
Ontology Reuse and Exploration
via Interactive Graph Manipulation

Immanuel Normann1 and Oliver Kutz2

1 Department of Linguistics and Literature, University of Bremen, Germany
normann@uni-bremen.de

2 Research Center on Spatial Cognition (SFB/TR 8), University of Bremen, Germany
okutz@informatik.uni-bremen.de

Abstract. Reusing ontologies can significantly accelerate the develop-
ment of new ontologies, and therefore interoperability. However, reuse of
ontologies calls for efficient means to identify reusable parts within and
across existing ontologies. This paper presents a novel, graphical user
interface to explore semantic overlaps between ontologies in order to
identify parts for knowledge reuse. Existing tools typically only compare
pairs of ontologies. Our approach allows for exploring concept mapping
links across arbitrarily many ontologies, represented as so-called hyper-
ontology graphs. To cope with the inherent complexity of such graphs, we
allow for a variety of information hiding techniques tailored to specific ex-
ploration tasks. By manipulating the hyperontology graph interactively
the user can refine the concept mapping network to his needs. Finally, we
show how the resulting graph can be used to automatically synthesise
a new ontology by extracting the corresponding modules and merging
them appropriately.

Key words: Ontology repositories, modularity, matching, information
visualisation

1 Introduction

Creating a high-quality ontology from scratch is a time consuming endeavour.
Reusing existing ontologies or fragments of them is the obvious thing to do
here. In most cases, the envisioned new ontology overlaps with several existing
ontologies in various aspects and degrees: they may share instances, common
or similar class or property names, or indeed axioms. The only ‘reuse’ construct
supported by the OWL languages is to globally import the whole of an ontology.
Of course, this is rather undesirable as it is too coarse, i.e. it (often) imports too
much.

The general subject of our work are two problems of ontology reuse: firstly,
the matching process, i.e. how to identify the overlapping fragments of on-
tologies, and secondly, the merging process, i.e. how to merge the overlaps of
interest into a new ontology.

Both problems are central issues in the research area of ontology matching
[5]. Our contribution regarding the first problem is a graphical user interface to

2 Immanuel Normann and Oliver Kutz

support the user in identifying knowledge overlaps between multiple ontologies
interactively. Regarding the second problem, we present a method to extract
these identified overlaps, merge them into a new ontology, and analyse their
consistency.

The focus of this paper is on the matching process, whereas the second as-
pect, the merging process, will only briefly be sketched from the user interaction
perspective. Theoretical details as well as implementation descriptions about
the extraction and merge process are discussed in our related paper [12]. By
“the system” we refer in the following to a software component (at the time of
writing an experimental system under constant development) that controls the
behaviour of a graphical user interface.

As said above, reusing existing ontologies to create new ontologies is a ma-
jor goal. Creating a new ontology typically starts with a set of relevant terms
(words) denoting ontological entities (classes, instances, properties, etc.) of our
interest. The intellectually more demanding effort lies in specifying the right con-
straints for these entities, i.e., defining a concept hierarchy, domain and range for
properties, stating axioms, etc. Reusing this kind of knowledge is therefore the
main goal. So the basic idea is a systems that takes as initial input only words
and returns all relevant knowledge it can find from the ontology repository. This
relevant knowledge should comprise all axioms (specified in other ontologies) for-
mally determining the meaning of these words. Finding the right reusable parts
is an interactive process, though, only initialized by these input words that serve
as seeds for knowledge aggregation. Very often, however, identical concepts are
expressed in different words in different ontologies. Therefore, we have to take
synonymy into account. Matching class and property names across ontologies
is thus our initial step towards ontology reuse. A survey of ontology matching
techniques and system evaluations can be found in [5].3

For our purposes, we take advantage of existing systems, in particular Fal-
con [6], to calculate name correspondences between pairs of ontologies. A corre-
spondence is the outcome of a cross ontology matching process and relates two
(ontological entity) names from two different ontologies (with a certain confi-
dence level). The most common relations for such correspondences are equiva-
lence, subclass, and disjointness [5].4 However, at the current state of our work
we are contented with the equivalence relation as the sole correspondence con-
sidered; i.e. we ask our ontology matcher (Falcon) to search for name corre-
spondences that can be considered as synonyms.

Before the user starts interacting with the system, the repository is prepro-
cessed by a matcher system (Falcon in our case): each ontology is matched
against each other in the repository. This results in a list of synonyms for each

3 Ontology matching and alignment based on statistical methods is a relatively devel-
oped field, with yearly competitions since 2004 comparing the various strengths and
weaknesses of existing algorithms. See http://oaei.ontologymatching.org/2009/

4 Note that modular ontology languages such as DDLs and E-connections take a more
complex approach towards cross ontology relationships [3,10], but are outside the
scope of this paper.

Ontology Reuse and Exploration via Interactive Graph Manipulation 3

ontology pair. This way the system knows all about synonymy in the reposi-
tory beforehand and not just when the user asks for it. In practice, it turns out
that, in our repository ORATE5, less than 5% of ontology pairs have non-empty
synonym lists, which reflects that in more than 95% of the cases two randomly
chosen ontologies (according to the matcher) talk about completely different
things.

From the list of synonyms belonging to pairs of ontologies we compute sets
of synonyms (synsets for short) that belong to sets of ontologies: for instance,
if Falcon determines the word transporter from the Transport ontology as
a synonym for the word carrier in the Logistics ontology as well as the word
vehicle in the Traffic ontology, then {transporter, carrier, vehicle} is a
synset for the ontologies {Transport, Logistics, Traffic}. Once all synsets of
the repository are calculated, the ontology developer can match her initial words
(used as seeds for the envisioned ontology) against these synsets. It should be
mentioned that this matching process is based on regular expressions—no ontol-
ogy matcher is involved here. If for instance one of the initial words is vehicle,
then the system would find it in the synset {transporter, carrier, vehicle}
and return the ontologies {Transport, Logistics, Traffic} as recommended
candidates for ontology reuse in the subsequent steps of ontology development.

Eventually, the system will find all ontologies related (via the precompiled
synsets) to a given set of initial words. The ontology developer may then further
restrict or extend the set of ontologies that should be partially reused later on.
A graph based presentation of the remaining ontologies and synsets allows the
developer to select those elements that should be included or excluded in the
following knowledge reuse process.

2 Ontology-Class-Synset Graph

In general, ontology matching can match various constructs of the ontology lan-
guage and the outcome of the matching can be various kinds of relations between
these constructs attached with a confidence value [9,5]. This paper describes
work in progress in an early stage, hence it currently only tries to capture the
fundamental features of ontology matching: we are only interested in matchings
that involve class names and whose result is the synonymy relation (moreover,
we forget about the confidence level). Thus, ontology matching (in the fol-
lowing simply called matching) in our context means to find synonyms of class
names between two ontologies, i.e., the result of a matching is a set of name
pairs (synonyms). For instance, an aviation ontology may contain the classes
airport, cargo, and passenger whereas a ship transportation ontology may
contain the classes port, freight, and passenger among other classes. A typical
matching result would be the set of pairs

{(airport, port), (cargo, freight), (passenger, passenger), . . .}

5 http://ontologies.informatik.uni-bremen.de/

4 Immanuel Normann and Oliver Kutz

We distinguish two phases of the matching process: first, a matching tool com-
putes synonyms, and subsequently the developer manually deletes mismatches
and adds synonyms not detected by the matcher. We shall call the first phase the
automated matching phase and the latter the manual matching phase (or
also the matching revision phase). The former is moreover a preprocessing
phase since it is performed before the developer starts searching for ontologies
to be reused.

Semantic matching is a non-trivial process, so we can never totally rely on
the results obtained from automated matching. Syntactic matching leads to re-
sults like (airport, port), which is at least an arguable identification. Lexical
matchings like lookups in Thesauri (e.g. WordNet6) tend to yield more convinc-
ing results like (cargo, freight). Due to this limited competence of automated
matching systems, an efficient support for matching revision is desirable to get
the right synonyms.

Essentially, our approach for manual matching revision is to visualise the
relevant outcome of the automated matching process as a graph and let the de-
veloper (visually) manipulate this graph until it represents the desired synonyms
between class names of different ontologies.

Our central data structure representing a matching of several ontologies is a spe-
cial kind of graph, called OCS-graph or visual hyperontology graph.7 It has
(1) two type of nodes: C-nodes representing classes and O-nodes representing
ontologies, and (2) two types of edges: CC-edges between C-nodes representing
synonymy and OC-edges between O-nodes and C-nodes saying that the class
is part of the ontology. Note that an OCS-graph may contain several nodes with
the same label. In case of O-nodes it can happen that different ontologies are
labelled by their respective developers with the same name. More importantly
for us, though, duplicates of C-nodes indicate possible homonymy: the class
name point may stand for two entirely different concepts, a geometric object,
or a unit of counting in scoring a game. Revising a matching in the graph
representation thus means deletion of any kind of nodes or edges, or adding new
CC-edges (compare [7] for a related approach concerning mapping revision and
debugging).

The main challenge in the graph presentation, however, is to present to the
user only the relevant fragment of the OCS-graph, because even for a small set
of ontologies the graph soon becomes very complex so that the user easily gets
lost in all its crossing links and cluttered nodes.

One obvious way of complexity reduction in a graph is hiding and revealing
nodes together with their in- and outgoing links. We will not talk much about
this feature; the basic idea follows the scheme “hide all nodes satisfying property

6 http://wordnet.princeton.edu/
7 These graphs are a ‘visual’ variant of the corresponding ‘textual’ hyperontology spec-

ifications which codify the formal structuring of the theory represented by such a
graph. The relationship between the two is described in more detail in [12]. Hyper-
ontologies as distributed, structured and heterogeneous ontologies have been studied
in depth in [11].

Ontology Reuse and Exploration via Interactive Graph Manipulation 5

Fig. 1. Collapsed subgraph: the nodes 3, 4, and 5 from the left graph are collapsed to
a single node (3,4,5) in the right graph.

P”, where P could be, e.g.: “being connected to node C”, etc. There is a huge
number of possible filter criteria with various areas of applicability (see e.g. [8]),
some of which we will make use of in the examples below.

Another common way to reduce complexity efficiently is to collapse connected
parts of a graph into single nodes. We consider this technique as one of the most
promising for our purpose. Fig. 1 shows schematically how this works in principle.

The only types of subgraphs we want to collapse are syncomponents and
C-clones. A syncomponent is a maximally CC-edges-connected subgraph that
contains only C-nodes. The set of C-nodes extracted from a syncomponent rep-
resents a set of synonym class names—we call it a synset. A C-clone is a max-
imally connected subgraph of a syncomponent whose C-nodes all have identical
labels.8

Fig. 2. The nodes 3, 4, and 5 from the left graph of Fig. 1 are collapsed to a graph
inside a node.

There are two basic types of visually presenting a graph collapse: reduce to a
set of labels (this is depicted in Fig. 1) or to inner graphs (as depicted in Fig. 2).
Collapsing to a set of labels reduces more complexity than collapsing to an inner
graph: in the latter case, the edges from the outside nodes are reduced whereas
in the former case also the edges of the subgraph vanish. Finally, it should
be noted that all complexity reduction operations (i.e. hiding and collapsing)
can be performed without any loss of information, i.e., there always exist the
corresponding inverse operations of reveal and expand.

8 Note that there can be several C-clones within one syncomponent.

6 Immanuel Normann and Oliver Kutz

3 Graphical Interaction on the Hyperontology Graph

So far we have described in general how we represent a multi ontology matching
by a graph and how such a matching can be manually analysed and modified
by a set of graph manipulation operations. In this section, we want to illustrate
this process by an example.

Let us assume our developer wants to develop an ontology for transportation
by reusing knowledge from a repository that contains, among other, several pre-
sumably related ontologies like Logistics, Traffic, Public transport, etc.
In order to retrieve this knowledge, she starts entering the following initial class
names for concepts: passenger, freight, vehicle, line, and route.

ship transport

warehouse car industry

goods

load

automobile

cargo

car vehicle

carrier carriage

freight

 aviation

public transport Graphics traffic network

airline

bus line

underground line

line route

shipping route

bus route train route

passenger

Fig. 3. Presentation of the OCS-graph: blue rectangle = O-node; orange ellipse =
C-node. The C-nodes are collapsed to sets of labels that form synsets (big yellow
rectangles). Note that passenger is a singleton synset.

The system displays the graph as shown in Fig. 3 where all syncomponents
are collapsed to sets of labels. Here, and in all following figures, the ellipses
represent C-nodes (e.g. freight, passenger, line, etc.). Those ellipses grouped
in a big yellow rectangle represent a synset (e.g. freight and vehicle)9 whereas
a small blue rectangle with a single name in it represents an ontology. There
are only arrows from O-nodes to synset boxes or sole C-nodes, meaning that
the corresponding classes are contained in the linked ontologies (e.g. the class
freight is part of the warehouse and the ship transport ontology). In order to
reduce complexity, only those synset boxes are presented that contain synonyms
of the class names initially entered by the developer. In our example, we have
the above mentioned five initial class names passenger, vehicle, line, and
route. These are classified (by simple syntactic matching) into three synsets: the
left most contains freight and vehicle among others, the right most contains
line and route among others, and the third in the middle is one that contains
passenger as the only class name. The condensed graph shows all relevant
synsets for a given list of class names together with their contexts, i.e., the
ontologies where they occur.

9 C-nodes outside of a rectangle do not have synonyms (e.g. passenger).

Ontology Reuse and Exploration via Interactive Graph Manipulation 7

aviation ship transport

warehouse car industry

traffic network

goods

load

automobile

cargo car

vehicle

carrier

carriage

freight

Fig. 4. Graph collapsed to an inner-graph which is a syncomponent.

As mentioned before, the synsets automatically found by a matcher are often
unsatisfying. This is also the case for vehicle and freight in our example: in
contrast to the matcher, we would not consider these two words as synonyms for
the same concept. To see where this mismatch stems from, we can expand our
condensed view of our graph. Fig. 4 shows the expansion of that synset. Arrows
between C-nodes in this synset represent the synonymy relation computed by the
matcher. Obviously, this relationship is not an equivalence relation, in particular
it is not transitive. Otherwise, there should be, for instance, a link from cargo

to vehicle, because these C-nodes are connected via car.

Yet, by default, we tacitly assume that the synonymy relation computed
by the matcher induces an equivalence relation (i.e., that it’s transitive and
symmetric closure hold as well). It is the user’s obligation, though, to remove
(or add) synonymy links from the computed synset to adjust it to commonsense
understanding. In our example, an obvious synonymy mismatch is cargo to car

(which typically results from mere partial syntactic matching).

Hence, the user would interactively remove the cargo–car link and thereby
split the synset into two synsets as shown in Fig. 5. Along this separation we
see also how the contexts (i.e. the corresponding ontologies) separate, only the
aviation ontology contains concepts from both synsets. The left-hand synset
box of Fig. 5 already comprises a reasonable set of synonyms, whereas the right-
hand synset box may suggest further splitting. For this it might be necessary to
look more deeply into the (axiomatic) details of the involved ontologies, but this
is beyond the scope of this paper.

Let us now turn to the expanded synset depicted in Fig. 6 which contains
the class names line and route (i.e. the right-hand synset box from Fig. 3).
This view is more detailed than Fig. 5 as it not just links ontologies to a synset,
but moreover to the classes inside the synset. In general, this expansion shows
more ontology to class name links, as an ontology itself can already contain
synonyms. For instance, in the public transportation ontology the matcher
has computed underground line and bus line as synonyms for line from

8 Immanuel Normann and Oliver Kutz

 aviation

ship transport

warehouse
car industry

goods

load

automobile

cargo car

vehicle

carrier

carriage

freight

public transport

Fig. 5. Collapsed graph with two syncomponent as inner-graphs.

the ship transportation ontology. Note again that the matcher has not com-
puted underground line and bus line directly as synonyms, but due to our
interpretation of synonymy as equivalence relation these two class names are
indirectly synonyms (due to the transitivity of synonymy). Again, we have sev-
eral synonymy mismatches. Most of them could be repaired much the same way
as described above. But what is new here is the occurrence of homonyms, i.e.,
one word with two meanings, namely two meanings of the word line. Just from
the context information we can see that this line class name refers to two very
different contexts, namely the graphics and ship transportation ontology.

Fig. 6. Graph with two collapsed C-clones: the C-node line and the C-node route.

Ontology Reuse and Exploration via Interactive Graph Manipulation 9

Most likely we do not want to integrate the notion of line from the graphics
ontology into our envisioned transportation ontology. Hence, we want to make
explicit the existence of two meanings for a single label. This is done with the
further expansion of our diagram Fig. 6 as depicted in Fig. 7, where two nodes
with the label line are displayed: one linked to the graphics and the other to
the ship transportation ontology. Apart from line the class name route is
also contained in two ontologies, namely ship transportation and traffic

network. In Fig. 6 they are also visible as two C-nodes in Fig. 7.

aviation ship transport

public transport Graphics

airline

bus lineunderground line

line

route

shipping route

bus route

train route

traffic networkline

route

Fig. 7. Fully expanded hyperontology graph.

Comparing Fig. 6 and Fig. 7, we also see that the single synonym link
from line to route expands to two synonym links. In particular, we see that
line from ship transportation has not been linked to route from ship

transportation, but to route from traffic network—a detail that was not
visible in Fig. 6.

Now that we have the fully expanded view of a synset, we can remove all
mismatched synonymy links. The final result might look like Fig. 8.

4 Module Extraction and Ontology Synthesis

We said in the previous section that the outcome of the above described proce-
dure is an OCS-graph that serves as a basis for the synthesis of a new ontology
that reuses knowledge from the ontology repository. In this section, we sketch the
whole process of ontology reuse depicted in Fig. 9 with the graph manipulation
being a central part.

Before any interaction with the user takes place, a matcher computes all syn-
onyms between ontologies in the repository and thus builds the initial OCS-graph.
Only a part of this graph is presented to the user based on the initially provided
class names as described above. Manipulating the OCS-graph is basically the

10 Immanuel Normann and Oliver Kutz

aviation ship transport

public transport

airline

bus lineunderground line

route

shipping route

bus route

train route

traffic networkline

route

Fig. 8. The final, fully expanded hyperontology graph where all synonymy mismatches
are removed.

matcher

restrict
extend

select words

extract modules

merge modules check qualitysynset graph

modules

interface

ontologyrepository

ontology

fail

success

Fig. 9. Flow diagram of the ontology synthesis by reusing knowledge fragments from
the ontology repository. Green ellipses represent artefacts that are inputs or outputs
to process steps represented as yellow rectangles.

combined action of restriction and expansion that is performed in a cycle un-
til the OCS-graph reflects the intended knowledge core of what should become
a new ontology—we call this graph the seedgraph for an ontology synthesis.
Once the user has extracted the seed graph from the initial OCS-graph, this
graph is used to synthesise a new ontology. Each O-node together with all its
linked C-nodes in the seed graph are fed into a module extractor (see [15] for a
discussion of properties of different kinds of modules). Parallel to this, the user
selects from each synset in the seed graph a favourite class name as a represen-
tative (since the final ontology should not contain redundant synonyms). The
set of all representatives of all synsets constitute the interface for all the mod-
ules. From these modules and their interfaces the new ontology is automatically
synthesised through so called V-alignments—this process reuses all the knowl-
edge formalised in the modules and uses the interface to remove all redundant
synonyms (details can be found in [17,11,12]).

5 Related Work

Ontology matching is the general research field related to our work and [5]
is probably the most extensive monograph about this topic. A central online

Ontology Reuse and Exploration via Interactive Graph Manipulation 11

resource to this field is http://www.ontologymatching.org/. Both sources
list and discuss more than 40 matching tools (not all of them can deal with
OWL, though). The main purpose of these tools is to automatically compute
alignments—not just regarding synonymy, but also other relations like subsump-
tion and disjointness. At the current stage of our work we have no preference
regarding the underlying algorithms of these matchers. We chose Falcon [6] for
practical reasons, namely because it was easier to run in batch mode than any
other tools we tried. Moreover, it is fast enough to match around 50 ontologies
of a repository pairwise against each other within a reasonable amount of time
(a few hours on a standard PC). Since our main contribution is the graphical
interaction to edit ontology alignments, we want to discuss some of those match-
ing tools that also offer graphical alignment editing. Without making a claim
to completeness we list some prominent examples: MapOnto [1], COMA++
[2], Anchor-Prompt [13], and OntoMap [16]. MapOnto is a system for map-
pings between ontologies and relational or XML schemas. It produces in a semi-
automatic way complex mapping formulas expressed in Horn clauses. The user
can then choose interactively from alternative mapping formulas. COMA++ is
a schema matching infrastructure that provides an extensible library of match-
ing algorithms. The matching operation is a workflow that can be graphically
edited. To evaluated the results of different matching operations, special op-
erations are provided. Anchor-Prompt is an extension of Prompt and plugin
for Protégé for ontology merging and alignment. OntoMap is a plug-in for the
ontology-management platform NeOn Toolkit10 which supports the creation and
management of ontology mappings via a graphical interface. Apart from match-
ing tools, there are ontology repositories that store mappings: CupBoard is
a repository that allows users to populate their ontology spaces not only with
ontologies, but also with alignments (mappings). Using the Alignment Format
[4], alignments can be uploaded for a given (pair of) ontology(ies). An alignment
server then offers to CupBoard the necessary features to support the manage-
ment, evaluation, and even production of alignments. In BioPortal [14], the
user can edit, store and retrieve mappings between classes in related ontologies.

Common to all these tools is that always only two ontologies (or schemas)
are presented at a time. Hence, semantic overlap can be studied only between
two ontologies presented side by side. This is sufficient if the user already knows
what pair of ontologies to investigate for potential overlap. Our approach, in
contrast, supports the task to first figure out which ontologies have the relevant
semantic overlap to a given set of class names. With current systems, this task is
very tedious to achieve: one needs to search for ontologies containing the given
class names and then scan and analyse all their matchings with other ontologies
in the repository step by step. We believe that, with our approach, the user will
find much faster the semantic overlaps between ontologies from a repository for
a given set of class names because of the simultaneous presentation of matchings
involving several ontologies.

10 http://neon-toolkit.org

12 Immanuel Normann and Oliver Kutz

6 Future Work

We have introduced the notion of a hyperontology graph as a representation
for concept matching across ontologies; we demonstrated several task specific
techniques of information hiding to cope with the complexity of that graph,
and we determined graph modification operations to correct “wrong” concept
matchings. The resulting graph can be used to automatically synthesise a new
ontology from the explored and user-adjusted fragment of the hyperontology
graph.

Synonymy of class names was the only type of link that we considered so far
in the hyperontology graph. All our definitions extend naturally to synonymy of
property names. However, generalising our approach to other types of matching
than synonymy requires more conceptual work. The next matching types we are
going to investigate within our approach will be subsumption and disjointness.
Adding new types of links to the hyperontology graph increases its complexity
and thus calls for new kinds of information hiding techniques.

At the time of writing the system is in its early alpha stage and serves mostly
as a proof of concept. It is not yet mature enough for a systematic evaluation
w.r.t. usability and scalability, but will be made freely available and accessible
as a web-service at a later stage.

Acknowledgements

Work on this paper has been supported by the DFG-funded collaborative re-
search centre SFB/TR 8 ‘Spatial Cognition’ and by the EU-funded OASIS
project.

References

1. An, Y., Borgida, A., and Mylopoulos, J. Discovering the semantics of rela-
tional tables through mappings. In LNCS 4244 - Journal on Data Semantics VII
(2006), pp. 1–32.

2. Aumüller, D., Do, H.-H., Maßmann, S., and Rahm, E. Schema and ontology
matching with COMA++. In Proc. 24th International Conference on Management
of Data (SIGMOD), Software Demonstration (Baltimore (MD US), 2005), pp. 906–
908.

3. Borgida, A., and Serafini, L. Distributed Description Logics: Assimilating
Information from Peer Sources. Journal of Data Semantics 1 (2003), 153–184.

4. Euzenat, J. An API for ontology alignment. In Proc. 3rd International Semantic
Web Conference (ISWC) (Hiroshima (JP), 2004), vol. 3298 of Lecture notes in
computer science, pp. 698–712.

5. Euzenat, J., and Shvaiko, P. Ontology matching. Springer-Verlag, 2007.

6. Jian, N., Hu, W., Cheng, G., and Qu, Y. Falcon-AO: Aligning ontologies with
Falcon. In Proc. K-CAP Workshop on Integrating Ontologies (Banff (CA), 2005),
pp. 87–93.

Ontology Reuse and Exploration via Interactive Graph Manipulation 13

7. Jimenez Ruiz, E., Cuenca Grau, B., Horrocks, I., and Berlanga, R. On-
tology Integration Using Mappings: Towards Getting the Right Logical Conse-
quences. In Proc. of the 6th European Semantic Web Conference (ESWC 2009)
(2009), LNCS, Springer.

8. Jünger, M., and Mutzel, P., Eds. Graph Drawing Software. Mathematics and
Visualization. Springer-Verlag, 2004.

9. Kalfoglou, Y., and Schorlemmer, M. Ontology mapping: the state of the art.
The Knowledge Engineering Review 18, 1 (2003), 1–31.

10. Kutz, O., Lutz, C., Wolter, F., and Zakharyaschev, M. E-Connections of
Abstract Description Systems. Artificial Intelligence 156, 1 (2004), 1–73.

11. Kutz, O., Mossakowski, T., and Lücke, D. Carnap, Goguen, and the
Hyperontologies—Logical Pluralism and Heterogeneous Structuring in Ontology
Design. Logica Universalis 4, 2 (2010). Special Issue on ‘Is Logic Universal?’.

12. Kutz, O., Normann, I., Mossakowski, T., and Walther, D. Chinese Whis-
pers and Iterative Alignments. In Proc. of the Fifth International Workshop on
Ontology Matching (OM-2010) (ISWC-2010, November 7, 2010, Shanghai, China),
CEUR-WS.

13. Noy, N. F., and Musen, M. A. Anchor-prompt: Using non-local context for
semantic matching. In Proc. of the workshop on ontologies and information sharing
at IJCAI-01 (2001), pp. 63–70.

14. Noy, N. F., Shah, N. H., Dai, B., Dorf, M., Griffith, N., Jonquet, C.,
Montegut, M. J., Rubin, D. L., Youn, C., and Musen, M. A. Bioportal: A
web repository for biomedical ontologies and data resources [demonstration], 2007.

15. Sattler, U., Schneider, T., and Zakharyaschev, M. Which kind of module
should I extract? In Proc. of DL-09 (2009), vol. 477, CEUR-WS.

16. Weiten, M. OntoSTUDIO as a Ontology Engineering Environment. In Semantic
Knowledge Management, J. Davies, M. Grobelnik, and D. Mladenic, Eds. 2009,
pp. 50–60.

17. Zimmermann, A., Krötzsch, M., Euzenat, J., and Hitzler, P. Formalizing
Ontology Alignment and its Operations with Category Theory. In Proc. of FOIS-
06 (2006), pp. 277–288.

