (Java starters process task 1 with Java, then switch for
task 2 to Groovy, Groovy starters vice versa)

Group

21

A
v

e
ra

g
e

 T
im

e
 (

in
 s

e
c

o
n

d
s

)

3000

2500

2000

1500

1000

500

2

1

Task

Figure 6: Interaction diagram for round 1 on group (Java
starters process task with Java, then switch to Groovy, Groovy
starters vice versa)

Programming Task

21

A
v

e
ra

g
e

 T
im

e
 (

s
e

c
o

n
d

s
)

3000

2500

2000

1500

1000

500

Groovy

Java

Language

Figure 7: Interaction diagram for the initial language for each
group (programming task)

Language

GroovyJava

A
v

e
ra

g
e

 T
im

e
 (

s
e

c
o

n
d

s
)

3000

2500

2000

1500

1000

500

2

1

Task

Figure 8: Interaction diagram for the 2nd language for each
group (programming language)

For the second round, we observe comparable results. The within–
subject variable programming task is significant (p=.003, η2

p=.34)
and the interaction is significant (p<.001, η2

p=.7). However, group
is not significant (p=.34).

One language per subject (within–subject variable language,
between subject variable task): In order to analyze the data for
the same language and different programming tasks, we need to
compose data from both rounds: taking the Java results for group
1 of task 1 in round 1 and the Java results for group 1 of task 2
in round 2 and vice versa for group 2. Again, we perform the
analysis in two steps: First, for the programming language each
group started with, and then for the second language for each group.
Hence, the resulting analysis is on the within-subject variable pro-
gramming task and the between–subject variable programming lan-
guage.

For the starting language, we receive the following results. The
within–subject variable programming task is significant (p<.001,
η2
p=.76), the interaction between both variables is significant, too

(p=.001, η2
p=.4), and the variable programming language is also

significant (p<.001, η2
p=.56),.

Again, it is worthwhile to take a look at the interaction diagrams.
Figure 7 shows the interaction diagram where the x-axis illustrates
the programming tasks and each line represent the programming
language the subjects were working with. The development time
for the subjects working with Java is, for a given programming task,
less than the development time for Groovy. If we take a look at
the interaction diagram that shows on the x-axis the language (see
Figure 8), we see that the programming task 2 is always higher than
programming task 1 for a given programming language.

Task Task 1 Task 2
p-value <.001 <001

95% confidence interval (Java-Groovy) [-1768 – -979] s [-1012 – -524] s

Table 3: T-Test for within-subject comparison

For the second programming language, the results are slightly
different: neither task nor the interaction is significant (p=.15, re-
spectively p=.19), but the programming language is significant (p<.001,
η2
p=.56).

4.3 Task-specific analysis
The previous analysis determined that programming task is a sig-

nificant factor—which is an argument why both programming tasks
might not be analyzed at the same time.

Furthermore, the original design of the experiment was a within–
subject design with the potential benefit that we get for each devel-
oper both measurements at the same time and an assumed counter-
balance effect for the experiment. The initial goal being to run on
each individual programming task a corresponding test, giving for
each task a more precise approximation of the actual differences be-
tween the programming environments Java/Eclipse and Groovy/E-
clipse.

However, the potential problem of such an analysis is, that the
carry–over effect is too strong, i.e. that the participants in group
1 (starting with Java) have potentially a larger learning or novelty
effect (the same could be true for group 2). Because of that, we test
first, whether such an effect was measured, i.e. we run once again
a repeated measures ANOVA with the within–subject variable pro-
gramming language and the between–subject variable group.

The results of both tests are, that neither for the first task nor
for the second task the variable group is significant (p=.23 with,
respectively p=.89), giving us confidence that no significant differ-
ence between both groups exists and a combined analysis for both
groups can be executed.

The intention is to run a paired sample t-Test for both languages.
In order to do so, we test the differences of both languages for
normality. In both cases, the Kolmogorov-Smirnov-Test is non-
significant (p=.2). Hence, the hypothesis that both differences are
normally distributed cannot be rejected. This matches the t-Test’s
assumptions.

Running the paired sample t-Test reveals the results as illustrated
in Table 3: on both cases, there is a significant difference between
Java and Groovy and the confidence interval of the difference is
between 16 and 29 minutes (979 – 1768 seconds) for task 1 and
between 9 and 17 minutes (524 – 1012 seconds) for task 2.

4.4 Results so far
We tested first (“Two languages per subject”), whether there is

a significant interaction between task and group: since the partic-
ipants in both groups switched the language, a language effect re-
quires such an interaction. Such an interaction was detected, which
supports the idea that there is a difference between Java/Eclipse and
Groovy/Eclipse—although in the second round, the group itself did
not turn out significant. The test was performed on the data of each
round in separation, hence no learning effect can have influenced
the result.

Second, we tested (“One language per subject”) whether one
single language for each group was significant. Since the partici-
pants in each group solved each task with the same language (al-
though doing another task in between), this is an indicator for a
difference in the language, too. For each round, we received a sig-

nificant variable programming language.
Then, we estimated the differences in development time based on

a t-Test (checking the test’s assumptions beforehand). It turned out
that the programming environment Java/Eclipse revealed a clear
positive effect in comparison to Groovy/Eclipse. The differences
ranged between 16–29 minutes for task 1, and 9–17 minutes for
task 2. Although these may not seem like impressive numbers, they
should be compared to the time participants required to solve the
programming tasks. For task 1 the median was 18 minutes for Java
(and 36 minutes for Groovy), for task 2 the median for Java was
11 minutes (23 minutes for Groovy). Taking these medians into
account, this implies that the development time for Groovy/Eclipse
was about twice as much as the development time for Java/Eclipse.

5. EXPLORATORY STUDY
The results of the previous section are already impressive and

show that the differences measured in previous experiments still
hold—even if an IDE, JavaDocs, and parameter names with hints
about the expected types are available. However, it is desirable
not only to understand that there is a difference between the de-
velopment times, but possible reasons why such differences were
measured.

In the experiment by Kleinschmager et al. we observed that the
number of file switches, i.e. whenever a developer switched into
a different class file, concorded with the measurement of develop-
ment time. Hence, it was concluded that these file switches might
be responsible for the measured differences.

In the presence of IDEs the situation might be potentially differ-
ent. When features such as code completion are available, there is
no need for developers to switch into different files—instead, this
could be achieved by browsing the code completion window (at
least in cases where the IDE for the dynamically typed language
shows relevant proposals). However, at the same time, it seems
likely that people using the dynamically typed language use other
means to explore the code, such as the IDE’s search functionality.

Because of this, we perform an exploratory study not only on
the file switches (as being done in the previous study), but also on
the number of searches being used within the IDE, the frequency
of code completion usage, and the time each participant spent in
the code completion menu. The raw measurements and descriptive
statistics for these numbers are illustrated in Figure 4.

In this section, we follow the approach of section 4.3. We check
first that the variable group is not a significant factor. Then, we
combine the within–subject measurements, and run either a t-Test
(in case the differences are normally distributed) or a Wilcoxon-
Test (in case the differences are not normally distributed).

5.1 File switches
For the file switches, the variable group does not turn out to be

significant in a repeated measures ANOVA, neither for the first
round (p=.1) nor for the second round (p=.08). Hence, we as-
sume that the variable group is not an influencing factor and that
we do not need to differ between the groups in the analysis. Addi-
tionally, we test whether the differences between Java/Eclipse and
Groovy/Eclipse are normal distributed. We receive in both cases
p=.2 from the Kolmogorov-Smirnov-Test, hence we assume a nor-
mal distribution and run the paired sample t-Test.

Task Task 1 Task 2
p-value .03 .002

95% confidence interval (Java-Groovy) [-50 – -21] [-37 – -13]

Table 5: Two-sided paired sample T-Test for number of file
switches

The results of the paired sample t-Test are shown in Figure 5:
in both cases the differences between Java/Eclipse and Groovy/E-
clipse are significant. The 95% confidence intervals for the Java-
Groovy differences show that the Java/Eclipse developers switches
less often between the files: between 21 to 50 (task 1), and 13 to
37 (task 2) less file switches than the Groovy/Eclipse developers.
Hence, the results for the file switches are comparable to the re-
sults in the previous experiment: both the development time and
the file switches lead to the same result (less effort for Java/Eclipse
developers), and it seems at least possible that the file switches are
a possible explanation for the measured differences in development
time.

5.2 Search counts
For the number of search counts, the variable group is not sig-

nificant for the first or for the second round (p=.81, respectively
p=.6). However, the Kolmogorov-Smirnof test for normality does
not permit to assume a normal distribution (p=.02 in the first round,
p=.001 in the second round); the assumptions for the parametric t-
Test do no hold. Instead, we apply a non-parametric Wilxocon test.

Task Task 1 Task 2
p-value =.001 <.001

Positive Ranks (Groovy-Java) 18 17

Table 6: Two-sided Wilcoxon-Test of search counts

The results for the Wilcoxon test are illustrated in Figure 6: while
the test does reveal any confidence interval, the p-values show (in
combination with the positive ranks) that the Groovy/Eclipse group
performed significantly more searches using the IDE. To picture
how large this difference is, we look into the measurements and
descriptive statistics in Figure 4: while only six subjects in the
Java/Eclipse groups used the IDE’s search functionality for task
one (hence the median of 0), only two subject in the Groovy/E-
clipse group did not the search for functionality (median of 3). A
similar result can be seen for the second task (median 0 vs. median
3). Hence, it can be concluded that the Groovy/Eclipse group used
significantly more often the search capabilities of the IDE, which
is another indicator that their code exploration was more intensive.

5.3 Number of code completions
The number of code completions, i.e. how often the subjects

opened the code completion menu is another possible indicator that
participant who used Groovy/Eclipse spent time on exploring the
code. In both rounds, the group is not significant (it is significant
in the first round with p=.06, while in the second round the p-value
is more definitive with p=.13). Although we are aware that the first
value is not that far from being significant, we still assume here
that we can combine both groups. Here, both differences between
Java/Eclipse and Groovy/Eclipse can be assumed to be normally
distributed (the KS-Test being .2 in both cases).

Table 4: Measurements for exploratory study

Number of File switches Number of Searches Number of Code Completions Code Completion Time (in seconds)
Task1 Task2 Task1 Task2 Task1 Task2 Task1 Task2

Su
bj

ec
t

St
ar

t

Ja
va

G
ro

ov
y

D
iff

Ja
va

G
ro

ov
y

D
iff

Ja
va

G
ro

ov
y

D
iff

Ja
va

G
ro

ov
y

D
iff

Ja
va

G
ro

ov
y

D
iff

Ja
va

G
ro

ov
y

D
iff

Ja
va

G
ro

ov
y

D
iff

Ja
va

G
ro

ov
y

D
iff

1 J 19 33 -14 19 54 -35 1 6 -5 0 26 -26 30 24 6 20 34 -14 94 73 21 93 117 -23
2 J 52 39 13 3 42 -39 9 6 3 1 10 -9 36 36 0 34 40 -6 122 332 -210 95 251 -156
3 J 29 96 -67 5 56 -51 0 1 -1 0 0 0 19 23 -4 14 11 3 133 169 -36 91 49 42
4 J 31 66 -35 9 35 -26 0 0 0 0 7 -7 15 14 1 19 16 3 170 87 83 46 40 7
5 J 9 1 8 1 7 -6 0 1 -1 0 9 -9 24 37 -13 26 35 -9 280 450 -170 138 295 -157
6 J 24 71 -47 11 65 -54 0 1 -1 2 3 -1 16 31 -15 30 38 -8 58 121 -64 96 178 -83
7 J 40 31 9 32 63 -31 0 19 -19 0 21 -21 25 19 6 20 16 4 75 89 -14 79 74 5
8 J 19 62 -43 15 46 -31 0 2 -2 0 10 -10 12 18 -6 20 21 -1 37 90 -53 58 56 2
9 J 38 55 -17 38 44 -6 0 1 -1 0 2 -2 18 24 -6 22 16 6 152 107 45 71 65 6

10 J 36 21 15 1 15 -14 0 3 -3 0 3 -3 21 25 -4 29 15 14 73 92 -19 73 41 31
11 J 65 83 -18 1 79 -78 0 5 -5 2 23 -21 17 14 3 12 10 2 72 82 -11 63 39 25
12 J 21 88 -67 1 27 -26 7 5 2 0 5 -5 42 35 7 25 40 -15 356 294 62 59 272 -214
13 G 5 59 -54 5 17 -12 0 1 -1 0 0 0 9 26 -17 12 10 2 33 184 -151 31 34 -2
14 G 32 77 -45 34 50 -16 0 0 0 0 0 0 24 27 -3 28 33 -5 69 207 -139 85 311 -226
15 G 3 39 -36 1 7 -6 1 13 -12 1 2 -1 13 22 -9 16 25 -9 63 86 -23 55 123 -68
16 G 3 65 -62 3 13 -10 0 4 -4 0 3 -3 14 11 3 16 18 -2 45 31 14 77 121 -44
17 G 85 121 -36 85 125 -40 2 14 -12 0 44 -44 8 12 -4 11 13 -2 18 54 -36 21 42 -21
18 G 57 86 -29 40 127 -87 0 11 -11 0 3 -3 28 29 -1 25 32 -7 93 204 -110 57 139 -82
19 G 32 100 -68 33 77 -44 3 7 -4 0 0 0 8 25 -17 15 11 4 28 169 -141 52 53 -1
20 G 55 59 -4 60 72 -12 0 3 -3 0 29 -29 7 13 -6 10 9 1 25 83 -58 37 25 12
21 G 17 41 -24 11 9 2 0 8 -8 0 2 -2 21 38 -17 27 32 -5 49 245 -196 77 171 -95
22 G 56 132 -76 79 53 26 0 1 -1 0 0 0 10 18 -8 18 16 2 33 128 -95 44 44 0
23 G 42 168 -126 90 63 27 0 0 0 0 0 0 7 20 -13 10 10 0 13 88 -75 30 34 -4

Min 3 1 -126 1 7 -87 0 0 -19 0 0 -44 7 11 -17 10 9 -15 13 31 -210 21 25 -226
Max 85 168 15 90 127 27 9 19 3 2 44 0 42 38 7 34 40 14 356 450 83 138 311 42

Mean 33 69 -36 25 50 -25 1 5 -4 0 9 -9 18 24 -5 20 22 -2 91 151 -60 66 112 -45
Median 32 65 -36 11 50 -26 0 3 -2 0 3 -3 17 24 -4 20 16 -1 69 107 -53 63 65 -4

Std. Dev. 21 38 34 29 33 28 2 5 5 1 12 12 9 8 8 7 11 7 84 101 81 27 92 77

Task Task 1 Task 2
p-value .21 .002

95% confidence interval (Java-Groovy) — [-95 – -25]

Table 7: Two-sided paired sample T-Test for number of file
switches

The t-Test illustrates here an interesting result, because only for
the second task, the number of code completions are significant
(p=.002) and the Groovy develpers used between 25 and 95 more
times the code completion than the Java/Eclipse group. For the first
task, it is noteworthy that that p-value is not even close to significant
(p=.21, see Figure 7).

5.4 Code Completion Times
While the previous measurement can be considered as rather dis-

appointing, because the Groovy/Eclipse developers did not use in
both tasks the code completion more often than the Java/Eclipse
developers, it seems still interesting to see whether there is a differ-
ence in the time the developers spent in the code completion menu.

Repeating our previous analysis reveals that the between–subject
variable group is not significant in the repeated measures ANOVA
(neither for the first nor for the second task; p=.08 and p=.28 re-
spectively). However, the differences in time is not in both cases
normally distributed: while the KS-Test reveals a non-significant
result for task 1 (p=.2), it is significant for task 2 (p=.002). We
decided to run the non-parametric test on both programming tasks.

Task Task 1 Task 2
p-value =.004 =.041

Positive Ranks (Groovy-Java) 18 14

Table 8: Two-sided Wilcoxon-Test of search times

Figure 8 contains the results of the two-sided Wilcoxon test.
For both programming tasks, we observe a significant difference
(p=.004, and p=.041). In order to understand how large these dif-
ferences are, we take again a close look into the measurements and
descriptive statistics in Figure 4: in both cases the difference in the
medians is about one minute (60 seconds). Again, this is an indi-
cator that the participants spent more time on exploring the code
when using Groovy/Eclipse in comparison to Java/Eclipse.

6. SUMMARY
Section 4 determined first that there was a significant difference

between Java/Eclipse and Groovy/Eclipse in development time. This
was done by repeated measure ANOVAs that detected a significant
interaction between task and group which gave confidence that the
chosen design worked out. Then, we were able to approximate the
size of the differences between Java/Eclipse and Groovy/Eclipse
by reporting the confidence intervals which are the result of the t-
Test (whose assumptions had been tested upfront) and we showed
that the differences are quite large (between 9 and 29 minutes –
where the working time for the statically typed solutions was ap-
proximately 18 and 11 monites.

Then, we repeated the exploratory analysis as done in the previ-

ous experiment by showing that again the number of file switches
is an indicator for the differences between the statically and the dy-
namically typed solutions – the number of file switches was orig-
inally interpreted as an indicator for the effort in code exploration
and the here introduced experiment seems to strengthen this argu-
ment. Additionally, we showed that the new IDE features also give
to a certain extent such indicators – the number of searches in the
IDE as well as the time spent on code completion reveal the same
significant difference as the number of file switches – as well as the
development time.

However, it should be made explicit, that the exploratory study
should not be used too extensively for the argumentation, because
it is still just an exploratory study – it’s possibly influencing factors
were not controlled.

7. DISCUSSION AND CONCLUSION
This paper described an experiment that compares the use of

static and dynamic programming languages for using unknown APIs;
an experiment, that is part of a larger experiment series that consists
currently of eight controlled experiments that study different facets
of type systems.

While such an experiment has been already performed by Klein-
schmager et al., and while the previous experiment showed a clear,
significant positive effect of static type systems in comparison to
dynamic type systems, the here described experiment now removed
a number of problems that threatened the validity of the previous
experiment: a serious IDE with industrial relevance (Eclipse) has
been used by the subjects in the experiment. Additionally, the ex-
periment used a documentation that is widely used in the Java world
(JavaDocs) and (in contrast to the experiment by Kleinschmager et
al.) the experiment did not artificially set any constraints on pa-
rameter names in the API. By removing these threats from the ex-
periment, the experiment reacts on criticism against the previous
experiment: that the experiment’s result cannot be generalized to
industrial setting. Similarly to the previous experiments, this ex-
periment uses Java and Groovy as representatives for statically and
dynamically typed languages.

It turned out that the experiment’s results did not contradict the
previous experiment’s results: again, a positive effect of the stati-
cally typed programming language Java was measured. This might
be an indicator that one often found critique against a number of
experiments from the experiment series may not be as strong as
previously assumed: the use of a simplified IDE in an experiment
did not reduce the experiment’s validity.

In addition to the replication of the previous results, this exper-
iment reveals additional insights into possible explanations for the
measured time differences. While the original experiment mainly
concentrated on file switches as an indicator for the differences be-
tween the statically and dynamically typed languages, this exper-
iment indicates that the use of additional code navigation and ex-
ploration tools within the IDE can be used, too. The use of the
search functionality as well as time developers spent in the code
completion window revealed comparable results in comparison to
development time: the measurements imply a positive effect of the
statically typed language. Having said this, we also have seen that
just the number of opened code completion windows are no such
indicator. Additionally, we have seen that the absolute time spent
in the code completion window can hardly be used to explain the
difference in development time: the absolute differences were rel-
atively small (with the median of one every minute). However,
these measurements are only indicators for the developer’s naviga-
tion and exploration that takes place in some other actions (which
might be just reading code), where the actual loss of time takes

place.
Our conclusion of the paper can be summarized as follows:

1. This paper gives (again) evidence that static type systems
help using unknown APIs.

2. The statement from 1., for which already experimental ev-
idence existed before, still holds, even if IDEs (with code
completion), JavaDocs, and natural parameter names are used
within the experiment.

3. With the number of searches and the code completion time,
two additional metrics were found which (in addition to the
number of file switches) indicate the difference in time and
which might be indicators for code exploration.

This experiment additionally contributes to the area of experimen-
tal research in a different way: it contributes to the endless debate
about the benefit of experimental results gathered from small-scale
experiments that largely restrict developers, because (another) sit-
uation is shown where the results of such restricted experiments
were replicated in a broader environment.

Of course, this work is not the final answer to the discussion if
and when static type systems have a positive impact on develop-
ment time: the chosen IDE in the experiment for the dynamically
typed language could be much improved. However, it is unclear
whether it is possible to improve the IDE up to the point where one
could no longer observe a significant benefit of static type systems
on API — something that should be studied in the future.

8. REFERENCES
[1] Andrew Bragdon, Steven P. Reiss, Robert C. Zeleznik,

Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola
Jr. Code bubbles: rethinking the user interface paradigm of
integrated development environments. In Proceedings of
ICSE 2010, pages 455–464, 2010.

[2] Kim B. Bruce. Foundations of object-oriented languages:
types and semantics. MIT Press, Cambridge, MA, USA,
2002.

[3] Mark T. Daly, Vibha Sazawal, and Jeffrey S. Foster. Work in
progress: an empirical study of static typing in ruby.
Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU),Orlando, October 2009,
2009.

[4] Uri Dekel and James D. Herbsleb. Improving API
documentation usability with knowledge pushing. In
Proceedings of ICSE 2009, pages 320–330, 2009.

[5] Uri Dekel and James D. Herbsleb. Reading the
documentation of invoked API functions in program
comprehension. In Proceedings of ICPC 2009, pages
168–177, 2009.

[6] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens
Jacobsen, and Steven P. Reiss. Debugger canvas: Industrial
experience with the code bubbles paradigm. In Proceedings
of ICSE 2012, pages 1064–1073, 2012.

[7] Robert DeLine and Kael Rowan. Code canvas: zooming
towards better development environments. In Proceedings of
ICSE 2010, pages 207–210, 2010.

[8] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and
Andreas Stefik. How do API documentation and static typing
affect API usability? In Proceedings of the ICSE 2014
(accepted for publication), ICSE ’14, 2014.

[9] J. D. Gannon. An experimental evaluation of data type
conventions. Commun. ACM, 20(8):584–595, 1977.

[10] Stefan Hanenberg. Doubts about the positive impact of static
type systems on programming tasks in single developer
projects - an empirical study. In ECOOP 2010 -
Object-Oriented Programming, 24th European Conference,
Maribor, Slovenia, June 21-25, 2010. Proceedings, LNCS
6183, pages 300–303. Springer, 2010.

[11] Stefan Hanenberg. An experiment about static and dynamic
type systems: Doubts about the positive impact of static type
systems on development time. In Proceedings of the ACM
international conference on Object oriented programming
systems languages and applications, OOPSLA, pages 22–35,
New York, NY, USA, 2010. ACM.

[12] Stefan Hanenberg, Sebastian Kleinschmager, Romain
Robbes, Éric Tanter, and Andreas Stefik. An empirical study
on the impact of static typing on software maintainability.
Springer, 2013 – published online in dec 2013.

[13] Michael Hoppe and Stefan Hanenberg. Do developers benefit
from generic types?: An empirical comparison of generic
and raw types in java. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA
’13, pages 457–474, New York, NY, USA, 2013. ACM.

[14] Sebastian Kleinschmager, Stefan Hanenberg, Romain
Robbes, Éric Tanter, and Andreas Stefik. Do static type
systems improve the maintainability of software systems?
An empirical study. In IEEE 20th International Conference
on Program Comprehension, ICPC 2012, Passau, Germany,
June 11-13, pages 153–162, 2012.

[15] Walid Maalej and Martin P. Robillard. Patterns of knowledge
in api reference documentation. IEEE Trans. Software Eng.,
39(9):1264–1282, 2013.

[16] Clemens Mayer, Stefan Hanenberg, Romain Robbes, Éric
Tanter, and Andreas Stefik. An empirical study of the
influence of static type systems on the usability of
undocumented software. In Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA,
October 21-25, 2012, pages 683–702. ACM, 2012.

[17] Gail C. Murphy, Mik Kersten, and Leah Findlater. How are
java software developers using the eclipse IDE? IEEE
Software, 23(4):76–83, 2006.

[18] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen,
Ahmed Tamrawi, Hung Viet Nguyen, Jafar M. Al-Kofahi,
and Tien N. Nguyen. Graph-based pattern-oriented,
context-sensitive source code completion. In Proceedings of
ICSE 2012, pages 69–79, 2012.

[19] Fernando Olivero, Michele Lanza, Marco D’Ambros, and
Romain Robbes. Enabling program comprehension through
a visual object-focused development environment. In
Proceedings of VL/HCC 2011, pages 127–134, 2011.

[20] Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and
Brad A. Myers. Active code completion. In Proceedings of
ICSE 2012, pages 859–869, 2012.

[21] Benjamin C. Pierce. Types and programming languages.
MIT Press, Cambridge, MA, USA, 2002.

[22] Lutz Prechelt and Walter F. Tichy. A controlled experiment
to assess the benefits of procedure argument type checking.
IEEE Trans. Softw. Eng., 24(4):302–312, 1998.

[23] Romain Robbes and Michele Lanza. Improving code

completion with program history. Autom. Softw. Eng.,
17(2):181–212, 2010.

[24] Martin P. Robillard and Robert DeLine. A field study of API
learning obstacles. Empirical Software Engineering,
16(6):703–732, 2011.

[25] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid
Maalej. How do professional developers comprehend
software? In Proceedings of ICSE 2012, pages 255–265,
2012.

[26] Samuel Spiza and Stefan Hanenberg. Type names without
static type checking already improve the usability of APIs -
as long as the type names are correct: An empirical study. In
Proceedings of the Modularity 2014 (accepted for
publication), AOSD ’14, 2014.

[27] Marvin Steinberg and Stefan Hanenberg. What is the impact
of static type systems on debugging type errors and semantic
errors? An empirical study of differences in debugging time
using statically and dynamically typed languages -
unpublished.

[28] Andreas Stuchlik and Stefan Hanenberg. Static vs. dynamic
type systems: An empirical study about the relationship
between type casts and development time. In Proceedings of
the 7th symposium on Dynamic languages, DLS ’11, pages
97–106, Portland, Oregon, USA, 2011. ACM.

[29] Iyad Zayour and Hassan Hajjdiab. How much integrated
development environments (IDEs) improve productivity?
JSW, 8(10):2425–2431, 2013.

