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Abstract. We develop a web service focusing on finding places not
(only) by their address, but by systematically relating the places to ac-
tivities that a person could perform there. This is helpful if a person
wants to explore a new city, or plans leisure activities. OpenStreetMap
provides a rich set of tags that can be used for activity-oriented search.
We propose the use of several ontologies that are related to each other us-
ing matching tools to cope with the evolving nature of the tags available
in social media.

1 Introduction

OpenStreetMap has evolved into a rich source of geodata that in some as-
pects (like e.g. the level of detail for certain pedestrian lanes) even gets ahead
of Google maps. When searching and navigating through a map portal like
http://www.openstreetmap.org, semantic metadata could greatly help with
providing an intention and activity-based access to the data. In the case of Open-
StreetMap, the metadata is provided in the form of tags that are entered into
the database in a Social Web and wiki-like manner. Metadata obtained through
such Social Web, collaborative and community based efforts have specific charac-
teristics, namely evolve in a bottom-up way, contain a lot of noise (typos, redun-
dancies, etc.) and are subject to constant change. A main challenge now is how
to use such metadata in flux in a meaningful way for an activity-based search
and navigation tool. In this paper, we use ontologies and (semi-automatically
generated) ontology mappings for bridging the gap between (a single) user’s in-
tentions and the (community generated) metadata tags. This approach provides
a relatively simple, yet effective solution to the generally rather hard problem of
how to relate data to ontologies (see [15]).

Based on this, we have developed an open source tool—DO-ROAM3—which
is a prototype providing, beyond the usual search facilities inherited from the
OpenStreetMap portal, an ontology-based search for located activities and open-
ing hours.

3 Freely available at www.do-roam.org.



1.1 Related Work

The GeoShare project did pioneering work on ontology-based integration of geo-
data sources and services [9]. Their system performs ontological, spatial and
temporal reasoning when processing user queries. However, as the authors note,
“all application ontologies have in common that they are based on the same
vocabulary”. We here follow a more flexible approach based on ontology match-
ing. Moreover, the authors of the GeoShare/Buster software told us that it is
not used by any web service, and it would be a great effort to get the software
running again. Indeed, we have the impression that the user interface was too
complex—a stripped down version, however without the ontology-based search,
is still online4.

Google maps5 obviously uses a mixture of full-text search and search in a
taxonomy of categories; unfortunately, only parts of the taxonomy are openly
available. While full-text search can in some cases provide extra value, sometimes
it can also produce misleading results. For example, when entering “new york
barber restaurant” or “new york barber near restaurant”, you get results in
the category “restaurant” for which the word “barber” occurs in a related text
document (or vice versa), but only few restaurants near barbers. Searching for
“charging station” in most cities does not deliver any results at all.

In comparison, whilst searching for “charging station” in OpenStreetMap
does in fact not deliver any results at all, OSM’s internal data is open and
publicly accessible, and thus better search methods, employing e.g. the OSM
tags, can be utilised in order to semantically enrich queries. Thus, we intend
to realise an activity-oriented search where several activities can be combined,
thereby leading to various possibilities for searching for nearby places, or for the
restriction of a search to certain opening hours.

Google city tours6 suggests touristic tours starting from a given point; how-
ever, the user cannot enter specific activities. Other works that stress the impor-
tance of activities and actions in GIS include [10, 17], who argue that in order
to make geographical information really useful, corresponding ontologies would
have to be designed with a focus on human activities rather than being ‘static
and entity-based’. Moreover, similar to our approach mapping metadata tags to
activities in an ontology, e.g. [10] proposes to exploit textual descriptions of ac-
tivities in order to derive domain ontologies. However, unlike the present paper,
these works do neither employ statistical matching methods to link these two
layers, nor do they use the OWL language, nor apply ideas from recent progress
in ontology-based data access.

Our work has been much inspired by an activity-oriented interactive route
planning system [19], see Fig. 1 and http://www.digitaltravelmate.net. This
system allows the user to specify interesting locations via holiday activities, and
routes are planned along locations where the selected activities can be performed.

4 http://www.geoshare.umwelt.bremen.de
5 http://maps.google.com
6 http://citytours.googlelabs.com
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Fig. 1. Activity-oriented interactive route planning system

Routes can also be interactively corrected. However, the system is based on a
fixed fictitious map, and on a small predefined set of activities.

1.2 Organisation of the Paper

The aim of our work reported in this paper is to provide activity-oriented
map search and navigation with an evolving set of activities based on Open-
StreetMap’s tags, which are continuously changing due to the wiki-nature of
OpenStreetMap.

The paper is organised as follows. Section 2 provides a set of use cases, and
in Section 3 we describe the overall architecture of our DO-ROAM system. The
main parts of this system are then described in further detail in the subsequent
sections: Section 4 recalls some technical background on the web ontology lan-
guage OWL, Section 5 introduces the ontology of activities and Section 6 the
ontology of OpenStreetMap tags, Section 7 discusses the mapping between these
two ontologies, and Section 8 finally contains a discussion on how the ontology
search is integrated with the actual representation of data. Section 9 concludes
and discusses future work.

2 Motivating Use Cases

In this section, we describe some scenarios in which people search for locations
where certain activities take place and for routes that include such activities.
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One important such application scenario is electric mobility, in particular due
to the limited battery reach of electric automobiles and relatively long charging
times. Notice that we assume that the map presented to the user is taken from
OpenStreetMap; the approach is, however, flexible and it could also use multiple
data sources. [1] provide different navigation scenarios based on an ontology for
GIS, which inspired the format of our use cases.

– Scenario 1: Alan spends some days in a city and he want to charge his electric
car. First, he wants to know where he can find a charging station. Second,
he is interested in which activities he could do within walking distance from
the location of the charging station.

– Scenario 2: Betty is new in town. She wants to know which activities are
offered within her neighbourhood. She also knows she will be getting hungry
soon, so she searches for all restaurants close to home and which will be still
open within the next two hours.

– Scenario 3: Maria wants to visit her friend. On her way she needs to stop
at a supermarket, an ATM and a post office. She needs a system which will
generate and present to her a route, including all these stops, in any order.
She also wants to be able to modify the resulting route.

– Scenario 4: Tom wants to travel from A to B. He wants to take the most
scenic route possible. He also wants to see displayed all places of his interest
within a certain area that he can choose and modify. Furthermore, he wants
to get a route suggestion which is still flexible and can be modified at a later
stage.

3 General Tool Architecture of DO-ROAM

We have designed and implemented the prototype of a tool DO-ROAM for an-
swering such requests and for assisting the users in spatio-temporal planning of
activities. DO-ROAM is an acronym for Data and Ontology driven Route-finding
Of Activity-oriented Mobility.

Currently, only the search component is implemented and the route finding
integration is in progress. Therefore, only Scenarios 1 and 2 from those men-
tioned in Section 2 are currently supported. The general GUI of the tool is
illustrated in Fig. 2. The tool displays a map (based on OpenStreetMap) with a
zoom functionality which allows the user to focus on a certain area of interest.
Searching for locations which allow to perform desired activities can be done
either in a guided way, using the ontology navigation bar on the left of the map,
or in a less contrained way, using a text field for introducing the query. In the
latter case, address and opening hours can also be taken into account.

The tool is implemented as a Web application, using Ruby on Rails7, a
popular and powerful web application framework. We have built our tool on top
of the existing Rails portal for OpenStreetMap8. It must solve a data integration

7 http://rubyonrails.org/
8 http://wiki.openstreetmap.org/wiki/The\_Rails\_Port
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Fig. 2. User interface of DO-ROAM prototype

problem in the sense that the way the OpenStreetMap data is represented should
not be directly visible to the user, and the interaction with the user should be as
facile as possible. The solution employed is ontology-based data access (OBDA)
[16, 4], where the domain of interest is modelled as an ontology which is connected
with the data in a way that allows queries expressed in terms of the ontology to
be translated to queries in the database. Therefore, we introduced an ontology of
spatially located activities playing a central role and connecting the user interface
with the data integration management system. The ontology will be discussed
in detail in Section 5. Interestingly, the access to data is achieved by introducing
another ontology for OpenStreetMap tags, which will be presented in Section 6.
The two ontologies are connected via an ontology mapping, which relates the
concepts/roles in the ontology of activities with corresponding concepts/roles in
the ontology of OSM tags. We will discuss some of the fundamentals of ontology
mappings and the means for generating such mappings automatically in Section
7. Moreover, we give a brief intuition on OBDA and its implementation in our
tool in Section 8. Finally, the results of the queries are displayed on a map
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using OpenStreetMap layers: each location of a certain activity is marked with
a distinctive icon. This is realized dynamically in the sense that the markers are
only introduced for locations within the current view.

The architecture of our approach is depicted in Fig. 3.

Fig. 3. Architecture of DO-ROAM’s activity-based search

The user interaction is handled via two alternative interfaces, which we will
now motivate and describe in some detail. The first one is a simple text-based
interaction for free search, similar to the one existing in tools like Google Maps
or OpenStreetMap, while the second provides a better structuring of the query
with the help of a Web form. While the first interface seems more intuitive, the
second has the advantage that it is easier to relate with the concepts in the
ontology of activities. In the case of the former, the text input by the user needs
to undergo a process of linguistic analysis which extracts from the query the
concepts which are matched.

For the linguistic analysis we currently use WordNet [5] synsets. That is,
the user need not exactly match the concept names of the activities ontology
with his query, but can also enter synonyms. For example, take “eating place”.
If you enter “eating place New York” into Google maps, you only get a few
restaurants, however, if you enter “restaurant New York”, you get plenty of
restaurants. With our connection to WordNet, we get the same set of restaurants
for both queries since WordNet knows that “eating place” and “restaurant”
are synonyms. Another example would be “clothing”: when typing in “clothing
London” into Google Maps, you get plenty of results; however, when entering
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“dress” or “vesture”, Google Maps delivers very few outputs; in case of “vesture”,
not even one. WordNet in contrast knows all words as synonyms of clothing.

The linguistic analysis also needs to divide the user’s input into class names
(from the activities ontology), address parts, and time information, and it even
needs to infer role names in some cases (like the case with restaurants having
a cuisine of a given nationality). This is currently done with a simple matching
in a comma-separated list, then the synonyms of the activity are obtained from
WordNet and used to generate a list of queries. Addresses are resolved using
the search engines of OSM, e.g. Nominatim9. In the future, in particular in
connection with way finding, we will also use the linguistic ontology GUM [3],
since it provides a more detailed semantics for linguistic spatial expressions.

We will now illustrate the way the user interacts with the tool with a stepwise
description for the case of Scenario 1 in Section 2 . First, Alan finds the city by
using the free search text field. Afterwards, he chooses “Charging Station” in the
ontology navigation bar. He can then select one charging station of his choice
and zoom in to the desired scale (which is indicated using the functionality of the
OSM Rails Port in the bottom-left of the map), obtaining thus an estimate of the
area reachable by foot. Then he can get displayed markers for the locations of
the free time activities or even all possible activities using again the navigation
bar. The results can be seen in Fig. 4. There is one charging station, marked
with a plug, and various activities marked with different icons.

In Scenario 2, Betty searches for her address using the free search text field,
then she selects in the ontology navigation bar “Gastronomy/Restaurants” and
enters the current time and two hours for duration. The results of this query are
shown in Fig. 5. There are several restaurants, a café (at the lower right corner)
and some fastfoods.

4 Ontologies and the OWL language

Ontologies are formal descriptions of the concepts in a certain domain of dis-
course and can be informally understood as fixing a meaning for the terms of a
particular field. Ontologies are used in artificial intelligence, the semantic web,
systems engineering, software engineering, biomedical informatics, library sci-
ence, enterprise bookmarking, and information architecture as a form of knowl-
edge representation about the world or some part of it. Domain ontologies are
typically formulated in the web ontology language OWL10. The relation of our
domain ontology introduced in the next section to a suitable foundational on-
tology (typically formulated in a richer logical language) is left for future work.

Formally, an OWL ontology signature consists of sets of atomic concepts,
roles and individuals, which fix the vocabulary. Sentences that can be expressed
are of two types: TBox sentences are subsumption relations between concepts
which are defined inductively from atomic concepts using the universal concept,

9 http://wiki.openstreetmap.org/wiki/Nominatim
10 http://www.w3.org/TR/owl2-overview/
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Fig. 4. User interface of DO-ROAM prototype: looking for activities near charging
stations.

the empty concept, unions, disjunctions, negations and universal and existential
quantification over roles. ABox sentences contain assertions saying that certain
individuals belong to certain complex concepts expressible in the vocabulary.
Since the ontologies we use here do not contain individuals, we will concentrate
on presenting TBox sentences.

Several syntaxes have been designed for ontology languages; in this paper
we prefer to use Manchester OWL syntax [7] which provides, for the fragment
corresponding to the description logic ALC, the following grammar for concepts:

C ::= A | Thing | Nothing | C and C | C or C | not C | R some C | R all C

where R is a role and A is an atomic concept.
The semantics is set-theoretical: an interpretation I consists of a non-empty

set W (the universe) and an interpretation function .I which assigns a subset of
the universe to each atomic concept, a binary relation to each role and an ele-
ment of the universe to each individual. The interpretation extends from atomic

8



Fig. 5. User interface of DO-ROAM prototype: looking for restaurants open in the
next two hours.

concepts to complex concepts in the expected set-theoretic way following the
grammar, more precisely: the top concept Thing is interpreted as the universe
W , Nothing as the empty set (bottom concept), a conjunction C and D by
the intersection of the interpretations for C and D, a disjunction C or D by
the union of the interpretations, not C by set-theoretic complement, and finally
universal (R all C) and existential (R some C) role restrictions as follows:

(R all C)I = {x ∈ W | ∀y ∈ W . RI(x, y) implies y ∈ CI}

and
(R some C)I = {x ∈ W | ∃y ∈ W . RI(x, y) and y ∈ CI}

Two ontologies can be related by an ontology mapping, sending atomic con-
cepts, roles and individuals of the source ontology to (not necessarily atomic)
concepts, roles and individuals of the target ontology. Among many other ap-
plications, ontology mappings are important for extracting modules from large
ontologies.
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5 An Ontology of Spatially Located Activities

Since the scenarios presented in Section 2 are centred on activities, we develop
an ontology of spatially located activities, which means that the concepts of the
ontology refer to locations where a certain activity takes place. This provides
an abstraction level from the representation of the data in the databases and
thus the user can express queries using a vocabulary closer to natural language.
Notice that from an ontological perspective, the ontology developed is a task
ontology : here the main motivation is not to create and specify a model of a
domain, but to solve a well-defined task, namely, searching locations.

We found some interesting guidelines for building ontologies in [12]. In par-
ticular, they say

We advise only creating hierarchies when necessary for describing the
domain [. . . ]. The modeller should consider whether an alternative rela-
tionship can be used instead. [12]

This means that instead of subclass relations, sometimes it is more useful to use
roles. For example, instead of turning “French” into subclass of “Cuisine”, it is
better to introduce a role “hasNationality” between Cuisine and Nationality.

The ontology has been designed in several steps. The initial design was based
on common sense reasoning about the domain, incorporating ideas from the spa-
tial ontology of UbisWorld11 (the SpatialPurpose concepts) and the taxonomy
of medical specialisations from the Bremen city portal12. Moreover, the choice
of names for the classes of the ontology was inspired by the OSM tags; this helps
in generating the ontology mapping automatically.

One main concept in the ontology is Activity, which implicitly means a loca-
tion where an activity takes place. The selected activities are dependent on the
particular scenario chosen for the application. We have currently concentrated
on daily life activities and tourism. Notice however that the approach is flexible
and the ontology can be easily adapted if an alternative scenario is chosen (e.g.
business activities). Related activities are grouped and form subclasses of a cer-
tain activity type; this provides the advantage that the search can be done in
such a way that all found locations can be displayed with a single search.

Locations can have associated addresses or opening hours. We decided to
model these as abstract concepts OpeningHours and Address, and to make
the analysis of the query at the string level. In the case of the opening hours,
for example, they are usually stored in the OSM database as strings containing
assignments of time intervals to the days of the week. The query given by the
user will also be retrieved as a set of time intervals and the test whether a
certain location satisfies a certain time restriction is done using Allen’s interval
calculus [2], in particular, using the relations “contains” and “overlaps” between
intervals.

To illustrate the ontology design, we present in the following the Restaurant
concept.

11 http://ubisworld.ai.cs.uni-sb.de/index.php
12 http://www.bremen.de/gesundheit\_und\_soziales/aerztesuche
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Fig. 6. Ontology of activities.

Fig. 7. Restaurants with cuisine.

The restaurants can be categorized according to their cuisine (see Fig. 7,
where concepts are represented as discs, roles as arrows and subconcepts as
dotted lines). The cuisine is either a food speciality, like pizza or seafood, or
nation-specific, say French or Italian specialities. We model this by introducing
concepts Restaurant, Cuisine and Nation, together with corresponding roles: a
restaurant can have a cuisine and a cuisine can have a nationality. For cuisines
and nationalities, we introduce the corresponding subconcepts. Strictly speaking,
France should be an individual of the class Nation, but for keeping the symmetry
with the ontology of tags, we prefer to introduce it as a singleton class. Notice
that French restaurants could be expressed in OWL as the concept

Restaurant and hasCuisine some (hasNationality some France)

However, a conceptual design problem in the structure of tags in Open-
StreetMap requires the presence of the role hasCuisineOfNationality as com-
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position of hasCuisine and hasNationality and thus French restaurants are
equally represented as

Restaurant and hasCuisineOfNationality some France

The entire ontology has been subject to an evolving process. As mentioned,
the ontology of spatially located activities will be related to an ontology of
OpenStreetMap tags. Some tags may refer to activities that were not taken
into account when designing the initial ontology. Of course, the challenge is to
add such new concepts to the ontology of activities in an automatic manner.
We will address this in the next section. Moreover, other data sources could
be plugged in, like e.g. Google Maps. The situation repeats: the new database
may contain data that was previously not considered to relate to interesting
activities, but has since become relevant in the new context. It is then sensible
to add a corresponding concept also at the abstract level, namely the ontology
of activities.

6 An Ontology of OpenStreetMap Tags

OpenStreetMap’s internal files are lists of nodes, ways and relations, which can
be tagged with information about the map element. The convention is that any
user is free to introduce his own tag, but it is recommended to use existing tags
and only have new ones if they are not already covered by the existing ones. The
tags of the map elements are represented as pairs (key, value) and an element of
the map may have multiple tags (see Figure 8 for the example of a OSM node
with its tags in an XML representation. This format has been developed by the
OSM community. The listed tags vary from node to node).

The purpose of the ontology of tags was to stay as close as possible to the
structure of the OSM files in order to facilitate database querying. This means
that we do not try to correct any possible conceptual mistakes in the taxonomy of
OSM tags, but rather have it reflected faithfully in the structure of the ontology.

When designing the ontology, it makes sense to decompose the tags into a
hierarchy according to the keys: the key becomes a superconcept of its values.
We have followed this approach whenever the value was an OSM constant rather
then a string/numeral. Since it is possible that a key and a value have the same
name whilst the names of the concepts are required to be unique in OWL (OSM
has “station” as value of the key “railway” but also a key named “station”), we
decided to prefix all keys with “k ” and all values with “v ”, e.g.:

k = "amenity" v = "charging_station"

would introduce a concept “k amenity” with a subconcept “v charging station”.
Moreover, another problem is that some values are subclasses of more than one
key. E.g. “v no” is a subclass of “k smoking” but also of “k smoking outside”.13

13 We maintain our design uniform, so “v no” must be a concept; other choices would
also be available.
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<node id="834034642"

lat="53.0871310" lon="8.8091071"

version="7" changeset="6027662"

user="Kerridge" uid="324245"

timestamp="2010-10-13T09:51:39Z">

<tag k="addr:city" v="Bremen" />

<tag k="addr:country" v="DE" />

<tag k="addr:housenumber" v="20" />

<tag k="addr:postcode" v="28215" />

<tag k="addr:street" v="Theodor-Heuss-Allee" />

<tag k="amenity" v="charging_station" />

<tag k="name" v="Elektrotankstelle swb" />

<tag k="note" v="telephone reservation necessary" />

<tag k="opening_hours" v="Mo-Fr 6:00-18:00; Sa off; Su off" />

<tag k="operator" v="swb" />

<tag k="phone" v="+49 421 3593186" />

</node>

Fig. 8. A node in an OSM file

In this case, we extended the value to “v smoking k no”. Another design decision
was to take into account tag dependencies. For example, when a node is tagged
with k = "amenity" v = "restaurant" it is possible (but not mandatory) that
the cuisine is also tagged: k = "cuisine" v = "seafood". In such cases, we
introduce a role hasCuisine with “v restaurant” in domain (it is also possible
that “v fast food” is tagged with “k cuisine”) and range “k cuisine” in order to
be able to select only those restaurants with a certain cuisine.

Recalling the example of French restaurants of the previous section, notice
that nation specific cuisines are added directly as subconcepts of “k cuisine”—
see Fig. 10. This is conceptually a mistake in the design of OpenStreetMap’s
tags, which we here reflect in the ontology which is meant to be very close to
the OSM tags.

In order to create a realistic ontology of OSM tags, one faces the problem of
an open project where everyone is allowed to contribute—which is also an OSM
strength. This has the effect that the data source can be regarded as dynamic, not
only at the level of entries, but also at the level of tags. In the OSM wiki page14,
there exists a list of tags, but this list does not reflect the status quo of the actual
OSM databases. Some tags which are in the wiki page are not yet tagged by the
community, some tags which were abolished through discussion in the wiki or
the mailing lists are still used by the mappers. Therefore, the wiki provides only
an overview of the available tags; to have a more realistic estimation, one should
use websites like Taginfo15, where the OSM data of the whole world is searched
and a list of tags in use, sorted by the number of occurrences, is provided as a

14 http://wiki.openstreetmap.org/wiki/Map\_features
15 http://taginfo.openstreetmap.de/
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Fig. 9. Ontology of OSM tags.

Fig. 10. Restaurants with cuisine.

result. Of course, this list will also contain spelling errors or falsely used tags. The
most straightforward solution here is to consider relevant those tags that have
a certain, high occurrence in the database, using the list provided by Taginfo.
This strategy could result in a limitation using a certain percentage (e.g., all
values with, say, more than 0.3 % occurrence rate for the respective key are
included), but this approach fails to capture all interesting values in the cases
where some keys appear with a far higher occurrence and thus the percentage
of important values is low. Also, some keys have far more values (e.g., amenity
with 7714 values in use according to Taginfo) than others (e.g., smoking with
22 values), so that the percentage of each value naturally is quite low, which is
another point against a certain percentage as a limit for inclusion. This is why
a limitation based on the absolute occurrence of a value makes more sense. In
our case, we decided to select all values which occur more than 100 times in the
database. Spelling errors are thus excluded as well (there is never 100 times the
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same mistake), and still all relevant values will be in the database. Theoretically,
this threshold could be exceeded by mistakes created during automatic tagging
procedures. In reality, there is no evidence in Taginfo that this is the case. It
is either prevented by the professionalism of those using automatic tagging, or
mistakes of such quantity are quickly noticed by the community and repaired.
After this procedure, we added the tags that are in the wiki but not covered
through our search of Taginfo. This guarantees that we also include tags which
are not yet used by the mappers, but in the future shall be implemented or will
replace other tags. To keep this ontology of tags up-to-date, one option would
be to make it available to the OSM community. People creating new tags could
include them themselves into the ontology as well. Another option is automation,
e.g., programs searching regularly through Taginfo for new tags.

7 Mapping the Ontologies

The connection between the two ontologies is bi-directional. In one direction, we
map atomic concepts and roles from the ontology of activities to concepts and
roles in the ontology of tags. This is the first step towards assigning the elements
of the ontology of activities to queries over the database, and will be completed
in the next section.

We allow the possibility that the ontology of activities contains concepts
which are not related with OpenStreetMap tags. The reason for this is that it
is possible to extend and complement the tool with a similar construction for
other geographical database systems—indeed, the integration with Google Maps
is currently in progress, and this means that some activities with no counterpart
in OpenStreetMap may still be found using another database. Thus, the mapping
we obtain is partial, and we can see this as having a sub-ontology of activities
which is then mapped totally to the ontology of OSM tags.

Since the number of concepts and roles is quite large, providing such a map-
ping manually would be a very tedious process. We can, however, use an ontology
matching tool to obtain a list of pairs of concepts that are in correspondence.
This approach is very effective—with the ontology matcher Falcon [8], the degree
of automation reaches 80%. This means that the user is still required to verify
and confirm the matches produced with the tool, and possibly introduce new
matchings between concepts that were not identified by the tool’s analysis.

In the other direction concerning the connection of the ontologies, the evolv-
ing process for the ontology of activities has to be considered. The social char-
acter of OSM makes the tags subject to continuous change: new tags are added
frequently and they are often modifying. An example particularly relevant for
the topic of the paper is the tag for charging stations for electric cars: initially,
a charging station was tagged as

k="amenity" v="fuel"

like any fuel station and with a supplementary tag

k="fuel:electricity" v="yes"
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Fig. 11. Matching ontologies with Falcon.

This has later evolved into introducing a distinguished value for amenity:

k="amenity" v="charging_station"

but the two ways of tagging charging station still coexist. The dynamic character
of the OSM database should be reflected in our tool as well. As more locations
on a map are being tagged, it is reasonable to expect that tags that did not pass
the criteria for being selected in the ontology of tags now become relevant and
should be therefore included. We make use of this process to make the ontology
of activities evolve as well: if a certain tag denotes an activity (this could be
verified semi-automatically by inspecting its superconcept), it can be added to
the ontology of activities.

7.1 The Heterogeneous Tool Set

The Heterogeneous Tool Set Hets [13] is a heterogeneous specification and proof
management tool, providing support for a multitude of logics (including OWL
in Manchester syntax) and interfacing various logic specific tools like theorem
provers, consistency checkers etc. It relies on a heterogeneous specification lan-
guage with an origin in CASL [14], a specification language developed within
the IFIP working group 1.3 “Foundations of System Specifications”, and is a de
facto standard in the area of software specification. This is particularly relevant
for ontology specification as this language can be employed for providing sup-
port for modularisation and structuring (see [11] for a detailed analysis). Also,
when discharging a proof obligation in the system, if proof support is not di-
rectly available, a prover can be used by “borrowing” from another logic along
a suitable translation of logics.
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In the context of our application, Hets can be employed to verify seman-
tic correctness of the ontology mapping produced by a matching. This means
that the sentences of the sub-ontology of activities identified by the matching
tool should translate along the mapping to logical consequences of the ontology
of tags. The corresponding Hets specification can be obtained in an automatic
manner: consider that Activities is a named specification containing the initial
ontology of activities and Tags contains the ontology of tags.16 The matching
procedure returns a list of pairs having component concepts in the ontology of
activities which have a corresponding match in the ontology of tags. This fits in
exactly with the Hets syntax: ontology mappings are written as symbol maps,
i.e., for a symbol of the source ontology, one must give its corresponding symbol
along the mapping. Also, the source and target ontologies must be explicitly
given; while the target specification is simply Tags, the source specification is
obtained from Activities by revealing the symbols in the sub-ontology, an oper-
ation which hides the remaining ones. This finally gives a complete Hets specifi-
cation of the ontology mapping and the tool can be used for verifying correctness.

The correctness of the mapping can be verified using Hets and the provers
Pellet17, Fact++18 or also first-order provers like SPASS [20]. A Protégé 19 plu-
gin for manipulating Hets-OWL specifications is under development.20 In the
current state of the ontologies, discharging the proof obligations is relatively sim-
ple. The added value of using a formal verification method for the view becomes
visible in the presence of subsumptions implying more complex terms. Since such
terms could be introduced by changes in the database or usage of another data
source, we preferred to include this step as part of the tool methodology.

8 Ontology-Based Data Access

Ontology-based data access is a data integration methodology which separates
the ‘knowledge’ about data from reasoning about it. This is achieved by providing
an abstract representation of the application domain with the help of an ontology,
a schema of the sources where the real data is stored, together with a mapping
between the elements of the ontology and those of the data schema. Typically,
the schema of the data is assumed to be a relational database schema, and the
mapping provides a query in the database for each concept and each role of
the ontology. The advantage of this approach is that we can use the knowledge
base constituted by the TBox and the ABox sentences of the ontology to derive
information about the data which is not present in the database, using query
rewriting.

The data integration management component of our system follows the prin-
ciples of OBDA: the domain of interest—spatially located activities—is modelled

16 Notice that here ontologies are regarded as logical theories in the OWL logic.
17 http://clarkparsia.com/pellet/
18 http://owl.man.ac.uk/factplusplus/
19 http://protege.stanford.edu/
20 https://github.com/pyneo/protege-hets
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as an ontology, the OpenStreetMap data is stored in a database, and the concepts
of the ontology are related to queries in the database.

For the representation of and access to ontologies within the Ruby on Rails
framework, we have developed a new library, Rails-OWL. Since OWL is rep-
resented in XML, our library is based on the existing library REXML21 for
reading in XML documents. Rails-OWL represents an OWL ontology in the
Rails database. This allows programmers to easily and flexibly access ontologies
in a way similar to the access of the geodata. Fig. 12 gives an overview of the
different classes (which by the ActiveRecord framework of Rails simultaneously
are database tables) used for representing ontologies, their classes and mappings
between these. A “simple subclass relation” is one between named concepts,
while in general, it can be postulated between arbitrary OWL class terms.

database table represented contents

Ontology ontologies

OntologyClass classes (of various ontologies)

OntologySubclass simple subclass relations

OntologyClassProperty subclass (and other) relations

OntologyRole roles (of various ontologies)

OntologyRoleProperty role relations

OntologyMapping ontology mappings

OntologyMappingElement mapped pairs (of various mappings)

Fig. 12. Classes for representing OWL ontologies in Ruby on Rails

In ontology-based data access, usually, one SQL query per ontology class is
designed manually, and this is used for the database interpretation of ontology
terms, implemented by query rewriting. In case of OpenStreetMap, we would
need to design dozens of such SQL queries, which is a tedious process. Instead,
we use the OSM tag ontology, which is tailored towards the OSM database in
such a way that the relation between classes in the OSM tag ontology and the
OSM database is generic: since the basic classes directly correspond to keys and
values of OSM tags, the corresponding SQL queries are simple, and this is then
used for query rewriting of more complex class terms. This query rewriting is
implemented in Rails-OWL easily, because classes, roles and such are first-class
citizens. The involved OSM tables are shown in Fig. 13.

9 Conclusion and Future Work

We have presented an ontology-based tool prototype for searching locations for
specific activities in OpenStreetMap. We have here concentrated on presenting
the architecture and the general ideas underlying our tool, and could only sketch

21 http://www.germane-software.com/software/rexml/
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database table represented contents

Node geographical location with coordinates

NodeTag tags for nodes with key and values

Way polyline

WayNode incidence relation between nodes and ways

WayTag tags for way with key and values

Fig. 13. Classes used by OpenStreetMap for representing Geodata in Ruby on Rails

some of the technical details. The focus is not primarily on locations as such,
but rather on (located) activities. Here, the central ontology of spatially located
activities is subject to evolution due to the continuous development of the Open-
StreetMap databases, and we have introduced an intermediate ontology of data
source representation terms to facilitate querying.

Future work will enhance the ontology-based querying with a more sophis-
ticated ontology navigation and query refinement, see [6] for an overview of
existing approaches. Also, the searching of activities will be complemented with
an activity-oriented route planning (such that Scenarios 3 and 4 in Section 2
will be supported by our tool as well). Our main topic of interest is electric mo-
bility which requires special route-finding algorithms that take into account the
energy consumption and the (projected) battery status at a given destination
point. We also intend to complement this with a radius visualisation of the area
within battery reach.
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Set. In Orna Grumberg and Michael Huth, editors, TACAS 2007, volume 4424
of Lecture Notes in Computer Science, pages 519–522. Springer-Verlag Heidelberg,
2007.

14. Peter D. Mosses. CASL Reference Manual, The Complete Documentation of the
Common Algebraic Specification Language, volume 2960 of Lecture Notes in Com-
puter Science. Springer, 2004.

15. Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Mau-
rizio Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. on Data Se-
mantics, X:133–173, 2008.

16. Antonella Poggi, Mariano Rodriguez-Muro, and Marco Ruzzi. Ontology-based
database access with DIG-Mastro and the OBDA Plugin for Protégé. In Patel-
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