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Abstract. We report on ongoing work to apply techniques of auto-
mated theory morphism search in first-order logic to ontology match-
ing and alignment problems. Such techniques are able to discover
‘structural similarities’ across different ontologies by providing the-
ory interpretations of one ontology into another.

We sketch the techniques currently available for automating the
task of finding theory interpretations in first-order logic and discuss
possible extensions and modifications for other ontology languages
such as description logics and modular ontology languages such as
E-connections.

1 Introduction and Motivation

The problem of finding semantically well-founded correspondences
between ontologies, possibly formulated in different logical lan-
guages, is a pressing and challenging problem. Ontologies may be
about the same domain of interest, but may use different terms; one
ontology might go into greater detail than another, or they might be
formulated in different logics, whilst mostly formalising the same
conceptualisation of a domain, etc. To allow re-use of existing on-
tologies and to find overlapping ‘content’, we need means of identi-
fying these ‘overlapping parts’.

Often, ontologies are mediated on an ad-hoc basis. Clearly, any
approach relying exclusively on lexical heuristics or manual align-
ment is too error prone and unreliable, or does not scale. As noted
for instance by [16], even if a first matching is realised automatically
using heuristics, a manual revision of such candidate alignments is
still rather difficult as the semantics of the ontologies generally inter-
acts with the semantics given to alignment mappings.

A lot of research has already been carried out in the area of on-
tology matching [6]. However, most work is based on approximate
matching of the graph structures of taxonomies and statistical or
heuristic approaches, see e.g. [10, 9].

A new approach, that we currently explore, is to apply methods
of automated theory interpretation search to the realm of ontologies.
Such methods have been mainly developed for the application to for-
malised mathematics (and some of the techniques currently are spe-
cialised for theories formulated in first-order logic). Whilst theory in-
terpretations are rather flexible in that they are not restricted to exact
formulation and phrasing of ontology terms, in contrast to the above
mentioned approaches to ontology matching, they do establish a log-
ically rather strict relationship across two ontologies, namely that all
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axioms of one ontology are provable in the other along a translation,
essentially embedding one ontology into another.

Such embeddings can give guidance in ontology development, and
can be applied for searching and structuring of ‘design patterns’ for
ontologies.

2 Theory Interpretations and Refinements
Theory interpretations have a long history in mathematics generally,
and are probably employed by any ‘working mathematician’ on a
daily basis; the basic idea is the following: given two theories T1 and
T2 (which we here assume to be first-order theories), find a map-
ping of terms of T1 to terms of T2 (a signature morphism, typically
expected to respect typing) such that all translations of axioms of
T1 become provable from T2. If such a theory interpretation is suc-
cessfully provided, all the knowledge that has already been collected
w.r.t. T1 can be re-used from the perspective of T2, using the transla-
tion (see [7] for some examples from the history of mathematics). In
this case, in mathematical jargon, we might say that T2 carries the
structure of T1.

Certain, very basic structures, are found everywhere in mathemat-
ics. The most obvious example might be group theory. The basic
abstract structure of a group can be re-interpreted in a more concrete
setting, giving the group in question additional structure (think of the
natural numbers, rings, vector-spaces, etc.). Re-using the metaphor
mentioned above, we say that an ontology O2 carries the structure of
O1, if the latter can be re-interpreted, by an appropriate translation
σ, into the language of O2 such that all of its axioms are entailed by
O2. In this case, informally, we consider the pair 〈O2,σ〉 a context
for O1.
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Figure 1. A heterogeneous refinement/theory interpretation.

The notion of theory interpretation is also closely related to the
notion of refinement from software engineering. A heterogeneous
refinement is depicted in Fig. 1. Here, given ontologies O1 and O2,
possibly formulated in different logics, say a DL and a variant of
first-order logic, we want to show that O2 specialises, or refines, the
information contained in O1. To do this, we first need to translate



both O1 and O2 into a common logic, say first-order logic, by means
of suitable translations θ and η. Here, the translation η additionally
needs to be conservative in order not to ‘distort’ the information con-
tained in O2. In a final step, a theory interpretation σ from O′1 to O′2
is provided, showing that all translations of axioms of O1 hold in O′2
along θ ◦ σ. The notion of a heterogeneous refinement also leads to
a general definition of heterogeneous sub-ontology, compare [13].

It should be clear that whenever either the logics or the signatures
of the ontologies involved do not directly fit, there are a number of
possible solutions to choose from (we can just extend the logic in
question, we can extend definitionally the signature, or both).3

Here is an illustrative example from mathematics:

Example 1 (Lattices and Partial Orders) Consider P as the the-
ory of partial-orders with Sig(P) = {≤} and let L be the theory of
lattices with Sig(L) = {&,'}. These are both first-order theories, so
the logical languages are directly compatible and we only need to
translate the non-logical terms. However, the signatures obviously
do not fit as L has only binary functions (rather than relations). This
can be remedied by extending the signature of L by a binary relation
symbol ( (which makes the signatures fit by the mapping σ :≤)→(),
and define S = {∀a, b.a ( b ↔ a ' b = a}. This is a definitional
axiom. It can now be seen that L ∪ S |= σ(P), i.e. σ is a theory in-
terpretation embedding the theory of partial orders into the theory of
lattices, using the definitional axiom in S.

Thus, we may say that lattices carry the structure of partial orders.
It should be obvious that both these theories also define central struc-
tures for ontology design.

3 Automated Discovery of Theory Interpretations
The goal of discovering ontology interpretations may be rephrased
as the problem of finding all those ontologies in a large repository R
that could serve as a context (in the above sense) for a given ontology
O1. I.e. given O1, we are looking for the set

{O2 ∈ R | O1 is interpretable into O2}.

Conversely, given O2, we can look for the set

{O1 ∈ R | O2 is interpretable into O1},

i.e. the set of all ontologies into which O2 can be interpreted.
In case of ontologies formalised in FOL, this task is undecidable,

whereas for ontologies formalised in DL it is generally decidable.
I.e., given the ontologies O1, O2, and a signature morphism σ from
O1 to O2, it is decidable whether the σ-translated axioms of O1 are
entailed by O2. However, the combinatorial explosion yielded by try-
ing to find all possible symbol mappings between two given ontolo-
gies makes such a brute force approach unpractical.

To obtain one of the answer sets above in reasonable time (i.e sec-
onds or minutes), we necessarily have to relax our initial goal towards
an approximation of the set of all possible contexts for a given on-
tology. In summary, our approach for the first-order caseis based on
formula matching modulo an equational theory—elaborated in detail
in [20]. We want to outline this in the following.

Suppose we are given a source ontology O1 and a target ontol-
ogy O2, which we assume have been translated to first-order via the

3 E.g. the OneOf constructor found in many description logics allowing a
finite enumeration of the elements of a concept is also expressible as a
disjunction of nominals, and conversely. Such translations/simulations can
be handled by a library of logic translations.

standard translations. In the first step, we normalise each sentence of
these ontologies according to a fixed equational theory. The under-
lying technique basically stems from term-rewriting: rewrite rules
represent an equational theory such that all sentence transformations
obtained through these rules are in fact equivalence transformations,
e.g. such as ¬A & ¬B )→ ¬(A ' B). A normal form of a convergent
rewrite system is then the unique representative of a whole equiva-
lence class of sentences. The goal of normalisation is thus to identify
(equivalent) expressions such as ¬(∃R.A & B

)
and ¬B ' ∀R.¬A.

In the next step, we try to translate each normalised axiom ϕ from
O1 into O2, i.e. we seek a sentence ψ in O2 and a translation σ such
that σ(ϕ) = ψ. Note that potentially each axiom can be translated to
several target sentences via different signature morphisms. To trans-
late all axioms of O1 into O2, there must be a combination of com-
patible signature morphisms4 determined from the previous, single
sentence matchings. This task is also known as (consistent) many-
to-many formula matching. In fact many-to-many formula matching
modulo some equational theory is already applied in automated the-
orem proving (ATP) [11]. However, our approach is different in a
crucial aspect: it allows for significant search speed up. We are nor-
malising all ontologies as soon as they are inserted into the repos-
itory, i.e. not at cost of query time. Only the normalisation of the
query ontology is at query time. Moreover, the normal forms not just
allow for matching modulo some equational theory, but also enable
a very efficient matching pre-filter based on skeleton comparison. A
sentence skeleton is an expression where all (non-logical) symbols
are replaced by placeholders. E.g., ! ( ! ' ! is the skeleton of
A ( B 'C. Obviously, two sentences can only match if they have an
identical skeleton. Since syntactic identity can be checked in constant
time, a skeleton comparison is a very efficient pre-filter for sentence
matching.

Concerning sentence normalisation, some further improvements
in comparison to traditional normalisation in ATP should be men-
tioned. In ATP, formulae are typically normalised to CNF for reso-
lution, or DNF for tableaux reasoning. Both are not unique normal
forms (even not modulo associativity and commutativity (AC)). Our
approach uses a Boolean ring normal form which is unique modulo
AC. Moreover, we developed an AC standardisation that computes a
unique skeleton for given AC-equivalence classes of sentences.

All the presented techniques were developed in the context of
formalised mathematics and a tool for the automated discovery of
theory interpretations in first-order logic has already been imple-
mented [20]. This has been used for experiments on a FOL version
of the Mizar library [18] that contains about 4.5 million formulae dis-
tributed in more than 45.000 theories, and thus is the world’s largest
corpus of formalised mathematics. Experiments where each theory
was used as source theory for theory interpretation search in the rest
of the library demonstrated the scalability of our approach. On aver-
age, a theory interpretation search takes about one second and yields
60 theory interpretations per source theory.

4 Discussion and Outlook

Because of the encouraging results in formalised mathematics, we
are currently adopting and modifying these techniques for the ap-
plication in the realm of ontologies. In principle, the methods for
automated discovery of theory interpretations developed in [20] can

4 Two signature morphisms are compatible if they translate all their common
symbols equally.



be applied to any formalised content as long as the entailment rela-
tion obeys certain properties (as specified e.g. in entailment systems
[17]).

Of course, there is no guarantee that what is successful for math-
ematical theories is equally successful for formal ontologies, and
some of the characteristics and features regularly found in ontolo-
gies are problematic.

A central difference between formalised mathematics and ontolo-
gies is in the expressivity of the underlying formal languages: obvi-
ously, FOL (mostly used for formalised mathematics) is more ex-
pressive than typical DLs (used for ontologies). This is also reflected
in the more complex grammar of FOL: DL typically completely
lacks variables, often has no function symbols, and also no relations
of arity greater than two. Hence, FOL formulae containing such con-
structs do not have a directly corresponding syntactical expression in
DL. Intuitively, we may say that, compared to DL, there is a larger
syntactic variety of FOL formulae. In practice, the majority of on-
tologies that can be found on the internet even make use of only a
rather small fragment of the DL expressivity—for instance, ontolo-
gies which are just taxonomies have no other axioms than is-a hier-
archies.

This difference in syntactic complexity between FOL and DL has
most likely in many cases two (mutually dependent) unfavourable
consequences for ontology morphism search: 1) a less effective
skeleton filter and 2) lots of meaningless search results. Due to the
lower structural variety of axioms in ontologies, many DL axioms
share identical skeletons. Thus, on average, a given skeleton in DL
does not reduce the search space for matching formulae in an ontol-
ogy on the same scale as a skeleton in a FOL theory would. For the
same reason, the chance to match a source formula to many target
formulae is higher in DL ontologies than in FOL theories. In other
words: it is generally likely that the number of interpretations be-
tween DL theories is much higher than between FOL theories. In
many (if not most) cases, these DL interpretations may turn out to be
meaningless, though. A typical example is an interpretation between
taxonomies: if we consider the is-a hierarchy of a taxonomy as a tree,
then ontology matching becomes essentially tree matching. Clearly,
a ‘small’ tree can often be mapped into a ‘large’ tree in several ways.
Since such a mapping does not at all depend on the node names of
the involved trees (i.e. the terms of the ontologies), this means that
there may be quite a few interpretations between taxonomies of com-
pletely unrelated domains. Such interpretations, however, are mean-
ingless from a common sense perspective.

Initial experiments on DL ontologies already suggested some
ideas on how to overcome these problems in future work:

• Interactive search space reduction: the user should be able to en-
force some mappings of non-logical symbols—often some map-
pings are explicitly intended.

• Exploitation of the decidability of DLs for the morphism search.
• Specialised normal forms designed particularly for various DLs.

Many approaches to connecting, aligning, or linking ontologies,
or to interpret the vocabulary (and thus re-use its axiomatisation) of
one ontology in another, rely on notions of symbol mapping that are
more complex than simple signature morphisms. Examples of such
formalisms, which introduce additional semantic complexity, are dis-
tributed DLs [16, 3, 2] and E-connections [15, 5]. The general se-
mantic idea of these approaches is similar, and is illustrated in Fig. 2.

Here, given two ontologies S1 and S2, we first construct their dis-
joint union keeping the vocabulary completely disjoint. Given a ‘link
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Figure 2. E-connections or DDLs as structured heterogeneous theories

language’ that allows to axiomatically connect the sorts of the com-
ponent ontologies, we can in a second step provide a theory exten-
sion CE(Sm

1 ,Sm
2 ), see [13] for technical detail. The nature of the ‘link

language’ is here left open intentionally, as this is the main point of
divergence between DDLs, E-connections, and similar approaches.

The necessity of using such kinds of more expressive link or map-
ping languages has been shown in many application scenarios. [12],
for instance, analyse the problem of relating an ontology encoding
the linguistic spatial semantics of natural language utterances as rep-
resented in GUM [1] with spatial calculi, using the example of the
double-cross calculus DCC [8] for projective relations (orientations).

Clearly, the problem of theory interpretation search takes a dif-
ferent turn in such a situation. Given ontologies S1 and S2, find an
appropriate bridge theory B (for instance a set of bridge rules in the
sense of [3]) and a signature morphism σ such that for all formulae
φ (in an appropriate signature)

S1 |= φ implies 〈S1,S2,B〉 |= σ(φ)

Whilst the bridge theory typically interacts with the semantics of S1

and S2, it is often natural to assume that B is conservative in at least
one direction (see e.g. [4]). Different variants of this definition need
to be analysed. Moreover, the algebraic equational theory that is used
to identify equivalent formulae needs to be adapted in order to allow
the identification of axioms loosely associated through a bridge the-
ory.

Concerning automated reasoning support, a tool for the automated
discovery of theory interpretations in first-order logic has already
been implemented [20], and is currently being integrated into the
Hets system [14, 19] with the aim of adding specialised routines for
decidable ontology languages and corresponding integration prob-
lems. At the moment we perform experimental tests on a set of on-
tologies to evaluate the potential of first-order based theory interpre-
tation search.
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