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Abstract. The problem of finding adequate semantics for languages of first-
order modal logic, both from a mathematical and philosophical point of view,
turned out to be rather difficult. The 1990ies have seen a number of attempts to
attack this problem from a new angle, by introducing semantics that extend the
usual framework of Kripkean possible worlds semantics.

In this paper, I briefly introduce the most important of these semantics and state
the main theoretical results that are known so far, concentrating on the (frame-)
completeness problem and the role of substitution principles. It is argued that
while the mathematical generality of the proposed semantics is a great step for-
ward, a satisfying philosophical interpretation of “Kripke-type” semantics has
still to be accomplished.

1 Introduction

The stages to which propositional and first—order modal logic have been
developed are quite different. While the former has turned into an estab-
lished research area with a profound mathematical grounding and many
applications in diverse fields such as philosophy, computer science and
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linguistics, the latter is still notoriously confused, from Aristotle’s Prior
Analytics via Quine’s ‘dictum of incomprehensibility’ to the current dis-
agreement on the right syntax and semantics.

In the propositional case, the possible worlds semantics—being de-
veloped among others by Hintikka, Kripke and Montague in the early
sixties—provides a canonical conception of semantics. Furthermore, the
phenomenon of Kripke incompleteness usually arises only as a (tech-
nical) side issue, because almost all ‘popular’ logics are complete with
respect to Kripke frames.

Now, in the first—order case, the interest focused on particular modal
systems (e.g., for analysing issues in metaphysics) which led to a deficit
in the general mathematical analysis. This tendency was of course am-
plified by the high complexity of semantic issues involved, like the in-
famous notion of a ‘modal individual’. Actually, the diverging intuitions
concerning this notion and the corresponding conflicting theories of iden-
tity are the major impediment to a uniform treatment of modal predicate
logic, MPL for short. Whereas there is almost agreement on how to define
a first-order version of a propositional modal logic', the issue of adding
additional axioms that correspond to certain assumptions on the class of
models, the most popular of which are the Barcan and Converse Barcan
Formulae (BF and CBF for short), arises. In the standard semantics they
correspond to the assumptions of decreasing and increasing domains, re-
spectively.?

Two typical problems are the following. If one assumes standard
semantics, even the quantified extensions of very simple propositional
modal logics, like, e.g., Q.S4.2 + BF (cf. [11]), exhibit Kripke incom-
pleteness.> On the other hand, if equality is part of the language and
non-rigid constants are preferred—which is quite natural in a number
of applications—then an asymmetry between variables and constants ap-
pears. While variables denote objects, constants now denote individual
concepts, that is, functions from the set of possible worlds to their do-

! Roughly, given a propositional modal logic £, a first-order axiomatization 8 and a first-order
modal language I, take all substitution instances of axioms of L or 8 in the language [ and
add the rule of necessitation. For details, cf., e.g., [11] or [4].

2 By “standard semantics” I mean here standard Kripke frames enriched by an assignment of
domains to worlds, meeting some extra conditions. Actually, if the CBF schema is omitted,
one has to deal with non—denoting terms and to move to a quantificational base in free logic,
e.g., by introducing an existence predicate.

% For further simple examples of incomplete logics and proof sketches, compare, e.g., [11].
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mains.* Those questions are intimately linked to whether the Necessity
of Identity, (¢ = d) — O(c = d) (Nol), or the Necessity of Distinct-
ness, (¢ # d) — O(c # d) (NoD), should be regarded as valid. Many
other modifications have to be made if certain assumptions about the de-
notation of terms across possible worlds or the behaviour of identity are
made, cf. [5].

Correspondingly, two endeavours may be distinguished. The first, be-
ing essentially mathematical, is to single out a general class of MPLs and
to give adequate semantics for it. The second, being philosophical in na-
ture, is to give a satistfying analysis of the notion of ‘modal individual’
and to provide for an appropriate syntax.

In what is to follow, I concentrate on the technical aspects and briefly
introduce and compare the different proposed generalized semantics—
referred to also as Kripke—type semantics—and state what is known about
them. I first discuss substitution principles and give a general notion of
(normal) modal predicate logic. A discussion of syntax extensions is
avoided altogether, but confer [4] for an extensive treatment of the use
of term—binding operators that, for instance, enable one to distinguish
between a de dicto and de re usage of constants .

2 First- versus Second—Order Closed MPLs

In [13], we introduced the distinction between first- and second—order
closed MPLs. These logics are defined by appealing to the following
substitution principles. By first—order substitution we mean the usual
substitution of terms for variables, while second—order substitutions are
defined as follows:

Definition 1 (Second—order Substitutions). Let o be a formula in which
the n-place relation symbol P appears and let ¢ be some modal for-
mula. Then (v/P)y is called a second—order substitution instance,
if (v/P)y is the result of replacing every occurrence of P(y) in ¢ by
W(y/x), possibly renaming some bound variables.

Notice that such a substitution principle is actually derivable in the
case of classical first—order logic and more generally for any logic that is

4 For a treatment of this in a classical setting, cf. [4].
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axiomatized by unrestricted schemata. Nevertheless, by assuming unre-
stricted second order substitution for a given logic I one automatically
extends the underlying modal theory of identity. E.g., given that (v =
y) — (P(z,z) — P(z,y)) is an admissible instance of Leibniz’ Law,
second order substitution yields (x = y) — (O(z = z) — O(x = y))
and hence (x = y) — O(z = y). Actually, this situation is one of the rea-
sons for introducing a weaker base logic than the usual QK°. In [13] we
worked with a system called FK which is a combination of propositional
modal logic K and positive fiee logic, PFLS.

If equality is introduced, the base logic is enriched by a weak form
of Leibniz” Law, which we called the Modal Leibniz’ Law. This basically
results from the usual Leibniz” Law by restricting the Quinean principle
of the “substitutability of identicals” to those instances that do not entail
‘transworld-identifications’ of individuals of any kind. Briefly, if x = y
and the variable x appears free within the scope of a modal operator, then
either all or no occurrence of  may be replaced by y. Hence, (v = y) —
(O(z = z) — O(x = y)) is not admissible, which blocks the provability
of the necessity of identity.’

We may now define MPLs as follows:

Definition 2 (Modal Predicate Logics). A set of formulae I with FK C
L is called a first—order closed modal predicate logic, if it is closed
under the rules necessitation, universal generalization and modus po-
nens and 1. is also closed under first—order substitutions. If L is addition-
ally closed under second—order substitutions, it is called a second—order
closed modal predicate logic. If we speak of a modal predicate logic L
simpliciter, L is assumed to be at least first—order closed.

% Here, QK denotes the quantified extension of the smallest normal modal logic—known as K
and being named after Saul Kripke—using standard first—order logic. K is obtained by taking
all substitution instances of axioms of classical propositional logic in the modal language and
by adding the axiom schema O(A — B) — (0OA — OB), referred to as normality, and the
additional rule A/O A, known as necessitation.

¢ Free logic is a family of logics weakening classical first-order logic in such a way that existen-
tial presuppositions are avoided. For instance, the formula ¢ (c) — Jx.¢(z) is not regarded
as valid. Positive free logic is a special flavour of free logic where formulas that contain terms
that are not within the scope of the quantifiers are ascribed truth values (‘non—existent’ versus
‘non—denoting’). For an introduction to free logic and detailed definitions compare [2], and
for an argumentation why free logic is not only useful but necessary, cf. [6] or [15].

7 Thus, the modal operators behave quite similar to what is known as an unselective binder in
linguistics.
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A natural solution to the above problem of generating possibly unin-
tended theorems involving equality is therefore to deal with second—order
closed logics without identity and to add a modal theory of identity, or,
alternatively, to incorporate the theory of identity into the logic while
restricting substitution in an appropriate way.

Note that a second—order closed logic is a second—order logic in the
sense that predicate symbols are treated as second—order variables with-
out allowing explicit second—order quantification. Hence, predicate vari-
ables are treated as being implicitly, universally quantified.

We have seen that closure under second—order substitutions has a
quite different flavour in a propositional setting as opposed to a first—
order setting. In particular, unlike the case of classical (non—modal) first—
order logic (where this principle is derivable), there are a number of
reasons to be interested in first—order closed MPLs and to treat them
as genuine logics. We list just a few of them. First, if atomic proposi-
tions/predicates enjoy a special status—Ilike in certain logics of time—
then substitution of complex formulae for atoms may not be admissible.
Actually, this was one of the reasons for Robert Goldblatt to introduce
a similar distinction in the propositional case and to call it a “signifi-
cant conceptual change” (compare his [9]). Similarly for the case where
basic predicates may be intensional. Second, if one works with a weak
logic of identity, then a restriction of substitution is unavoidable. Last but
not least, if generalized semantics are considered, there are naturally de-
fined frame classes whose logic is only first—order closed. However, one
can also argue in favour of closure under second—order substitution as
a defining property of the general concept of a ‘logic’, which has been
attempted for the case of MPL in [1].

3 Kripke- versus Kripke—Type Semantics

Kripke—type semantics differ from the usual Kripke semantics in two
essential aspects. First, instead of taking a Kripke frame, that is, a set of
possible worlds together with an accessibility relation, and to enrich it by
assigning domains to worlds, one starts with a family of first—order do-
mains and adds some set of functions or relations between the domains,
which in turn define accessibility between worlds. Hence, accessibility
is no longer a primitive of the frame but rather depends on the func-
tions/relations being present. This leads to the second fundamental differ-
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ence, namely that there may indeed be many distinct functions/relations
between two given worlds. The following Figure 1 shows some of the
different proposed Kripke—type semantics and their interdependencies.
An arrow from A to B indicates that the semantics A is a special case of
semantics 3.

Fig. 1. An overview over Kripke—type semantics

Informally speaking, there may be many ‘different ways’ to move
from one world to another. This distinguishes Kripke—type semantics
also significantly from standard counterpart theory (cf. [16]) and its de-
rived possible worlds semantics (cf. [10]). In fact, the simultaneous quan-
tification over both worlds and individuals in counterpart theory obscures
the notion of accessibility between worlds and leads for example to the
semantic refutability of certain K—theorems (cf., e.g., [11]). But the ex-
act connection between counterpart theory and Kripke—type semantics
has yet to be fully analysed.® That the feature of multiple functions or
relations is not eliminable is due to the fact that there are second—order
closed MPLs that are complete only with respect to frames having at least
two counterpart relations between worlds, cf. [14].

& But compare [3] for a variation of counterpart semantics that can be understood as a special
case of the counterpart frames to be introduced below.
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3.1 Functor and Metaframe Semantics

The functor semantics—mainly developed by Ghilardi—can be defined
as follows. Let C = (Obe, More) be a small category, i.e., the classes
Obe and M or¢ of the objects and morphisms are sets (rather than proper
classes). Every such small category has a frame representation F =
(W, <) by defining the set of possible worlds as W := Obe and by
setting for u,v € W: u < v iff C(u,v) # B, where C(u,v) is the set
of all morphisms in More from u to v. The notion replacing the usual
first—order Kripke frames is the notion of a C—set.

Definition 3 (C—set). Let C be a small category. A C—set is a set—valued
functor over C, i.e., a triple § = (F,D,E), where F = Obe, D =
(Dy)ues is a family of non—empty disjoint sets and & = (F,) e none
is a family of functions parametrized by morphisms from C, such that
E, : D, — D,, whenever i € C(u,v), and ., = £, o I, as well as
Eiq, =1idp,.

Truth in a C—set is as usual defined at a world v € W with D,, being its
domain and with respect to an interpretation of relation symbols and a
valuation 3, that assigns elements of [, to the variables. I just give the
clause for the modal case:

(u, Bu) Ep(y) iff AL, : Dy — Dy (v, B, 0 Bu) F @(y)

One interesting aspect of this semantics is that it enables one to prove
general incompleteness results with respect to Kripke semantics like the
following theorem which is from [7].

Theorem 1 (Ghilardi 1991). Let L O S4 be an extension of the propo-
sitional modal logic S4. Then, if QL is complete with respect to some
class of (standard) Kripke frames, then L O S5 or L C S4.3.

On the other hand, it also provided the first general completeness
results for a wide class of (interesting) MPLs, which is illustrated by the
following (reformulation of a) theorem from [8].

Theorem 2 (Ghilardi 1992). Every (standard) quantified extension of
a canonical propositional modal logic above S4 is functor frame com-
plete.®

® A logic is said to be canonical, if the frame underlying its canonical model is a frame for the
logic.
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The restriction to extensions of S84 is basically due to the formulation
in category theoretic language, namely to the last two conditions in the
definition of C-set, I/,,, = F, o F, and Iy, = udp,, that correspond
to transitivity and reflexivity, respectively. We will see that it can easily
be dispensed with when dealing with counterpart frames in the next sec-
tion. An analogous result to theorem 2 can also be found in [18] for the
metaframe semantics. These structures were first introduced in [18] and
further extended to general metaframes in [17]. They may be (roughly)
defined thus: Let >. denote the category of finite ordinals (i.e. natural
numbers with their usual ordering) and functions between them.

Definition 4 ((General) Metaframes). A general metaframe is a con-
travariant functor from the category . into the category of general frames
such that for every o : m — n, M(o) : M(n) — M(m) is a p—
morphism. In particular, for every n, M(n) = (F,, <., F,) is a general
frame, i.e., I, is a modal algebra based on the underlying Kripke frame
F(n) = (F,<,). A metaframe is a contravariant functor from . into
the category of Kripke frames such that F'(o) : F'(n) — F(m) isap-
morphism for every o : m — n. We call the members of F}, n—points.!?

The idea is this. F'(0) represents the frame of possible worlds, and
F(n) for n > 0, represents n—tuples over worlds. The arrows are needed
to identify the worlds and the abstract tuples. For example, there is a
unique map 0, : 0 — n for each n. Consequently, we have a map
M(0,) : M(n) — M(0). Thus, for each o € F(n), the world of a
is M(0,)(a). Further, there is a unique map 4,,.1 : n — n + 1 :
i — 4. Hence, we define a projection of a € F(n + 1) onto F(n) by
M(inﬂwl)(a)-

Actually, a metaframe has to meet further (algebraic) soundness con-
ditions in order to provide a proper semantics for MPLs, but we have to
omit the details. Informally, we now evaluate a formula—depending on
the number of its free variables—at an n—point in the metaframe. In fact,

10 A modal algebra IF,, based on the frame F'(n) = (F,, <l,) is a set of subsets of F,, closed
under Boolean operations and the operation A defined via AA = {z € F, | Vy €
F, :z <,y — y € A}. An interpretations into a general frame assigns elements of I,
to the propositional variables. Further, a p-morphism M (o) : M(n) — M (m) satisfies
)z <ny — M(o)(z) <m M(o)(y) for all x,y € F,, (i) M(o)(x) <m uv — Jy €
Folu=M(@o)(y) ANx <, y) forall x € F,, and w € Fy,, and (iii): M (o) ! is an algebra
homomorphism from F, to F',,. For further details compare, e.g., [12].
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it can be the case that there are more n-points than n—tuples of individ-
uals from £(1), which underlines that the notion of an individual in a
metaframes is indeed abstract.!!

If the n—points correspond exactly to the n—tuples from M (1), we
speak of cartesian metaframes. It has been shown in [18] that every func-
tor frame corresponds to a cartesian metaframe.

Finally, a completeness result for the class of all second—order closed
modal predicate logics based on standard first order logic and laws of
equality can be found in [17].

Theorem 3 (Shirasu 1998). A/l second—order closed modal predicate
logics are complete with respect to general metaframes.

3.2 Counterpart and Coherence Frames

I now come to the so-called counterpart frames which have been defined
in [13]. This semantics is actually quite close to the functor semantics
from the last section, yet it is formulated without the ‘padding’ of cate-
gorial language—thus skirting around QS4 as a base logic—and, on the
other hand, picks up some ideas from David Lewis’ Counterpart Theory
(cf. [16]) to deal, e.g., with the failure of the principle of the necessity
of identity. Before we properly define counterpart frames let us fix some
notation. We call a 2—place relation C' C D; x D; a CE-relation (CE for
counterpart existence), if for all d € D; there exists some e € D; such
that (d,e) € C. This condition is needed to ensure the bivalence of the
semantics and also to establish the usual K—axioms, i.e., normality.

Definition 5 (Counterpart frames). A counterpart frame is a pair § =
(W, C), where W = {D; | i € I} is some family of first—order domains
and C is a set of families C(D;, D) of CE—relations between each pair of
domains from W.!2

Accessibility is then defined by D; <1 D; iff C(D;, D;) # (). Again, truth
of'a modal formula is defined with respect to an interpretation J, a valu-
ation J and a world w € W. I give the clause for the modal case only.

Y For an analysis of this compare [14].

12 Because we work with free logic, either assume that the language contains an existence pred-
icate, or that the first-order domains consist of an inner and an outer domain—the former
being the domain for the actualist quantifiers.
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(w,J,8) B Op(z) iff there is some v € W and C' € C(w,v) such

that (3(x;), B(z;)) € C(i =1...n)and (v,7, 3) F ©(Z).

It should be obvious that neither the necessity of identity nor the neces-
sity of distinctness are valid in this semantics, because instead of func-
tions (as in the functor semantics) we now use relations to relate the
individuals from one world with those of another.

Of course, Theorem 2 generalizes to these semantics because coun-
terpart frames are just a generalization and reformulation of functor frames.
Basically, we replace functions by relations and remove the conditions
imposed by using the categorial language. But it is open whether the
(rather complicated) completeness proof from [8] might be substantially
simplified using the techniques from [13] or how far the class of frame
complete logics can be extended beyond the class of extensions of canon-
ical propositional logics. Yet, interesting frame classes can be defined by
imposing appropriate conditions on the families of counterpart relations,
giving a new perspective on a correspondence theory in the first—order
case, cf. [13, ?].

The counterpart frames as presented above are not complex enough
to yield general completeness, quite analogous to propositional modal
logic. To arrive at the desired completeness result one has to add modal
algebras of ‘admissible interpretations’ which leads to the concept of
general counterpart frames and to the following theorem from [13].

Theorem 4 (Kracht & Kutz 2000). Every first- or second—order closed
modal predicate logic is complete with respect to general counterpart
frames.

As a last example of generalized semantics I want to mention the
coherence frames of [14]. These are close to standard constant domain
frames in that they comprise standard Kripke frames plus a global do-
main of (possibilist) modal individuals. But modal individuals are as-
sumed to have an internal structure, namely, when talking about an object
at a world we assume that we don’t talk about the modal individual per
se, but rather its world—bound realization. We call these realizations of
individuals things and refer to them as the #ace of an individual. There-
fore, what is generalized is the notion of identity at a world and more
generally the interplay between interpretations of predicate symbols at a
world and identity.
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In coherence semantics one thinks of an individual as being world—
transcendent which leads for example to a uniform treatment of constants
and variables. Here is the exact definition.

Definition 6 (Coherence Frames and Structures). By a coherence frame
we understand a quintuple § = (W, <1, U, T, 7), where (W, <1) is a Kripke
frame, U # () the set of objects, T # () the set of things, and 7 :
U x W — T a function. We call 7 the trace function and 7(o0, w) the
trace of o in w. An inferpretation is a function J mapping each n-place
predicate symbol P to a function from W to U™ and each constant sym-
bol ¢ to a member of U. J is called equivalential if for all a,b € U™
and w € W, if r(a;,w) = 7(b;,w) forall i < n then a € J(P)(w) iff
b € J(P)(w). A coherence structure is a sextuple S = (W, <1, U, T, 7,J)
where (W, <1, U, T, T) is a coherence frame and J an equivalential inter-
pretation.

This notion of equivalence is perhaps a curious one. It says that atomic
predicates cannot discriminate between objects of equal trace. So, if Pierre
believes that London is beautiful and Londres is not, we have two (inten-
sional) objects which happen to have the same trace in this world. Hence
they must share all properties in this world. So, London and Londres can
only be both beautiful or both ugly. This seems very plausible indeed.
From a technical point of view, however, the fact that they cannot simply
have different properties is a mere stipulation on our part and reflects the
fact that we are dealing with purely extensional rather than intensional
properties. An alternative setup for strictly extensional atomic predicates
would be to assign not tuples of objects but tuples of things to predicates
and to do without equivalential interpretations. Then an object bears a
property at a world if and only if its trace does. Yet, technically it amounts
to the same.

For definiteness, I should give at least the truth definitions for atomic
predicates, identity, the existential quantifier and the modal operator. Note
that valuations assign objects and not traces to variables.

(8,8,w)F P(x) <« pBlx)€lu(P)

8, Bw)Fx =y < 7(8(z),w) =T1(By),w)
(8,8,wyEVz.p & forsome~ywithy ~, 3:(S,v,w)E ¢
(8,3, w) E Oy & thereisw' :w<tw'and (8,5, w') F ¢
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The addition of modal algebras which are similar to those of [13]
yields the following theorem, which is from [14].

Theorem 5 (Kracht & Kutz 2001). Every modal predicate logic is com-
plete with respect to general coherence frames.

Finally, for information on algebraic semantics that also cover the case
of super—intuitionistic predicate logics, consult [19], and for first—order
intensional logics that allow quantification over both, objects and indi-
vidual concepts, confer [3].

4 Final Comments

The diversification of model classes in the case of classical Kripke se-
mantics obstructs the development of a proper model theory of languages
of first—order modal logic. Because modal systems that are modelled by
incompatible model classes can’t be properly, comparatively studied, this
is a significant systematic deficit.

Unlike standard Kripke semantics, generalized semantics provide a
general framework for the model-theoretic study of MPLs. On the other
hand, most of the intuitions that underlie the standard approach are lost
or somewhat obscured. For example, the central concept of a modal in-
dividual becomes a derived notion in semantics such as metaframes or
counterpart frames.

Therefore, a thorough analysis of the concept of ‘modal individual’
that underlies generalized semantics is required. The major open problem
in the area is hence to harmonize the intuitions behind modal predicate
logic with the apparatus of generalized semantics and to clarify the con-
nections between the different proposed semantics. The first steps in this
direction may be found in [14] and [3] but much has still to be done.

After all, modal predicate logic is not only about propositions, but
about (changing) individuals and their (changing) properties—whatever
that means.
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