
SPY: A Flexible Code Profiling Framework

Alexandre Bergel, Felipe Bañados, Romain Robbes David Röthlisberger
Pleiad Lab, DCC, University of Chile University of Bern

Santiago, Chile Switzerland

www.bergel.eu
www.dcc.uchile.cl/∼fbanados
www.dcc.uchile.cl/∼rrobbes

www.droethlisberger.ch

Abstract

Code profiling is an essential activity to increase software quality. It is commonly
employed in a wide variety of tasks, such as supporting program comprehension, de-
termining execution bottlenecks, and assessing code coverage by unit tests.

SPY is an innovative framework to easily build profilers and visualize profiling in-
formation. The profiling information is obtained by inserting dedicated code before or
after method execution. The gathered profiling information is structured in line with the
application structure in terms of packages, classes, and methods. SPY has been instan-
tiated on four occasions so far. We created profilers dedicated to test coverage, time
execution, type feedback, and profiling evolution across version. We also integrated
SPY in the Pharo IDE.

SPY has been implemented in the Pharo Smalltalk programming language and is
available under the MIT license.

Keywords: Smalltalk, profiling, visualization

1. Introduction

Profiling an application commonly refers to obtaining dynamic information from
a controlled program execution. Common usages of profiling techniques include test
coverage [1], time execution monitoring [2], type feedback [3, 4, 5], or program com-
prehension [6, 7]. The analysis of gathered runtime information provides important
hints on how to improve the program execution. Runtime information is usually pre-
sented as numerical measurements—such as number of method invocations or number
of objects created in a method—making them easily comparable from one program
execution to another.

Even though computing resources are abundant, execution optimization and anal-
ysis through code profiling remains an important software development activity. Pro-
gram profilers are crucial tools to identify execution bottlenecks. Most professional

Preprint submitted to Enter journal name June 25, 2011

http://www.bergel.eu
http://www.dcc.uchile.cl/~fbanados/
http://www.dcc.uchile.cl/~rrobbes/
http://www.droethlisberger.ch

programming environments include a code profiler. Pharo Smalltalk and Eclipse1, for
instance, both ship a profiler.

A number of code profilers tracking various kinds of dynamic information are nec-
essary to address the different facets of software quality [8]: method execution time,
dynamic method call graphs, test coverage, tracking nil values, to name a few. Provid-
ing a common platform for runtime analysis has not yet been part of a joint community
effort. Each code profiler tool traditionally comes with its own engineering effort to
both acquire runtime information and present this information to the user, resulting in
duplicated effort.

Most Smalltalk systems offer a flexible and advanced programming environment.
Over the years different Smalltalk communities have been able to propose tools such
as the system browser, the inspector or the debugger. These tools are the result of a
community effort to produce better software engineering techniques and methodolo-
gies. However, code profilers have little evolved over the years, becoming more an
outdated Smalltalk heritage than a spike for innovation—the necessary effort to im-
plement various profiling tools is not always invested. A survey of several Smalltalk
implementations—Squeak [9], Pharo [10], VisualWorks [11], and GemStone—reveals
that none shines for its execution profiling capabilities: indented textual output is the
norm (see Section 2).

This paper presents SPY, a framework to easily prototype a variety of code profilers
in Smalltalk. The dynamic information returned by a profiler is structured along the
static structure of the program, expressed in terms of packages2, classes and methods.
One principle of SPY is structural correspondence: the structure of meta-level facilities
corresponds to the structure of the language manipulated. Once gathered, the dynamic
information can easily be graphically rendered using the Mondrian visualization en-
gine [12]3.

SPY has been used to implement a number of code profilers. The SPY distribution
offers a type feedback mechanism, an execution profiler [13], an evolutionary execution
profiler, and a test coverage profiler. Creating a new profiler comes at a very light cost
as SPY relieves the programmer from performing low-level monitoring.

To ease the description of the framework, SPY is presented in a tutorial like fashion:
We document how we instantiated the framework in order to build a code coverage tool.
The main contributions of this paper are summarized as follows:

• The presentation of a flexible and general code profiling framework.

• The construction of an expressive test coverage tool as an example of the frame-
work’s usage.

• The validation of the framework’s flexibility, via the description of three addi-
tional framework instantiations, and of its integration with Mondrian and Smalltalk
code browsers.

1http://www.eclipse.org
2In Pharo, the language used for the experiment, a package is simply a group of classes.
3http://www.moosetechnology.org/tools/mondrian

2

http://www.eclipse.org
http://www.moosetechnology.org/tools/mondrian

The paper is structured as follows: first, a brief survey of Smalltalk profilers is
provided (Section 2). The description of SPY (Section 3) begins with an enumeration of
the different composing elements (Section 3.1) followed by an example (Section 3.2 –
Section 3.7). Implementation is then presented (Section 4). The practical applicability
of SPY is then demonstrated by three additional applications and an IDE integration
(Section 5) before concluding (Section 6).

2. Current Profiler Implementations

This section surveys the profiling capabilities of the Smalltalk dialects and imple-
mentations commonly available and briefly looks at profiling facilities available for
other languages such as Java.

Squeak. Profiling in Squeak4 is achieved through the MessageTally class (Message-
Tally>> spyOn: aBlock). As most profilers, MessageTally employs a sampling tech-
nique, which means that a high-priority process regularly inspects the call stack of the
process in which aBlock is evaluated. The time interval commonly employed is the
millisecond, which is rather coarse.

MessageTally shows various profiling information. The method call graph trig-
gered by the evaluation of the provided block is shown as a hierarchy which indicates
how much time was spent, and where. Consider the expression MessageTally spyOn:
[MOViewRendererTest buildSuite run]. It simply profiles the execution of the tests
contained in the class MOViewRendererTest. The call tree is textually displayed as:

75.1% {10257ms} TestSuite>> run:
75.1% {10257ms} MOViewRendererTest(TestCase)>> run:

75.1% {10257ms} TestResult>> runCase:
75.1% {10257ms} MOViewRendererTest(TestCase)>> runCase
...

This information is complemented by a list of leaf methods and memory statistics.

Pharo. Pharo is a fork of Squeak and its profiling capabilities are very close to those
of Squeak. TimeProfiler is a graphical facade for MessageTally. It uses an expandable
tree widget to comfortably show profiling information (Figure 1).

Gemstone. The class ProfMonitor allows developers to sample the methods that are
executed in a given block of code and to estimate the percentage of total execution
time represented by each method5. It provides essentially the same ability as Mes-
sageTally in Squeak. One minor variation is offered: methods can be filtered from a
report according to the number of times they were executed (ProfMonitor>> monitor-
Block:downTo:interval:).

4http://wiki.squeak.org/squeak/4210
5Page 301 in http://www.gemstone.com/docs/GemStoneS/GemStone64Bit/2.4.3/

GS64-ProgGuide-2.4.pdf

3

http://wiki.squeak.org/squeak/4210
http://www.gemstone. com/docs/GemStoneS/GemStone64Bit/2.4.3/GS64-ProgGuide-2.4.pdf
http://www.gemstone. com/docs/GemStoneS/GemStone64Bit/2.4.3/GS64-ProgGuide-2.4.pdf

Figure 1: TimeProfiler in Pharo

VisualWorks. A profiler window offers a list of code templates to easily profile a
Smalltalk block: profiling results may be directly displayed or stored in a file. Statistics
may also be included.

VisualWorks uses sampling profiling; repeating the code to be profiled, with times-
Repeat: for example, increases the accuracy of the sampling. An additional mechanism
to control accuracy is to graphically adjust the sampling size.

The profiling information obtained in VisualWorks is very similar to Message-
Tally’s. It is textually rendered, indentations indicate invocations in a call graph, and
execution times are provided in percentage and milliseconds. Methods may be filtered
out based on their computation time. Similarly to TimeProfiler, branches of the call tree
may be contracted and expanded.

Profiling in the Java World. After studying the profiling techniques of several Smalltalk
dialects, we briefly discuss profiling and test coverage approaches applied in Java.

JProfiler 6 is an effective runtime execution profiler tool that, besides measuring
method execution time, also offers numerous features including snapshot comparisons,
saving a profiling trace in an XML file and estimating method call graphs. Beyond
post-mortem analyses, it also allows live profiling, displaying profiling information as
the program runs. It also offers memory profiling in addition to runtime profiling, and
thread and monitor profiling. JProfiler can use either sampling or instrumentation to
collect the data it needs.

JFluid [14] exploits dynamic bytecode instrumentation and code hotswapping to
collect dynamic information. The JFluid technology is integrated into the NetBeans
Profiler7. JFluid only instruments and profiles those methods that are actually invoked
by methods the user selected to profile; the rest of the code runs unchanged at full
speed. To track memory allocations, JFluid does statistical sampling. Other sampling-

6http://www.ej-technologies.com/products/jprofiler/screenshots.html
7http://profiler.netbeans.org

4

http://www.ej-technologies.com/products/jprofiler/screenshots.html
http://profiler.netbeans.org

based profiling techniques, which are often used for feedback-directed optimizations
in dynamic compilers, are proposed by Arnold et al. [15] or Whaley [16]. JFluid is
a profiler focused on identifying execution bottleneck. The amount of information
obtained by JFluid is fixed and cannot be extended.

Emma8 is a free test coverage tool for Java. Emma can instrument classes at runtime
using a dedicated classloader. Emma acquires test coverage information on single code
lines, even the partial execution of a line can be determined. Emma presents the results
of a coverage analysis in HTML or XML reports. The reports contains information
on whether each line is covered or not, and aggregate that information to the level of
blocks, methods, and classes.

Cobertura 9 is a tool dedicated to measure test coverage. It uses instrumentation to
gather data. Similarly to Emma, test coverage information may be stored in an XML
file which contains method call graph analysis and coverage. It can also be output in in
HTML files in an organization similar to the well-known Javadoc tool, showing cover-
age information up to the line and branch level. Both Emma and Cobertura aggregate
information at the level of classes and methods in their reports; a source code corre-
spondence mechanism such as the one offered by SPY would certainly streamline data
collection and aggregation.

Conclusion. The Smalltalk code profilers available are very similar: all provide a
textual list of methods annotated with their corresponding execution time share; some
feature more advanced UI capabilities, but none stray from the familiar “tree of method
with time share” data presentation. None of these profilers is easily extensible to obtain
a different profiling such as test coverage. The SPY framework described in the follow-
ing addresses particularly this issue. Code profilers available for other languages such
as Java are usually more advanced—thanks to the greater manpower. Some feature
more advanced data presentations, such as JProfiler’s code graph, or the code coverage
reports of Emma and Covertura that output annotated source code and aggregate the
statistics at the method and class levels. However, none are as flexible and generally
useable for our needs as we wish: they are rather limited to specific scenarios such
as machine code profiling or test coverage analysis and often rely on dedicated virtual
machines and/or specific source code instrumentation.

Hence, in all the cases we surveyed, capturing new kind of data—or devising novel
presentations of said data—is not in the realm of the natural extensions the frameworks
can handle; in contrast, SPY is explicitely designed to handle these specific issues.

3. The SPY Framework

3.1. SPY in a nutshell
The core classes of SPY are depicted in Figure 2 and explained next. The Profiler

class contains the features necessary for obtaining runtime information by profiling the
execution of a block of Smalltalk code. Profiler offers a number of public class methods

8http://emma.sourceforge.net/
9http://cobertura.sourceforge.net

5

http://emma.sourceforge.net/
http://cobertura.sourceforge.net

spyClassForClass
packageName
classes

PackageSpy spyClassForMethod
package
superclass
metaclass
methods

ClassSpy

afterRun:with: in:
beforeRun:with:in:
run:with:in:

methodName
class
originalMethod
outgoingCalls
incomingCalls
timeExecution

MethodSpy

profile: aBlock
runTests: tests
spyClassForPackage
allMethods
registryName

packages
currentTest

Profiler

Core

TCMethod

beforeRun:with:in:
numberOfDifferentReceivers
nbOfExecutions
isCovered
initialize
viewBasicOn:

numberOfExectutions
receiverTablespyClassForPackage

view
ratioExecutedMethods
ratioCoveredClasses
viewBasicOn:
registryName

TestCoverage

TestCoverage

spyClassForClass
TCPackage

spyClassForMethod
TCClass

Figure 2: Structure of SPY

to interface with the profiling. The profile: aBlock inPackagesNamed: packageNames
method accepts as first parameter a block and as second parameter a collection of pack-
age names. The effect of calling this method is to (i) instrument the specified packages;
(ii) to execute the provided block; (iii) to uninstrument the targeted packages; and (iv)
to return the collected data in the form of an instance of the Profiler class which con-
tains instances of the classes described below, essentially mirroring the structure of the
program.

Profiles are globally accessible by other development tools. The method registry-
Name has to be be overridden to return a symbol name. Other IDE tools can then easily
access the profiling data and analyze or display it as they see fit.

PackageSpy contains the profiling data for a package. Each instance has a name
and contains a set of class spies, that is, for each class in the corresponding package, a
class spy is created.

ClassSpy describes a Smalltalk class. Its attributes are: its name, a superclass spy,
a metaclass spy, and a set of method spies. For each method in the corresponding class,
the class spy instance creates a method spy.

MethodSpy wraps a plain Pharo method and accumulates information during the
program execution10. It has a selector name and belongs to a class spy. MethodSpy is
central to SPY, as it contains the hooks used to collect the actual runtime information.
Three methods are provided for that purpose: beforeRun:with:in: and afterRun:with:in:
are executed before and after the corresponding Smalltalk method. These methods
are by default empty; they should be overridden in subclasses of MethodSpy to col-
lect relevant dynamic information, as we will see in the following subsections. The
run:with:in method simply calls beforeRun:with:in:, followed by the execution of the

10MethodSpy is implemented as a method wrapper [17].

6

represented Smalltalk method, and ultimately calls afterRun:with:in:. The parameters
passed to these methods are: the method name (as a symbol), the list of arguments, and
the object that receives the intercepted message.

The SPY framework is instantiated by creating subclasses of PackageSpy, ClassSpy,
MethodSpy and Profiler, all specialized to gather the precise runtime information that
is needed for a particular system and task.

3.2. Instantiating SPY

Test coverage. We motivate and demonstrate the usage of the SPY framework by
building a test coverage code analyzer, which serves as a running example with practi-
cal uses. Identifying the coverage of the unit tests of an application may be considered
as a code profiling activity. A simple coverage profiling tool reveals the number of cov-
ered methods and classes; this is what traditional test coverage tools produce as output
(e.g., Cobertura).

We go one step further with our test coverage tool running example. In addition
to raw metrics such as percentage of covered methods and classes, we retrieve and
correlate a variety of dynamic and static metrics:

• number of method executions – how many times a particular method has been
executed.

• number of different object receivers – on how many different objects a particular
method has been executed.

• number of lines of code – how complex the method is. We use the method code
source length as a simple proxy for complexity.

The intuition behind our test coverage tool is to indicate what are the “complex”
parts of a system that are “lightly” tested, and what are the “apparently simple” compo-
nents that are “extensively” tested. There is clearly no magic metric that will precisely
identify such a complex or simple software component. However, correlating a com-
plexity metric (i.e., number of lines of code in our case) with how much a component
has been tested (i.e., number of executions and number of different receivers) provides
a good indication about the quality of the test coverage.

Implementing coverage in SPY. The very first step to build our test coverage tool is
to subclass the relevant classes. TestCoverage, TCPackage, TCClass, and TCMethod,
respectively, subclass Profiler, PackageSpy, ClassSpy and MethodSpy.

Profiler subclass: #TestCoverage

PackageSpy subclass: #TCPackage

ClassSpy subclass: #TCClass

MethodSpy subclass: #TCMethod
instanceVariableNames: ’numberOfExecutions receiverTable’

7

TCMethod defines two variables, numberOfExecutions and receiverTable. The for-
mer variable is initialized as 0 and is incremented for each method invocation. The
latter keeps track of the number of receiver objects on which the method has been
executed.

The relation between the classes has to be set with the following class-side methods:

TestCoverage class >> spyClassForPackage
ˆTCPackage

TCPackage class >> spyClassForClass
ˆTCClass

ClassSpy class >> spyClassForMethod
ˆTCMethod

Recording the hash value of each receiver object can be easily implemented to
provide a good approximation of the number of receivers in most cases.

TCMethod >> initialize
super initialize.
numberOfExecutions := 0.
receiverTable := BoundedIdentitySet maxSize: 100

Given the resources we can spend when profiling programs, we have not been able
to devise a way to efficiently and easily keep track of all receiver objects of a method
call. Using an ordered collection in which we insert the object receiver at each invo-
cation is not practically exploitable. There is a number of reasons for this. As soon
as a method is called a large amount of times—say a million—then an equal amount
of elements would be added to the collection. Allowing the ordered collection to grow
up to a million elements significantly slows down the overall program execution, as
the collection needs to grow frequently. In addition to this, identifying the number of
different elements in a list with one million elements is also slow; moreover, keeping
such a large amount of objects incurs a significant memory cost, severely hampering
the scalability of the approach. The same schema applies for all the recursively called
methods. Alternatively we could also store the elements in a set, but in that case the
element addition is costly; further, the sets would still be unreasonably large.

We devise an alternative, as we are not interested in the exact number of receivers,
but its order of magnitude. The class BoundedIdentitySet is a subclass of Set in which
the number of different values is no greater than a limit. In our case, no more than 100
different elements may be inserted in a bounded set. This value is actually arbitrary
and depends on how the related metric will be used: since we only want to differentiate
between methods which are called on few and a larger number of receivers, we chose
a threshold of 100 unique objects. We inserted the bounded set facility to minimize
the time taken by the profiler to gather information. This requires for the developers to
assess up to which upper bounds the gathered data remains relevant.

The method beforeRun:with:in: is executed before the original method. We simply
increment the execution counter, and record the receiver.

TCMethod>> beforeRun: methodSelector with: args in: receiver
numberOfExecutions := numberOfExecutions + 1.
receiverTable add: receiver.

8

A number of utility methods are then necessary:

TCMethod>> isCovered
ˆ numberOfExecutions > 0

TCMethod>> numberOfExecutions
ˆ numberOfExecutions

TCMethod>> numberOfDifferentReceivers
ˆ (receiverTable select: #notNil) size

The ratio of executed methods and covered classes are defined on TestCoverage:

TestCoverage>> ratioExecutedMethods
ˆ ((self allMethods select: #isCovered) size /

self allMethods size) asFloat

TestCoverage>> ratioCoveredClasses
ˆ ((self allClasses

select: [:cls | cls methods anySatisfy: #isCovered]) size /
self allClasses size) asFloat

The method allClasses is defined on Profiler, the superclass of TestCoverage; it
simply returns the list of class spies instantiated during the profiling.

3.3. Running Spy
Our TestCoverage tool can be run using the profile:inPackagesNamed: class method.

In this example, we run it on the test cases of the Mondrian visualization framework.
This code snippet creates and installs, for each affected package, class, and methods,
one of the respective package, class and method spies, according to the principle of
structural correspondence (i.e., we maintain a 1-to-1 relationship between each entity
and its spy).

coverage := TestCoverage
profile: [MOViewRendererTest buildSuite run]
inPackagesMatching: ’Mondrian-*’

Executing the code above returns an instance of TestCoverage.

3.4. Visualizing Runtime Information
The Mondrian framework [12] is integrated with SPY, in order to easily produce

visualizations and explore novel ways to present the large amount of profiling data pro-
duced. Mondrian is a visualization engine that offers a rich domain specific language
to define graph-based rendering. Each element of a graph (i.e., node and edge) has a
shape that defines its visual aspect. Nodes may be ordered using a layout. Consider the
method:

TestCoverage>> visualizeOn: view
view nodes: self allClasses forEach: [:each |

view shape rectangle
height: #numberOfLinesOfCode;

9

receivers

number of
lines of code

executions
red border color = not executed
black border color = executed

Outer boxes = classes; Inner boxes = methods

Figure 3: Test coverage visualization

10

width: [:m | (m numberOfDifferentReceivers + 1) log * 10];
linearFillColor:

[:m | ((m numberOfExecutions + 1) log * 10) asInteger]
within: self allMethods;
borderColor:

[:m | m isCovered
ifTrue: [Color black] ifFalse: [Color red]].

view interaction action: #inspect.
view nodes: (each methods

sortedAs: #numberOfLinesOfCode).
view gridLayout gapSize: 2.

].
view edgesFrom: #superclass.
view treeLayout

The visualization is rendered by evaluating:

coverage visualize

Characteristics of the visualization. An excerpt of the visualization obtained is de-
picted in Figure 3. The displayed class hierarchy represents Mondrian shapes. The root
is MOShape. The visualization has the following characteristics:

• Outer boxes are classes.

• Edges between classes represent class inheritance relationships. A superclass
appears above and a subclass below a particular class node. A tree layout is used
to order classes which is adequate since Smalltalk uses single inheritance.

• Inner boxes are methods. Methods are sorted according to their source code
length.

• White boxes with a red border are methods that have not been executed when
running the coverage.

• The height of a method is the number of lines of code.

• The width of a method is the number of different receivers. We use a logarithmic
scale to accommodate the variability of this metric.

• The color of a method is the number of method executions. We use a logarithmic
scale also for this metric.

Visual Patterns. From what is depicted in Figure 3, a number of patterns can be
visually identified in order to assist the programmer during his interpretation of the
visualization of test coverage. We identified the following 5 recurring patterns:

• Some classes contain red methods only. This means that the class is absent from
all the execution scenarios specified in the tests.

• Red methods that are tall and thin are long, untested methods. They are excellent
targets for new test additions.

11

• Gray methods (few executions) and narrow methods (few receivers) are probably
good candidates for further testing.

• Dark and large methods are extensively tested.

• Horizontally flat methods are very extensively tested, since they contain just a
few lines of code and are still executed many times.

As it is the case for most software visualizations, the goal of our test coverage
visualization is not to precisely locate software deficiency. Rather, it assists the pro-
grammer to identify candidates for software improvement. In this case, the visualiza-
tion pinpoints red methods, and thin, gray methods, as likely candidates to consider
in order to improve the coverage of the code by tests. These methods can be further
inspected by the programmer, by increasing the level of details displayed.

3.5. Call graph and execution time
Additional information is needed, in the form of call graph and time data, in order

for programmers to make informed choices to increase the coverage. Profiler defines
an instance method getTimeAndCallGraph which simply returns false. By overriding
this method in a subclass to make it return true, the execution time (in milliseconds and
percentage) and the call graph for each method is computed during a second run of the
profiled code.

TestCoverage>> getTimeAndCallGraph
”Each instance of TCMethod contains information about
execution time and outgoing and incoming calls”

ˆ true

The call graph and execution time is estimated by regularly sampling the method
call stack: the executed process is interrupted every millisecond and counters associ-
ated to the methods that are currently on the stack are incremented. This gives the
proportion of time spent in each method, from which the profiler estimates the execu-
tion time for each method. The ordering of the method call frames is used to recreate
calling context [18], thus determining by which methods a particular method is called
by. This is used by Spy to identifying the incoming and outgoing method for each
method. On average, computing the execution time and incoming calls costs between
2% and 5% of the total execution time.

Getting the information necessary to build call graphs and compute the execution
time is difficult when other runtime information is acquired, as collecting too much
information slows down the program and distorts the time information. Because of
this, TCMethod collects its information on a different execution of the base program.
As a consequence, the code provided to profile:inPackage: must be executable twice.
This may sound restrictive; in practice, we have not experienced any serious obstacles
stemming from this limitation.

By determining the method call graph from these incoming and outgoing calls, all
packages involved during the block evaluation are easily identified. The profiling can
now be realized using the profile: method. There is no need to provide a package name
to extract the call graph of the execution.

12

coverage := TestCoverage profile: [MOViewRendererTest buildSuite run]

Now that the method call graph is computed, we can add an entry point to a new
visualization, so that the additional information can be shown to the programmer on-
demand. The script defined in TestCoverage>> visualizeOn: may be refined with a new
menu item for visualizing the coverage at the method level:

...
view interaction action: #inspect;

item: ’view call graph’ action: #visualize.
view nodes: (each methods

sortedAs: #numberOfLinesOfCode).
...

For a user-selected method, the following script renders the method call graph,
using the outgoingCalls method of MethodSpy:

TCMethod>> visualizeOn: view
| methods |
methods := self withAllOutgoingCalls asSet.
view shape rectangle

height: #numberOfLinesOfCode;
width: [:m | (m numberOfDifferentReceivers + 1) log * 10];
linearFillColor: [:m | ((m numberOfExecutions + 1) log * 10)

asInteger]
within: self package allMethods.

view nodes: methods.
view shape arrowedLine width: 2.
view edges: methods from: #yourself toAll: #outgoingCalls.
view treeLayout

The script above (Figure 4) shapes a method using its number of lines of code
(height), the number of different receivers the method has been invoked on (width)
and the number of different executions (color intensity). A logarithm scale softens the
disparity for these metrics. Edges represent outgoing calls.

The visualization we provide may be enriched with information about the method
execution time. Overriding the printOn: method will change the text that is displayed
by Mondrian when hovering the mouse over a node.

TCMethod>> printOn: stream
super printOn: stream.
stream nextPutAll: self executionTime printString, ’ ms’

By right-clicking on a method node, a menu item renders the call graph for the
method. Methods are ordered from top (callers) to bottom (callees). The arrowed
edges represent the control flow between methods.

3.6. Structure of the profiling

One of the key feature of SPY is the correspondence between the model classes
in SPY and the meta-model of Smalltalk. Each code entity (Method, Class, Package)

13

receivers

number of
lines of code

executions

Boxes = methods

invocation

Figure 4: Call graph of the method MOViewRenderer>> testTranslation

14

is monitored by exactly one entity (MethodSpy, ClassSpy, PackageSpy), which aggre-
gates all the information required at that level. In contrast, most profilers gather the
profiling information in the form of a run-time trace, that needs a consequent further
processing to extract the higher-level information at the level of classes and packages.
This feature is even useful at the level of methods, as some of the metrics that SPY
gathers, such as the number of receivers a method is invoked on, need to be agregated
accross all the executions of the methods. Adopting structural correspondence con-
siderably simplifies the processing of the data as it is not spread out over an entire
execution trace.

Aggregating information at the level of classes and packages also involves data
processing at the class and package levels in conventional trace-based profilers. This
is not the case in SPY which supports a natural aggregation of information for classes
and packages. As an example, coverage information for classes and packages can be
easily deduced from the information found at the method level, as demonstrated in the
following code snippet:

TCClass>> isCovered
ˆself allMethods anySatisfy: #isCovered

TCClass>> allCoveredMethods
ˆself allMethods select: #isCovered

TCPackage>> allCoveredClasses
ˆself classes select: #isCovered

In case that the scope has to be reduced at runtime, a conditional may be inserted in
the beforeRun:with:in: method of the coverage profiler; this is often necessary to reduce
the amount of collected information. In case a filtering is only needed to display the
collected information, SPY’s structural correspondence allows us to simply filter out the
class/package/method spies that we do not wish to be displayed, instead of traversing
a potentially large execution trace. Hence structural correspondence is useful both
for aggregating the information, and to filter it—in addition to being a natural and
straightforward choice for the instrumentation part.

3.7. Summary

This section presented a simple application of SPY. It described the essential steps
to create a code profiler: (i) recovering the required profiling information by instan-
tiating the framework; (ii) visualizing this information with Mondrian; (iii) gathering
further execution and call graph information; and (iv) visualizing this additional infor-
mation.

Effective profiling visualizations may be produced using Mondrian. The fact that
the profiling information follows the code structure leads to comprehensive and famil-
iar visualizations that are easy to implement as the profiling information’s representa-
tion matches the one often used by Mondrian visualizations.

Even though we use test coverage as an illustrative scenario for SPY, the visualiza-
tion of the coverage presents a number of innovations. First, it takes a different stance

15

from other code profilers regarding the coverage assessment criterion. Most test cov-
erage tools, including Cobertura11, JCoverage12, Parasoft Jtest13, consider structural
elements in a binary fashion, either an element (method or statement) is executed or
not by the test. Our coverage visualization correlates three metrics, namely number
of different receivers, number of executions and number of lines of code. This unique
combination gives a new perspective on whether an element is properly covered or not.
Hapao14 is a full-fledged test coverage tool that is based on the illustrative example used
in this paper. Hapao has been used to increase the coverage of several medium-sized
and large applications.

4. Implementation

Code instrumentation. SPY gathers dynamic information by wrapping compiled meth-
ods, which accumulate information at execution time. This first implementation of Spy
was based on a technique called “object as compiled method” [19]. It uses a feature of
the Pharo virtual machine to reify messages when a plain object is found instead of a
compiled method in a method dictionary. Although easy to implement, this technique
is rather slow with an overhead of approximatively 500% on macro benchmarks.

The second approach was inspired by the original version of method wrapper [17].
The compiled method to instrument is replaced by a new compiled method that reifies
the message being sent and invokes the associated instance of MethodSpy. This new
compiled method is actually the copy of a template compiled method. In Smalltalk,
a method can take up to 16 arguments. We therefore have 16 templates to cover all
the methods that can be possibility instrumented. Consider the template for a 2-args
method:

with2arg: v1 arg: v2
ˆ#metaObject run: #selector with: {v1.v2} in: self

This method is not meant to be executed as it is: the method run:with:in: is not
understood by the object #metaObject. For each method to instrument, a template is
copied and adjusted with method attributes.

To illustrate the instrumentation, consider a method, let’s say MOAnnouncer item:action:.
Instrumenting item:action: is a four-steps process:

1. copy the template with2arg:arg: given above. This copy will replace the method
to be instrumented.

2. adjust the copy the literals #metaObject by the corresponding MethodSpy in-
stance and #selector by the selector #item:action:. The effect is to send the mes-
sage run:with:in: to the MethodSpy instance with the selector #item:action: as
second parameter. The template method is transformed into:

11http://cobertura.sourceforge.net
12http://www.jcoverage.com
13http://www.parasoft.com/jsp/smallbusiness/tool_description.jsp?

product=Jtest&
14http://hapao.dcc.uchile.cl/

16

http://cobertura.sourceforge.net
http://www.jcoverage.com
http://www.parasoft.com/jsp/smallbusiness/tool_description.jsp?product=Jtest&
http://www.parasoft.com/jsp/smallbusiness/tool_description.jsp?product=Jtest&
http://hapao.dcc.uchile.cl/

item: v1 action: v2
ˆmethodSpy run: #item:action: with: {v1.v2} in: self

3. putting the adjusted template copy into the method dictionary of MOAnnouncer
4. adjust the copied method’s literals corresponding to the super class reference and

the pragmas. Pragmas are a meta-information associated to a compiled method
object.

The overhead incurred by solely wrapping methods is about 25%, which is reason-
able in most of the situations we have to deal with.

Spy Requirement. Spy does not rely on Smalltalk specificities. The instrumentation
realized by Spy relies on the reflective capabilities of Pharo. The key point of the
instrumentation is to associate an instance of the class MethodSpy to each method of the
profiled application. The spy accumulate runtime information and contains a reference
to a spy for a class. In principle, any bytecode instrumentation framework or aspect-
oriented language extension is able to realize this instrumentation.

5. Validation

In this section, we present a validation of SPY by illustrating how we built three
additional profiling tools on top of SPY. Since our framework is built with flexibility in
mind, the best way to validate our claim is to exercise said flexibility by instantiating
the framework in several instances. Additionally, we demonstrate the integration of
profiling information into the Pharo IDE to highlight the interoperability of the SPY
framework with existing tools and frameworks of Pharo Smalltalk.

5.1. Extracting types from unit tests
As a first application of SPY, we proposed a mechanism for extracting type infor-

mation from the execution of unit tests15. For a given program written in Smalltalk,
we can deduce the type information from executing the associated unit tests, as pro-
posed by other researchers [20]. Comparing the deduced nominal types and the list
of values effectively provided as argument helps identifying anomalies and deficien-
cies. As an illustration, a method shape: takes instances of MOFilledShape and MOLa-
belShape, both subclasses of MOShape. MOLineShape is a sibling of MOLabelShape
and MOFilledShape. The nominal type of the argument of shape: is MOShape. How-
ever, according to the definition of shape:, it does not make sense to provide instances
of MOLineShape. This therefore suggests that a class MONodeShape was missing
from the shape hierarchy.

The idea of this profiler is summarized as follows: (i) we instrument an application
to record the runtime types of the arguments and return values of methods; (ii) we run
the unit tests associated with the application; and (iii) we deduce the type information
from what has been collected. The idea is to record the type of each message argument

15http://www.moosetechnology.org/tools/Spy/Keri

17

http://www.moosetechnology.org/tools/Spy/Keri

Figure 5: Integration of profiling information into the Pharo IDE

and return value to later deduce the most specialized types for each argument and return
type. We refer to the most specialized type as the most direct supertype that is common
for a set of classes. Method signatures of the base program are then determined by the
values provided to and returned by method calls while the tests are being executed.

As a concrete use case, we exploit the extracted type information to find software
faults. Type information combined with test coverage helps developers identifying
methods that were not invoked with all possible type parameters. By covering these
missing cases, we identified and fixed four anomalies in Mondrian.

5.2. Time profiling blueprints

As a second application, we proposed a time execution profiler16. Time profiling
blueprints are graphical representations meant to help programmers (i) assess the pro-
gram execution time distribution and (ii) identify and fix bottlenecks in a given program
execution. The essence of profiling blueprints is to enable a better comparison of el-
ements constituting the program structure and behavior. To render information, these
blueprints use a graph metaphor, composed of nodes and edges.

The size of a node gives hints about its importance in the execution. When nodes
represent methods, a large node means that the program execution spends “a lot of
time” in this method. The expression “a lot of time” is then quantified by visually
comparing the height and/or the width of the node against other nodes.

Color is used to either transmit a boolean property (e.g., a gray node represents a
method that always returns the same value) or a metric (e.g., a color gradient is mapped

16http://www.moosetechnology.org/tools/Spy/Kai

18

http://www.moosetechnology.org/tools/Spy/Kai

to the number of times a method has been invoked).
We propose two blueprints that help identify opportunities for code optimization:

the structural profiling blueprint visualizes the distribution of the CPU effort along the
program structure and the behavioral profiling blueprint along the method call graph.
These blueprints provide hints to programmers to refactor their program along the fol-
lowing two principles: (i) make often-used methods faster and (ii) call slow methods
less often. The metrics we adopted in this paper help developers finding methods that
are either unlikely to perform a side effect or always return the same result, good can-
didates for simple caching-based optimizations.

5.3. Profiling differentiation
The use of profiling information might be taken a step further by profiling different

versions of an application. Spotting differences between them provides insights on
the causes of slowdowns, and what should be improved next. Comparing, e.g., time
profiling throughout a package’s history allows one to confirm an optimization trial as
an improvement and to find the potential bottlenecks that remain. The package Hip
helps us in this task. Hip allows one to build a collection of history profiles, following a
schema similar to the Hismo model [21]. Each method, class, and package profile can
access the profiles of its previous and next version. Queries about metrics may be then
formulated (e.g., has a metric increased?) as well as “differential measurements”17

(e.g., how much has a metric increased?).
Hip provides facilities to automatically profile a code snippet throughout a set of

package versions available from a Monticello18 repository by loading each version,
profiling it, and adding the gathered profiling information to a Hip version collection
structure.

Hip opens the door to a wide range of options to visualize the evolution of a pro-
gram’s runtime behavior. As an example, we propose a semaphore-like view that helps
to identify bottlenecks. For a particular profiled object and version, Hip assigns one of
five colors. In the case of a metric such as the execution time—where lower is better—
source artifacts with a lower metric value compared to the previous version are colored
green; those with a greater value red; unchanged artifacts are colored in white; removed
ones black; and new ones yellow. The emphasis is on red and green artifacts for ob-
vious reasons; yellow artifacts are also interesting, as from that version onwards, the
developers should put focus on these newly created artifacts, and on how they evolve
from now on.

5.4. IDE integration
The primary tool developers use to develop and maintain software systems is the

integrated development environment (IDE). For this reason we integrate profiling in-
formation gathered by SPY into Pharo’s IDE which is implemented using the Omni-
Browser framework [22]. As soon as a system’s test suite has been executed with SPY,
the IDE can access the test coverage information using the following statement:

17This term is commonly employed in electronic and voltage measurement. We consider it to be descrip-
tive in our context.

18Monticello is the version control mechanism commonly employed in Pharo.

19

Profiler profilerAt: #testCoverage

The Pharo IDE exploits the profiling information resulting from the execution of
tests to highlight in the source code perspectives methods and classes that have been
covered by the system’s test suite. The same color scheme as introduced in Section
3.4 is used to highlight the source artifacts. A non-executed method is colored red to
raise the awareness for untested code while methods colored dark (e.g., in a gradient
from gray to black) have been executed often and are hence tested extensively. Gray
methods—that is, methods that have not been executed often by the test suite—are good
candidates to look at in detail in order to reveal whether they could benefit from more
extensive testing. Visualizing profiling information directly in the IDE hence helps
developers to easily locate methods that should be better covered with tests to improve
a system’s test coverage. Figure 5 illustrates how profiling information is visualized in
the Pharo IDE.

5.5. Flexibility of SPY

In addition to our running example on code coverage, we described three instantia-
tions of Spy in this section: extracting types, measuring execution time, and differenc-
ing profiling. All in all, SPY was successfully used in four occasions with very distinct
goals, and integrated with other frameworks that easily made use of the information it
produced.

These three instantiations —code coverage, type extraction, and execution time—
demonstrate the flexibility of SPY for collecting a wide array of information, from
binary coverage metrics up to numeric metrics such as execution time, number of ex-
ecutions, or number of receivers, which are agregated upon several executions of the
method; these metrics can in turn be seamlessly aggregated to produce class or pack-
age metrics. Our type extraction case studies shows that an entirely distinct class of
information—run-time types—was also collected using the same, simple, instrumen-
tation mechanism.

Our last extension—profiling differentiation—highlights SPY’s flexibility in an-
other dimension, namely its ability to compare and cross-reference information col-
lected in distinct runs of the application. SPY produces profiles that are simply struc-
tured, following the well-known Package/Class/Method division—thanks to structural
correspondence—, and hence easily processed by SPY itself and by third-parties.

In addition to profile differentiation, profiles are easily accessible by independent
tools beyond the framework itself. This allowed us to easily integrate SPY with Mon-
drian, to the point that most of SPY’s graphical user interface and visualization layer is
now composed of Mondrian scripts. As we have also shown below, this ease of access
by independent tools is not anecdoctal, since we were able to integrate SPY’s coverage
information with Pharo’s system browser.

To conclude, based on our experience instantiating SPY four times, and interfacing
it with two distinct frameworks, we believe we have accumulated evidence that SPY is
flexible both in terms of the kind of information it can collect—to devise novel profiling
applications—, and in terms of how that information can be accessed—to be used by
third-parties in unforeseen situations.

20

6. Conclusion

SPY is a profiling framework for the Pharo Smalltalk environment designed to eas-
ily build application profilers. Profiling output is structured along the static structure of
the analyzed program composed of packages, classes and methods. The core of SPY
is composed of four classes, Profiler, PackageSpy, ClassSpy and MethodSpy. These
classes represent the profiler itself and profiling information for packages, classes and
methods.

Once the data about a program’s execution is gathered by SPY, one can explore
the data by visualizing it using a dedicated visualization framework such as Mondrian.
Mondrian offers a domain-specific language to define visualization. With all the ap-
plications of SPY we have realized, we have never felt the need to extend Mondrian’s
language to render profiling information. The core classes of SPY contains many navi-
gation and information gathering methods that are intensively used in Mondrian scripts,
which are often a few lines long.

As far as we know, SPY is the first Smalltalk framework that allows to easily collect
information and display visual representations of program executions. However, SPY is
not cost free. Mondrian tests are 3 times slower when the coverage is computed. Future
effort of SPY will be dedicated to moving some of the primitives of SPY in the virtual
machine (e.g., counting method execution, number of different receivers). Another
restriction is about discriminating the information introduced by the framework itself
from the one produced by the code to profile. No distinction is made so far. Even
though this has not been a serious problem so far, this may constitute an obstacle when
one wants to profile a profiler. Promising approaches have been proposed to tackle this
very problem [23]. We plan to address this issue as a further future work.

We have shown by a simple example how one can instantiate SPY for a given prob-
lem, such as building a code coverage tool. Furthermore, we have demonstrated the fle-
xibility of SPY by presenting three additional applications we built on top of it, namely
a type extraction profiler, a time profiling visualization tool, and an evolutionary time
profiling visualization tool. Finally, we demonstrated that the information gathered via
SPY is useful beyond visualization, as we integrated our code coverage profiler with
the regular IDE, allowing a more direct interaction between the source code and its
dynamic aspects.

Acknowledgment. We gracefully thank Dave Ungar for his comments and feedback of
our paper.

[1] M. Marré, A. Bertolino, Reducing and estimating the cost of test coverage crite-
ria, in: ICSE ’96: Proceedings of the 18th international conference on Software
engineering, IEEE Computer Society, Washington, DC, USA, 1996, pp. 486–494.

[2] W. Binder, Portable and accurate sampling profiling for java, Softw. Pract. Exper.
36 (6) (2006) 615–650. doi:10.1002/spe.v36:6.

[3] O. Agesen, U. Holzle, Type feedback vs. concrete type inference: A comparison
of optimization techniques for object-oriented languages, Tech. rep., Department
of Computer Science, University of California, Santa Barbara, Santa Barbara,
CA, USA (1995).

21

http://dx.doi.org/10.1002/spe.v36:6

[4] M. Haupt, R. Hirschfeld, M. Denker, Type feedback for bytecode interpreters,
in: Proceedings of the Second Workshop on Implementation, Compila-
tion, Optimization of Object-Oriented Languages, Programs and Systems
(ICOOOLPS’2007), ECOOP Workshop, TU Berlin, 2007, pp. 17–22.

[5] M. Arnold, Online profiling and feedback-directed optimization of java, Ph.D.
thesis, Rutgers University (Oct. 2002).

[6] D. Röthlisberger, M. Denker, É. Tanter, Unanticipated partial behavioral reflec-
tion: Adapting applications at runtime, Journal of Computer Languages, Systems
and Structures 34 (2-3) (2008) 46–65. doi:10.1016/j.cl.2007.05.001.

[7] D. Holten, B. Cornelissen, J. J. van Wijk, Trace visualization using hierarchi-
cal edge bundles and massive sequence views, in: Proceedings of Visualizing
Software for Understanding and Analysis, 2007 (VISSOFT’07), IEEE Computer
Society, 2007, pp. 47 – 54. doi:10.1109/VISSOF.2007.4290699.

[8] B. Meyer, Object-Oriented Software Construction, 2nd Edition, Prentice-Hall,
1997.

[9] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the future: The
story of Squeak, a practical Smalltalk written in itself, in: Proceedings of the
12th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA’97), ACM Press, 1997, pp. 318–326.
doi:10.1145/263700.263754.

[10] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker, Pharo by
Example, Square Bracket Associates, 2009.
URL http://pharobyexample.org

[11] VisualWorks, Cincom Smalltalk, http://www.cincomsmalltalk.com/, archived at
http://www.webcitation.org/5p1rRxls5 (2010).
URL http://www.cincomsmalltalk.com/

[12] M. Meyer, T. Gı̂rba, M. Lungu, Mondrian: An agile visualization framework,
in: ACM Symposium on Software Visualization (SoftVis’06), ACM Press, New
York, NY, USA, 2006, pp. 135–144. doi:10.1145/1148493.1148513.

[13] A. Bergel, R. Robbes, W. Binder, Visualizing dynamic metrics with profiling
blueprints, in: J. Vitek (Ed.), Objects, Models, Components, Patterns, Vol. 6141
of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010, pp.
291–309. doi:10.1007/978-3-642-13953-6_16.

[14] S. Dmitriev, Language oriented programming: The next programming
paradigm, http://www.onboard.jetbrains.com/is1/articles/
04/10/lop/mps.pdf (Nov. 2004).

22

http://scg.unibe.ch/archive/papers/Haup07aPIC.pdf
http://dx.doi.org/10.1016/j.cl.2007.05.001
http://dx.doi.org/10.1109/VISSOF.2007.4290699
http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html
http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html
http://dx.doi.org/10.1145/263700.263754
http://pharobyexample.org
http://pharobyexample.org
http://pharobyexample.org
http://www.cincomsmalltalk.com/
http://www.cincomsmalltalk.com/
http://dx.doi.org/10.1145/1148493.1148513
http://dx.doi.org/10.1007/978-3-642-13953-6_16
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf

[15] M. Arnold, B. G. Ryder, A framework for reducing the cost of instrumented
code, in: Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, PLDI ’01, ACM, New York, NY, USA,
2001, pp. 168–179. doi:10.1145/378795.378832.

[16] J. Whaley, A portable sampling-based profiler for java virtual machines, in:
Proceedings of the ACM 2000 conference on Java Grande, JAVA ’00, ACM,
New York, NY, USA, 2000, pp. 78–87. doi:10.1145/337449.337483.

[17] J. Brant, B. Foote, R. Johnson, D. Roberts, Wrappers to the rescue, in: Proceed-
ings European Conference on Object Oriented Programming (ECOOP’98), Vol.
1445 of LNCS, Springer-Verlag, 1998, pp. 396–417.

[18] G. Ammons, T. Ball, J. R. Larus, Exploiting hardware performance coun-
ters with flow and context sensitive profiling, in: Proceedings of the ACM
SIGPLAN 1997 conference on Programming language design and im-
plementation, PLDI ’97, ACM, New York, NY, USA, 1997, pp. 85–96.
doi:10.1145/258915.258924.

[19] A. Bergel, M. Denker, Prototyping languages, related constructs and tools with
Squeak, in: Proceedings of the ECOOP’06 Workshop on Revival of Dynamic
Languages, 2006.

[20] D. Röthlisberger, O. Greevy, O. Nierstrasz, Exploiting runtime information
in the IDE, in: Proceedings of the 16th International Conference on Program
Comprehension (ICPC 2008), IEEE Computer Society, Los Alamitos, CA, USA,
2008, pp. 63–72. doi:10.1109/ICPC.2008.32.

[21] T. Gı̂rba, M. Lanza, S. Ducasse, Characterizing the evolution of class hierarchies,
in: Proceedings of 9th European Conference on Software Maintenance and
Reengineering (CSMR’05), IEEE Computer Society, Los Alamitos CA, 2005,
pp. 2–11. doi:10.1109/CSMR.2005.15.

[22] A. Bergel, S. Ducasse, C. Putney, R. Wuyts, Creating sophisticated development
tools with OmniBrowser, Journal of Computer Languages, Systems and Struc-
tures 34 (2-3) (2008) 109–129. doi:10.1016/j.cl.2007.05.005.

[23] É. Tanter, Execution levels for aspect-oriented programming, in: Proceedings of
the 9th ACM International Conference on Aspect-Oriented Software Develop-
ment (AOSD 2010), ACM Press, Rennes and Saint Malo, France, 2010, pp. 37–
48.

23

http://dx.doi.org/10.1145/378795.378832
http://doi.acm.org/10.1145/337449.337483
http://dx.doi.org/10.1145/337449.337483
http://doi.acm.org/10.1145/258915.258924
http://doi.acm.org/10.1145/258915.258924
http://dx.doi.org/10.1145/258915.258924
http://scg.unibe.ch/archive/papers/Bergel06bRDLPrototyping.pdf
http://scg.unibe.ch/archive/papers/Bergel06bRDLPrototyping.pdf
http://dx.doi.org/10.1109/ICPC.2008.32
http://dx.doi.org/10.1109/CSMR.2005.15
http://dx.doi.org/10.1016/j.cl.2007.05.005

	Introduction
	Current Profiler Implementations
	The Spy Framework
	Spy in a nutshell
	Instantiating Spy
	Running Spy
	Visualizing Runtime Information
	Call graph and execution time
	Structure of the profiling
	Summary

	Implementation
	Validation
	Extracting types from unit tests
	Time profiling blueprints
	Profiling differentiation
	IDE integration
	Flexibility of Spy

	Conclusion

