
How Program History Can Improve Code Completion

Romain Robbes
REVEAL @ University of Lugano

Via G. Buffi 13, 6900 Lugano, Switzerland
romain.robbes@lu.unisi.ch

Michele Lanza
REVEAL @ University of Lugano

Via G. Buffi 13, 6900 Lugano, Switzerland
michele.lanza@unisi.ch

Abstract

Code completion is a widely used productivity tool. It
takes away the burden of remembering and typing the ex-
act names of methods or classes: As a developer starts
typing a name, it provides a progressively refined list of
candidates matching the name. However, the candidate list
always comes in alphabetic order, i.e., the environment is
only second-guessing the name based on pattern matching.
Finding the correct candidate can be cumbersome or slower
than typing the full name.

We present an approach to improve code completion with
program history. We define a benchmark measuring the ac-
curacy and usefulness of a code completion engine. Further,
we use the change history data to also improve the results
offered by code completion tools. Finally, we propose an
alternative interface for completion tools.

1 Introduction

In 2006, Murphy et al. published an empirical study on
how 41 Java developers used the Eclipse IDE [6]. One of
their findings was that each developer in the study used the
code completion feature. Among the top commands exe-
cuted across all 41 developers, code completion came sixth
with 6.7% of the number of executed commands, sharing the
top spots with basic editing commands such as copy, paste,
save and delete. It is hardly surprising that this was not dis-
cussed much: Code completion is one of those features that
once used becomes second nature. Nowadays, every major
IDE features a language-specific code completion system,
while any text editor has to offer at least some kind of word
completion to be deemed usable for programming.

What is surprising is that not much is being done to ad-
vance code completion. Beyond taking into account the pro-
gramming language used, there have been few documented
efforts to improve completion engines. This does not mean
that code completion cannot be improved, far from it: The
set of possible candidates (referred from now on as sug-

gestions or matches) returned by a code completion engine
is often inconveniently large, and the match a developer is
actually looking for can be buried under several irrelevant
suggestions. If spotting it takes too long, the context switch
risks breaking the flow the developer is in.

Language-specific completion engines can alleviate this
problem as they significantly reduce the number of possible
matches by exploiting the structure or the type system of
the program under edition. However, if an API is inherently
large, or if the programming language used is untyped, the
set of candidates to choose from will still be too large. Given
the limitations of current code completion, we argue that
there are a number of reasons for the lack of work being
done to improve it:

1. There is no obvious way to improve language-
dependent code completion: Code completion algo-
rithms already take into account the structure of the
program, and if possible the structures of the APIs the
program uses. To improve the state of the art, additional
sources of information are needed.

2. Beyond obvious improvements such as using the pro-
gram structure, there is no way to assert that a comple-
tion mechanism is “better” than another. A standard
measure of how a completion algorithm performs com-
pared to another on some empirical data is missing,
since the data itself is not there. The only possible
assessment of a completion engine is to manually test
selected test cases.

3. “If it ain’t broken, don’t fix it”. Users are accustomed
to the way code completion works and are resistant to
change. This healthy skepticism implies that only a sig-
nificant improvement over the default code completion
system can change the status quo.

Ultimately, these reasons are tied to a single one: Code
completion is “as good as it gets” with the information pro-
vided by current IDEs. To improve it, we need additional
sources of information, and provide evidence that the im-
provement is worthwhile.



In our previous work, we implemented Spyware, a frame-
work which records the history of a program under devel-
opment with great accuracy and stores it in a change-based
repository [7, 9]. Our IDE monitoring plug-in is notified of
the programmer’s code edits, analyzes them, and extracts
the actual program-level (i.e., not text-based) changes the
developer performed on the program. These are then stored
as first-class entities in a change-based software repository,
and later used by various change-aware tools.

In this paper, we use change-based information to im-
prove code completion. As a prerequisite, we define a bench-
mark to test the accuracy of completion engines. In essence,
we replay the entire development history of the program
and call the completion engine at every step, comparing
the suggestions of the completion engine with the changes
that were actually performed on the program. With this
benchmark as a basis for comparison, we define alternative
completion algorithms using change-based historical infor-
mation to different extents, and compare them to the default
algorithm which sorts matches in alphabetical order. We
validate our algorithms by extensively testing each variant
of the completion engine on the history of a medium-sized
program developed for a number of years, as well as sev-
eral smaller projects, testing the completion engine several
hundred thousand times.

Structure of the paper. Section 2 details code comple-
tion algorithms and exposes the main shortcomings of these.
We qualify those algorithms as “pessimist”, and introduce
requirements for “optimist” ones. Section 3 details the kind
and the format of the data that we gather and store in change-
based repositories, and how it can be accessed later on. Next,
Section 4 presents our first contribution, the benchmarking
framework we defined to measure the accuracy of comple-
tion engines. Section 5 introduces our second contribution,
several “optimist” code completion strategies beyond the de-
fault “pessimist” one. Each strategy is evaluated according
to the benchmark we defined. Section 6 presents our last con-
tribution, a prototype implementation of a UI better suited
for “optimist” completion algorithms. Finally, after a brief
discussion in Section 7 and related work review (Section 8),
we conclude in Section 9.

2 Code Completion

Word completion predates code completion and is present
in most text editors. Since the algorithms used for it are very
different, we do not cover these.

Code completion uses the large amount of information
it can gather on the code base to significantly reduce the
number of matches proposed to a user when he triggers it.
For instance, a Java-specific code completion engine, when
asked to complete a method call to a String instance, will
only return the names of methods implemented in the class

String. When completing a variable name, it will only con-
sider variables which are visible in the scope of the current
location. Such a behaviour is possible thanks to the amount
of analysis performed in the IDE. At any time, an IDE such
as Eclipse maintains a full queryable program model.

In the following, we focus on the completion engine, i.e.,
the part of the code completion tool which takes as input
a token to be completed and a context used to access all
the information necessary in the system, and outputs an
ordered sequence of possible completions. We describe code
completion in three IDEs: Eclipse (for Java), Squeak and
VisualWorks (for Smalltalk).

2.1 Code completion in Eclipse

Code completion in Eclipse for Java is structure-sensitive,
i.e., it can detect when it completes a variable/method name,
and proposes different completions. It is also type-sensitive:
If a variable is an instance of class String, the matches re-
turned when auto completing a method name will be looked
for in the classes “String” and “Object”, i.e., the class itself
and all of its superclasses.

Figure 1. Code completion in Eclipse

Figure 1 shows Eclipse code completion in action: The
programmer typed “remove” and attempts to complete
it via Content Assist. The system determines that the
object to which the message is sent is an instance of
“javax.swing.JButton”. This class features a large API of
more than 400 methods, of which 22 start with “remove”.
These 22 potential matches are all returned and displayed
in a popup window showing around 10 of them, the rest
needing scrolling to be accessed. The matches are sorted in
alphabetical order, with the shorter ones given priority (the
first 3 matches would barely save typing as they would only
insert parentheses).



This example shows that sometimes the completion sys-
tem, even in a typed programming language, can break down
and be more a hindrance than an actual help. As APIs grow
larger, completion becomes less useful, especially since
some prefixes tend to be shared by more methods than other:
For instance, more than a hundred methods in JButton’s
interface start with the prefix “get”.

2.2 Code completion in Visualworks

Visualworks is a Smalltalk IDE sold by Cincom [1]. Since
Smalltalk is a dynamically typed language, Visualworks
faces more challenges than Eclipse to propose accurate
matches. The IDE can not make any assumption on the
type of an object since it is determined only at runtime, and
thus returns potential candidates from all the classes defined
in the system. Since Smalltalk contains large libraries and
is implemented in itself, the IDE contains more than 2600
classes already defined and accessible initially. These 2600
classes total more than 50,000 methods, defining around
27,000 unique method names, i.e., 27,000 potential matches
for each completion. The potential matches are presented in
a menu, which is routinely more than 50 entries long. As in
Eclipse, the matches are sorted alphabetically.

2.3 Code completion in Squeak

Squeak’s [2] completion system has two modes. The
normal mode of operation is similar to Visualworks: Since
the type of the receiver is not known, the set of candidates
is searched for in the entire system. However, squeak fea-
tures an integration of the completion engine with a type
inference system, Roel Wuyts’ RoelTyper [12]. When the
type inference engine finds a possible type for the receiver,
the candidate list is significantly shorter than it would be if
matches were searched in the entire system (3000 classes,
57,000 methods totalling 33,000 unique method names). It
is equivalent to the completion found in Eclipse. The type
inference engine finds the correct type for a variable roughly
half of the time. Both systems sort matches alphabetically.

2.4 Optimist and Pessimist Completion

All these algorithms have the same shortcoming: the
match actually looked for may be buried under a large num-
ber of irrelevant suggestions because the matches are sorted
alphabetically. The only way to narrow it down is to type a
longer completion prefix which diminishes the value of code
completion. To qualify completion algorithms, we reuse
an analogy from Software Configuration Management. Ver-
sioning systems have two ways to handle conflicts during
concurrent development [3]: Pessimistic version control –
introduced first– prevents any conflict by forcing developers

to lock a resource before using it. Conflicts never happen,
but this situation is inconvenient when two developers need
to edit the same file. In optimistic version control developers
do not lock a resource to edit it. Several developers can
freely work on the same file. Conflicts can happen, but the
optimistic view states that they do not happen often enough
to be counter-productive. Today, every major versioning
system uses an optimistic strategy.

We characterize current completion algorithms as “pes-
simistic”: They expect to return a large number of matches,
and order them alphabetically. The alphabetical order is the
fastest way to look up an individual entry among a large
set. This makes the entry lookup a non-trivial operation: As
anyone who has ever used a dictionary knows, search is still
involved and the cognitive load associated to it might incur
a context switch from the coding task at hand.

In contrast, we wish to introduce an “optimistic” com-
pletion algorithm. It would be free of the obligation to sort
matches alphabetically, under the following assumptions:

1. The number of matches returned with each completion
attempt are limited to a small quantity. The list of
matches must be very quick to be checked. No scrolling
should be involved, and reading it should be fast. In
addition few keystrokes should be required to select the
correct match. Our implementation (Section 6) limits
the number of matches returned to 3.

2. The match the programmer is looking for has a high
probability of being among the matches returned by
the completion engine. Even if checking a short list of
matches is fast, it is pointless if the match looked for is
not in it. Hence the match looked for should be in the
short list presented, preferably at the top spot.

3. To minimize typing, the completion prefix necessary to
have the correct match with a high probability should
be short. With a 10 character prefix, it is easy to return
only 3 matches and have the right one among them.

To sum up, an optimistic code completion strategy seeks
to maximize the probability that the desired entry is among
the ones returned, while minimizing the number of entries
returned, so that checking the list is fast enough. It attempts
to do so even for short completion prefixes to minimize the
typing involved by the programmer.

3 Change-based Software Repositories

The benchmark and some of the algoritms presented here
rely on our previous work on Change-Based Software Evo-
lution (CBSE). CBSE aims at accurately modelling how
software changes by treating change as a first-class entity.
This model has been previously used for software evolution
analysis [8, 9].



3.1 Model and Implementation

CBSE models software evolution as a sequence of
changes that take a system from one state to the next by
means of syntactic (i.e., non text-based) transformations.
These transformations are inferred from the activity recorded
by the event notification system of IDEs such as Eclipse,
whenever the developer incrementally modifies the system.
Examples are the modification of the body of a method or
a class, but also higher-level changes offered by refactoring
engines. In short, we do not view the history of a software
system as a sequence of versions, but as the sum of change
operations which brought the system to its actual state.

CBSE is implemented in a prototype named SpyWare
[10] for the Squeak Smalltalk IDE. SpyWare monitors the
programmer’s activity, converts it to changes and stores them
in a change-based repository. We are also working on a
prototype for the Eclipse IDE and the Java language called
EclipsEye [11].

3.2 Program Representation

Our approach represents programs as domain-specific
entities rather than text files. Since we focus on object-
oriented programs, we consider constructs such as classes
and methods. We represent a software system as an evolving
abstract syntax tree (AST) containing nodes which represent
packages, classes, methods, variables and statements. A
node a is a child of a node b if a contains b (a superclass
is not the parent of a subclass, only packages are parents
of classes). Nodes have properties, which vary depending
on the node type, such as: for classes, name and superclass;
for methods, name, return type and access modifier (public,
protected or private, if the language supports them); for
variables name, type and access modifier, etc. The name is
a property of entities since identity is provided by unique
identifiers (ID).

3.3 Change Operations

Change operations represent the evolution of the sys-
tem under study: They are actions a programmer performs
when he changes a program, which in our model are cap-
tured and reified. They represent the transition from one
state of the evolving system to the next. Change opera-
tions are executable: A change operation c applied to the
state n of the program yields the state n+1 of the program.
Some examples of change operations are: adding/removing
classes/methods to/from the system, changing the implemen-
tation of a method, or refactorings. We support atomic and
composite change operations.

Atomic Change Operations Since we represent programs
as ASTs, atomic change operations are, at the finest level,
operations on the program’s AST. Atomic change operations
are executable, and can be undone: An atomic change con-
tains all the necessary information to update the model by
itself, and to compute its opposite atomic change. By iterat-
ing on the list of changes we can generate all the states the
program went through during its evolution. The following
operations suffice to model the evolution of a program AST:

Creation: creates a node n for an entity of a given type t.

Addition: adds a node n as a child of a given parent p.

Removal: removes node n from the children of parent p.

Property change: changes value v of property p of node n.

Insertion: inserts a node n as a child of a given parent (a
method) p, at location m. This is necessary to model
ordered parts of the AST such as the code in methods.

Deletion: deletes a node n from the location m in parent p.
m is preserved to allow undo.

Composite Change Operations While atomic change op-
erations are enough to model the evolution of programs, the
finest level of granularity is not always the best suited. Rep-
resenting the entire evolution of a system only by its atomic
modifications leads to an overwhelming mass of information.
Hence change operations can be abstracted into higher-level
composite changes. Since we do not use composite changes
in this article, we do not detail them further.

4 A Benchmark For Code Completion

The idea behind our benchmark is to use the information
we recorded from the evolution of programs, and to replay
it while calling the completion engine as often as possible.
Since the information we record in our repository is accurate,
we can simulate a programmer typing the text of the program
while maintaining its structure as an AST. While replaying
the evolution of the program, we can potentially call the
completion engine at every keystroke, and gather the results
it would have returned, as if it had been called at that point
in time. Since we represent the program as an evolving
AST, we are able to reconstruct the context necessary for the
completion engine to work correctly, including the structure
of the source code. For instance, the completion engine is
able to locate in which class it is called, and therefore works
as if under normal conditions.

The rationale behind the benchmarking framework is to
reproduce as closely as possible the conditions encountered
by the completion engine during its actual use. Indeed, one
might imagine a far simpler benchmark than ours: Rather



than recording the complete history of a program, we could
simply retrieve one version of the program, and attempt
to complete every single message send in it, using the re-
mainder of the program as the context. However, such an
approach would disregard the order in which the code was
developed and assume that the entire code base just “popped
into existence”. More importantly, it would not provide any
additional source of information beyond the source code
base, which would not permit any improvement over the
state of the art. In contrast, by reproducing how the program
was actually changed, we can feed realistic data to the com-
pletion engine, and give it the opportunity to use history as
part of its strategy.

Replaying a Program’s Change History. To recreate the
context needed by the completion engine at each step, we
execute each change in the change history of the program to
recreate the AST of the program. In addition, the completion
engine can use the actual change data to improve its future
predictions. To measure the completion engine’s accuracy,
we use algorithm 1.

Input: Change history, completion engine to test
Output: Benchmark results
results = newCollection();
foreach Change ch in Change history do

if methodCallInsertion(ch) then
name = changeName(ch);
foreach Substring prefix of name between 2
and 8 do

entries = queryEngine(engine, prefix);
index = indexOf(entries, prefix);
add(results, length(prefix), index);

end
end
processChange(engine,ch);

end
Algorithm 1: The benchmark’s main algorithm

While replaying the history of the system, we call the
completion engine whenever we encounter the insertion of a
statement including a method call. To test the accuracy with
variable prefix length, we call the engine with every prefix
of the method name between 2 and 8 letters –a prefix longer
than this would be too long to be worthwhile. For each one
of those prefixes, we collect the list of suggestions, and look
up the index of the method that was actually inserted in the
list, and store it in the benchmark results.

Using a concrete example, if the programmer inserted
a method call to a method named “hasEnoughRooms”, we
would query the completion engine first with “ha”, then
“has”, then “hasE”, . . . , up to “hasEnoughR”. For each com-
pletion attempt we measure the index of “hasEnoughRooms”

in the list of results. In our example, “hasEnoughRooms”
could be 23rd for “ha”, 15th for “has” and 8th for “hasE”.
One can picture our benchmark as emulating the behavior of
a programmer compulsively pressing the completion key.

It is also possible that the correct match is not present in
the list of entries returned by the engine. This can happen in
the following cases:

1. The method called does not exist yet. There is no way
to predict an entity which is not known to the system.
This happens in a few rare cases.

2. The match is below the cut-off rate we set. If a match
is at an index greater than 10, we consider that the
completion has failed as it is unlikely a human will
scroll down the list of matches. In the example above,
we would store a result only when the size of the prefix
is 4 (8th position).

In both cases we record that the algorithm failed to pro-
duce a useful result. When all the history is processed, all the
results are analysed and summed up. For each completion
strategy tested, we can extract the average position of the
correct match in the entire history, or find how often it was
in the first, second, or third position with a four letter prefix.

Evaluating algorithms To compare one algorithm with
another, we need a numerical estimation of its accuracy.
Precision and recall are often used to evaluate prediction
algorithms. For completion algorithms however, the ranking
of the matches plays a very important role. For this reason we
devised a grading scheme giving more weight to both shorter
prefixes and higher ranks in the returned list of matches. For
each prefix length we compute a grade Gi, where i is the
prefix length, in the following way:

Gi =

∑10
j=1

results(i,j)
j

attempts(i)
(1)

Where results(i, j) represents the number of correct
matches at index j for prefix length i, and attempts(i) the
number of time the benchmark was run for prefix length i.
Hence the grade improves when the indices of the correct
match improves. A hypothetical algorithm having an accu-
racy of 100% for a given prefix length would have a grade
of 1 for that prefix length.

Based on this grade we compute the total score of the
completion algorithm, using the following formula which
gives greater weight to shorter prefixes:

S =
∑7

i=1
Gi+1

i∑7
k=1

1
k

× 100 (2)

The numerator is the sum of the actual grades for prefixes
2 to 8, with weights, while the denominator in the formula



corresponds to a perfect score (1) for each prefix. Thus a
hypothetical algorithm always placing the correct match in
the first position, for any prefix length, would get a score of
1. The score is then multiplied by 100 to ease reading.

Limitations. The benchmark we defined only takes into
account the completion of method calls, and not other pro-
gram entities. This is because the number of methods is
usually the highest. Other entities, such as packages, classes,
variables or keywords are less numerous. Hence the number
of methods usually dwarfs the number of other entities in
the system, and is where efforts should be first focused to
get the most improvements.

Typed and Untyped Completions. As we have seen in
Section 2, there are mainly two kinds of completion: Type-
sensitive completion, and type-insensitive completion, the
latter being the one which needs to be improved most. To
address both types of completion, we chose the Squeak IDE
to implement our benchmark. As Smaltalk is untyped, this
allows us to improve type-insensitive completion. However
since Squeak features an inference engine, we were able
to test whether our completion algorithms also improves
type-sensitive completion.

Data used in the benchmark. We used the history of Spy-
Ware, our monitoring framework itself, to test our bench-
mark. SpyWare has currently around 250 classes and 20,000
lines of code. The data we used spanned from 2005 to
2007, totalling more than 16,000 thousands developer-level
changes in several hundred sessions. In this history, more
than 200,000 method calls were inserted, resulting in roughly
200,000 tests for our algorithm, and more than a million indi-
vidual calls to the completion engine. We also used the data
from 6 student projects, much smaller in nature and lasting a
week. This allows us to evaluate how our algorithms perform
on several code bases, and also how much they can learn in
a shorter amount of time.

Project SW SW(typed) S1 S2 S3 S4 S5 S6
Attemps 131 49 5.5 8.5 10.7 5.6 5.7 9.6

Table 1. Completion attempts, in thousands

5 Code Completion Algorithms

In this section we evaluate a series of completion algo-
rithms, starting by recalling and evaluating the two default
“pessimistic” strategies for typed and untyped completions.
For each algorithm we present, we first give an intuition

of why it could improve the performance of code comple-
tion, then detail its principles. We then detail its overall
performance on our larger case study, SpyWare, with a ta-
ble showing the algorithm’s results for prefixes from 2 to
8 characters. Each column represents a prefix size. The
results are expressed in percentages of accurate predictions
for each index. The first rows gives the percentage of correct
prediction in the first place, ditto for the second and third.
The fourth rows aggregates the results for indices between
4 and 10. Anything more than 10 is considered a failure
since it would require scrolling to be selected. After a brief
analysis, we finally provide the global accuracy score for
the algorithm, computed from the results. We discuss all the
algorithms and their performances on the six other projects
in the last section.

5.1 Default Untyped Strategy

Intuition: The match we are looking for can be anywhere
in the system.

Algorithm: The algorithm searches through all methods
defined in the system that match the prefix on which the
completion is attempted. It sorts the list alphabetically.

Prefix 2 3 4 5 6 7 8
% 1st 0.0 0.33 2.39 3.09 0.0 0.03 0.13
% 2nd 2.89 10.79 14.35 19.37 16.39 23.99 19.77
% 3rd 0.7 5.01 8.46 14.39 14.73 23.53 26.88
% 4-10 6.74 17.63 24.52 23.9 39.18 36.51 41.66
% fail 89.63 66.2 50.24 39.22 29.67 15.9 11.53

Table 2. Results for the default algorithm

Score: 12.1. The algorithm barely, if ever, places the cor-
rect match in the top position. However it performs better
for the second and third places, which rise steadily: They
contain the right match nearly half of the time with a prefix
length of 7 or 8, however a prefix length of eight is really
long.

5.2 Default Typed Strategy

Intuition: The match is one of the methods defined in the
hierarchy of the class of the receiver.

Algorithm: The algorithm searches through all the meth-
ods defined in the class hierarchy of the receiver, as indicated
by the programmer or as inferred by the completion engine.



Prefix 2 3 4 5 6 7 8
% 1st 31.07 36.96 39.14 41.67 50.26 51.46 52.84
% 2nd 10.11 11.41 13.84 16.78 13.13 13.51 12.15
% 3rd 5.19 5.94 4.91 5.15 3.2 1.94 2.0
% 4-10 16.29 12.54 12.24 8.12 6.29 4.14 2.79
% fail 37.3 33.11 29.83 28.24 27.08 28.91 30.18

Table 3. Results for typed completion

Score: 47.95. Only the results where the type inference
engine found a type were considered. This test was only run
on the SpyWare case study as technical reasons prevented
us to make the type inference engine work properly for the
other case studies. The algorithm consistently achieves more
than 25% of matches in the first position, which is much
better than the untyped case. On short prefixes, it still has
less than 50% of chances to get the right match in the top 3
positions.

5.3 Optimist Structure

Intuition: Local methods are called more often than dis-
tant ones (i.e., in other packages).

Algorithm: The algorithm searches first in the methods of
the current class, then in its package, and finally in the entire
system.

Prefix 2 3 4 5 6 7 8
% 1st 12.7 22.45 24.93 27.32 33.46 39.5 40.18
% 2nd 5.94 13.21 18.09 21.24 20.52 18.15 22.4
% 3rd 3.26 5.27 6.24 7.22 10.69 14.72 10.77
% 4-10 14.86 16.78 18.02 17.93 17.23 20.51 20.75
% Fail 63.2 42.26 32.69 26.26 18.07 7.08 5.87

Table 4. Results for Optimist Structure

Score: 34.16. This algorithm does not use the history of
the system, only its structure, but is still an optimist algo-
rithm since it orders the matches non-alphabetically. This
algorithm represents how far we can go without using an
additional source of information. As we can see, its results
are a definite improvement over the default algorithm, since
even with only two letters it gets more than 10% of correct
matches. There is still room for improvement.

5.4 Recently Modified Method Names

Intuition: Programmers are likely to use methods they
have just defined or modified.

Algorithm: Instead of ordering all the matches alphabet-
ically, they are ordered by date, with the most recent date
being given priority. Upon initialization, the algorithm cre-
ates a new dated entry for every method in the system, dated
as January 1, 1970. Whenever a method is added or modi-
fied, its entry is changed to the current date, making it much
more likely to be selected.

Prefix 2 3 4 5 6 7 8
% 1st 16.73 23.81 25.87 28.34 33.38 41.07 41.15
% 2nd 6.53 12.99 17.41 19.3 18.23 16.37 21.31
% 3rd 4.56 6.27 6.83 7.7 11.53 15.58 10.76
% 4-10 15.53 17.0 20.16 20.73 20.34 20.65 21.55
% fail 56.63 39.89 29.7 23.9 16.47 6.3 5.18

Table 5. Results for recent method names

Results: 36.57. Using a little amount of historical infor-
mation is slightly better than using the structure. The results
increase steadily with the length of the prefix, achieving a
very good accuracy (nearly 75% in the top three) with longer
prefixes. However the results for short prefixes are not as
good. In all cases, results for the first position rise steadily
from 16 to 40%. This puts this first “optimist” algorithm
slightly less than on par with the default typed algorithm,
albeit without using type information: This means that it
will not resort to the default completion strategy when the
type inferencer does not work.

5.5 Recently Modified Method Bodies

Intuition: Programmers work with a vocabulary which
is larger than the names of the methods they are currently
modifying. We need to also consider the methods which are
called in the bodies of the methods they have recently visited.
This vocabulary evolves, so only the most recent methods
are to be considered.

Algorithm: A set of 1000 entries is kept which is con-
sidered to be the “working vocabulary” of the programmer.
Whenever a method is modified, its name and all the methods
which are called in it are added to the working set. All the
entries are sorted by date, favoring the most recent entries.
To better match the vocabulary the programmer is currently
using, the names of the method called which are in the bod-
ies of the methods which have been recently modified is also
included in the list of priority matches.

Score: 70.13. Considering the vocabulary the programmer
is currently using yields much better results. With a two-
letter prefix, the correct match is in the top 3 in two thirds of
the cases. With a six-letter prefix, in two-third of the cases



Prefix 2 3 4 5 6 7 8
% 1st 47.04 60.36 65.91 67.03 69.51 72.56 72.82
% 2nd 16.88 15.63 14.24 14.91 14.51 14.04 14.12
% 3rd 8.02 5.42 4.39 4.29 3.83 4.09 4.58
% 4-10 11.25 7.06 6.49 6.64 6.51 5.95 5.64
% fail 16.79 11.49 8.93 7.09 5.6 3.33 2.81

Table 6. Results for recently modified bodies

it is the first one, and it is in the top three in 85% of the
cases. This level of performance is worthy of an “optimist”
algorithm.

5.6 Recently Inserted Code

Intuition: The vocabulary taken with the entire methods
bodies is too large, as some of the statements included in
these bodies are not relevant anymore. Only the most recent
inserted statements should be considered.

Algorithm: The algorithm is similar to the previous one.
However when a method is modified, we only refresh the
vocabulary entries which have been newly inserted in the
modified method as well as the name, instead of taking into
account every method call. This algorithm makes a more
extensive use of the change information we provide.

Prefix 2 3 4 5 6 7 8
% 1st 33.99 52.02 59.66 60.71 63.44 67.13 68.1
% 2nd 15.05 16.4 15.44 16.46 16.38 17.09 16.52
% 3rd 9.29 7.46 5.98 5.64 5.36 4.74 5.45
% 4-10 22.84 11.05 8.53 8.65 8.45 7.23 6.71
% fail 18.79 13.03 10.35 8.5 6.33 3.77 3.17

Table 7. Results for recently inserted code

Score: 62.66. In that case our hypothesis was wrong, since
this algorithm is less precise than the previous one, especially
for short prefixes. In all cases, this algorithm still performs
better than the typed completion strategy.

5.7 Per-Session Vocabulary

Intuition: Programmers have an evolving vocabulary rep-
resenting their working set. However it changes quickly
when they change tasks. In that case they reuse and modify
an older vocabulary. It is possible to find that vocabulary
when considering the class which is currently changed.

Algorithm: This algorithm uses fully the change informa-
tion we provide. In this algorithm, a vocabulary (i.e.,, still a

set of dated entries) is maintained for each programming ses-
sion in the history. A session is a sequence of dated changes
separated by at most an hour. If a new change occurs with a
delay superior to an hour, a new session is started. In addi-
tion to a vocabulary, each session contains a list of classes
which were changed (or had methods changed) during it.

When looking for a completion, the class for the current
method is looked up. To reconstruct the vocabulary the most
relevant to that class, the vocabulary of all the sessions in
which the class was modified is taken into account and given
priority over the other vocabularies.

Prefix 2 3 4 5 6 7 8
% 1st 46.9 61.98 67.82 69.15 72.59 75.61 76.43
% 2nd 16.88 15.96 14.41 15.01 14.24 14.44 13.8
% 3rd 7.97 5.73 4.64 4.3 3.45 3.0 3.4
% 4-10 14.66 8.18 6.5 6.19 5.44 4.53 4.16
% fail 13.56 8.12 6.58 5.32 4.25 2.39 2.17

Table 8. Results for per-session vocabulary

Score: 71.67. This algorithm is the best we found as it
reacts more quickly to the developer changing tasks, or mov-
ing around in the system. Since this does not happen that
often, the results are only marginally better. However when
switching tasks the additional accuracy helps. It seems that
filtering the history based on the entity in focus (at the class
level) is a good fit for an “optimistic” completion algorithm.

5.8 Typed Optimist Completion

Intuition: Merging optimist completion and type informa-
tion should give us the best of both worlds.

Algorithm: This algorithm merges two previously seen
algorithms. It uses the data from the session-based algorithm
(our best optimist algorithm so far), and merges it with the
one from the default typed algorithm. The merge works as
follow:

The list of matches for the two algorithms are retrieved
(Msession and Mtyped). The matches present in both lists
are put at the top of Msession, which is returned.

Prefix 2 3 4 5 6 7 8
% 1st 59.65 64.82 70.09 73.49 76.39 79.73 82.09
% 2nd 14.43 14.96 14.1 13.87 13.17 13.09 12.08
% 3rd 4.86 4.64 3.89 3.27 2.92 2.23 1.85
% 4-10 8.71 7.04 5.86 4.58 4.09 3.37 2.5
% Fail 12.31 8.51 6.03 4.75 3.4 1.54 1.44

Table 9. Typed optimist completion



Score: 76.79. The result is a significant, 5 points improve-
ment, by 5 points (we ran it on SpyWare only for the same
reasons as the default typed algorithm). This algorithm in-
deed performs better than anyone, since it merely reuses the
already accurate session information, but makes sure that the
matches corresponding to the right type are put before the
other matches. In particular, with a two letter prefix, it gets
the first match correctly 60 percents of the times.

5.9 Discussion of the results

Most of our hypotheses on what helps code completion
were correct, except “Recently inserted code”. We expected
it to perform better than using the entire method bodies, but
were proven wrong. We need to investigate if merging the
two strategies yields any benefits over using only “Recent
modified bodies”. On the other hand, using sessions to order
the history of the program is still the best algorithm we found,
even if by a narrow margin. This algorithm considers only
inserted calls during each session, perhaps using the method
bodies there could be helpful as well.

When considering the other case studies (Table 10), we
see that the trends are the same for all the studies, with some
variations. Globally, if one algorithm performs better than
another for a case study, it tends to do so for all of them.
The only exception is the session-aware algorithm, which
sometimes perform better, sometimes worse, than the one
using the code of all the methods recently modified. One
reason for this may be that the other case studies have a
much shorter history, diminishing the roles of sessions. The
algorithm has hence less time to adapt.

Project SW S1 S2 S3 S4 S5 S6
Baseline 12.15 11.17 10.72 15.26 14.35 14.69 14.86
Structure 34.15 23.31 26.92 37.37 31.79 36.46 37.72
Names 36.57 30.11 34.69 41.32 29.84 39.80 39.68
Inserted 62.66 75.46 75.87 71.25 69.03 68.79 59.95
Bodies 70.14 82.37 80.94 77.93 79.03 77.76 67.46
Sessions 71.67 79.23 78.95 70.92 77.19 79.56 66.79

Table 10. Scores for the untyped algorithms
of all projects

Considering type information, we saw that it gives a sig-
nificant improvement on the default strategy. However, the
score obtained by our optimist algorithms –without using
any type information– is still better. Further, our optimist
algorithms work even in cases where the type inference en-
gine does not infer a type, and hence is more useful globally.
Merging the two strategies, e.g., filtering the list of returned
matches by an optimist algorithm based on type information,
gives even better results.

6 A User Interface for Optimist Completion

All user interfaces for completion tools suit “pessimist”
completion algorithms. In all the cases we surveyed, the in-
terface is a menu invoked by the programmer via a keyboard
shortcut. Arrow keys are then used to select the right match.

We propose a completion interface Figure 2 suited for “op-
timist” completion algorithms. Since “optimist” completion
algorithms often have the correct match in the top 3 spots –
according to our benchmark, more than two thirds of the time
after entering two letters the match looked for is in the top
three spots considered by the algorithm–, we implemented a
prototype user interface making suggestions without explicit
programmer invocation. The interface shows the top three
matches after the programmer has typed at least two letters
of a method call. Depending on the algorithm chosen, the
probability that the correct match is among those three vary
between 3% for the default strategy, and nearly 80% for the
typed optimist completion. With this difference in behavior,
completion becomes even more of a second nature, since it
does not have to be consciously invoked. The programmer
uses a shortcut only when he sees the completion he needs
in the short list given by the tool.

Figure 2. Optimist completion in action

Casual usage by the first author shows that the UI often
gives a correct match before (e.g., with a shorter prefix) one
would think of using the completion. However, a complete
evaluation needs to be done as part of future work.

7 Discussion

Despite the provably more efficient completion algo-
rithms we presented, our approach has a few shortcomings:

Applicability to other programs. We have tested several
programs, but can not account for the general validity of our
results. However, our results are relatively consistent among
the different program we tested. If an algorithm performs
better in one, it tends to perform better on the others.

Applicability to other languages. Our results are cur-
rently valid for Smalltalk only. However, the tests showed
that our optimist algorithms perform better than the default



algorithm using type inference, even without any type in-
formation. Merging the two approaches shows another im-
provement. An intuitive reason for this is that even if only 5
matches are returned due to the help of typing, the position
they occupy is still important. Thus we think our results have
some potential for typed object-oriented languages such as
Java. In addition, we are confident they could greatly benefit
any dynamic language, such as Python, Ruby, Erlang, etc.

Other uses of code completion. Programmers use code
completion in IDE at least for two reasons: (1) To complete
the code they are typing, which is the part that we optimize,
and (2) as a quick alternative to documentation. Code com-
pletion allows programmers to quickly discover the methods
at their disposal on any object. Our completion algorithms
do not provide this, and one could argue that they are detri-
mental to this usage, since they return only a few number of
matches. However, we see the two systems as complement-
ing each other. If our alternative GUI is used, programmers
could use optimist completion while typing (without explicit
invocation), and still invoke the regular code completion
algorithm using the old keyboard shortcut.

Resource usage. Our benchmark in its current form is
resource-intensive. Testing the completion engine several
hundred thousands time in a row takes a few hours for each
benchmark. We are looking at ways to make this faster.

8 Related Work

Beyond the classical completion algorithms, few works
can compare with our approach. Mylyn’s task contexts fea-
ture a form of code completion prioritizing elements be-
longing to the task at hand [4], which is very similar to our
approach. We could however not reproduce their algorithm
since our recorded information focuses on changes, while
theirs focuses on interactions (they also record which en-
tities were changed, but not the change extent). The data
we recorded includes interactions only on a smaller period
and could thus not be compared with the rest of the data.
Another completion mechanism is Keyword Programming
[5], in which free-form keywords are replaced by valid code
found in the model of the program. It functions quite differ-
ently from standard completion algorithms, and hence could
not be directly compared with other completion strategies.

9 Conclusions and Future Work

Code completion is a tool used by every developer, yet im-
provements have been few and far-between: Additional data
is needed to both improve it and measure the improvement.
We defined a benchmark to measure the accuracy of code

completion by replaying the entire change history of seven
projects, while calling the completion engine at every step.
Using this historical information as an additional source of
data for the completion engine, we significantly improved its
accuracy by changing the alphabetical ordering of the results
to an ordering based on entity usage.

Our “optimistic” completion algorithms have the correct
match in the top 3 in 75% of the cases, whereas a “pes-
simistic” algorithm always have the correct match, but in a
much larger list of candidates, and usually at a worse rank:
The matches, when sorted alphabetically, have no semantic
ordering. Hence using an “optimistic” algorithm involves
less navigation and a lesser cognitive load to select a match.

In parallel, we implemented a completion tool prototype
better adapted to optimist completion: its UI is always acti-
vated and proposes only three matches at a time.

Acknowledgements

We thank D. Pollet and S. Krishnamurthi for insight-
ful discussions about this work. We gratefully acknowl-
edge the financial support of the Swiss National Science
foundation for the project “REBASE” (SNF Project No.
115990). We thank the European Smalltalk User Group
(http://www.esug.org) for sponsoring this work.

References

[1] http://smalltalk.cincom.com, 2007.
[2] http://www.squeak.org, 2007.
[3] R. Conradi and B. Westfechtel. Version models for soft-

ware configuration management. ACM Computing Surveys,
30(2):232–282, June 1998.

[4] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proceedings of SIGSOFT FSE
2006, pages 1–11, 2006.

[5] G. Little and R. C. Miller. Keyword programming in java. In
Proceedings of ASE 2007, pages 84–93, 2007.

[6] G. Murphy, M. Kersten, and L. Findlater. How are java
software developers using the eclipse ide? IEEE Software,
jul 2006.

[7] R. Robbes. Mining a change-based software repository. In
Proceedings of MSR 2007, page 15. ACM Press, 2007.

[8] R. Robbes and M. Lanza. An approach to software evolution
based on semantic change. In Proceedings of FASE 2007,
pages 27–41, 2007.

[9] R. Robbes and M. Lanza. Characterizing and understanding
development sessions. In Proceedings of ICPC 2007, pages
155–164, 2007.

[10] R. Robbes and M. Lanza. Spyware: a change-aware develop-
ment toolset. In ICSE, pages 847–850, 2008.

[11] Y. Sharon. Eclipseye — spying on eclipse. Bachelor’s thesis,
University of Lugano, June 2007.

[12] R. Wuyts. Roeltyper.
http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper/,
2007.

http://smalltalk.cincom.com
http://www.squeak.org

	Introduction
	Code Completion
	Code completion in Eclipse
	Code completion in Visualworks
	Code completion in Squeak
	Optimist and Pessimist Completion

	Change-based Software Repositories
	Model and Implementation
	Program Representation
	Change Operations

	A Benchmark For Code Completion
	Code Completion Algorithms
	Default Untyped Strategy
	Default Typed Strategy
	Optimist Structure
	Recently Modified Method Names
	Recently Modified Method Bodies
	Recently Inserted Code
	Per-Session Vocabulary
	Typed Optimist Completion
	Discussion of the results

	A User Interface for Optimist Completion
	Discussion
	Related Work
	Conclusions and Future Work

