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Abstract. We continue the investigations begun in [10]. We shall define a semantics that is build on a new

notion of frame, called coherence frames. In these frames, objects are transcendental (world–independent), as in

the standard constant–domain semantics. This will remove the asymmetry between constants and variables of

the counterpart semantics of [10]. We demonstrate the completeness of (general) coherence frames with respect

to first- and certain weak second–order logics as well as compare this notion of frame to counterpart frames as

introduced in [10] and metaframe semantics, [13].

§1. Introduction. In [10] we have developed a semantics that is complete with respect to first-
and weak second–order modal predicate logics. This semantics was in addition quite elementary,
which was already a great step forward from the previous semantics by Ghilardi [6] and by Skvortsov
and Shehtman [13]. Still, from a philosophical point of view this semantics left much to be desired.
The introduction of counterpart relations, although in line with at least some philosophical ideas
— notably by Lewis —, is not always very satisfactory, since it makes the notion of an object a
derived one. The things we see become strictly world bound: there is no sense in which we can
talk of say, the town hall of Berlin, rather than the town hall of Berlin at a particular point of
time. The traditional semantics for modal predicate logic held the complete opposite view. Here,
objects are transcendental entities. They are not world bound, since they do not belong to the
worlds. The difference between these views becomes clear when we look at the way in which the
formula ♦ϕ(~x) is evaluated. In the standard semantics, we simply go to some accessible world
and see whether ϕ(~x) holds. In counterpart semantics, we would not only have to choose another
world but also some counterparts for the things that we have chosen as values in this world. In
the traditional semantics the question of counterparts does not arise because of the transcendental
status of objects. We may view this as a limiting case of counterpart semantics, in which the
counterpart relation always is the identity.

Note that the addition of constant symbols to the language introduces further complications.
In counterpart–theoretical semantics, it is far from straightforward to interpret constant symbols,
because we need to give an interpretation of these symbols across possible worlds that respects
the counterpart relations in some appropriate sense. Variables on the other hand simply denote
“objects” in the domain of a given world. In the case of traditional semantics this asymmetry
appears in a similar fashion if one allows constant symbols to be non–rigid, as has been done
e.g. in [5]. Then, variables denote transcendental entities, whereas constants denote something
like individual concepts, i.e functions from possible worlds to a domain. Facing this dilemma, one
solution to this is to completely move to a higher–order setting, where constants and variables
can be of various higher types, e.g. type-0 constants denote objects, type-1 constants individual
concepts etc. (cf. [4]). In this paper, we will follow a different approach, treating constants and
variables in the same way, but assuming a more sophisticated notion of modal individual and
identity-at-a-world.

It remains unsatisfactory having to choose between these competing semantics. Moreover, it
would be nice if the difference between these semantics were better understood. Certainly, much
research has been done into standard semantics and it is known to be highly incomplete if one
aims for frame–completeness results.
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However, it is known that completeness with respect to models is as easy to show as in predicate
logic but that if the language contains equality, different semantics have to be chosen for different
theories/logics of identity (cf. e.g. [7]). The present paper developed from the insight that if
the proper semantics is introduced, modal predicate logics with different logics of identity can be
treated within the same semantical framework. We call this semantics coherence semantics. Com-
pleteness with respect to models is then uniformly shown for all modal predicate logics that are
extensions of free quantified K together with the predicate logical axioms of equality. We continue
by investigating the relationships between coherence frames, counterpart frames and metaframe
semantics, discuss the treatment of identity in each of the semantics as well as the interpreta-
tion of constant symbols and finally derive a completeness result for so–called cubic generalized
metaframes.

§2. Preliminaries. The language has the following symbols. Following Scott [12] we shall work
with nonobjectual (possibilist) quantifiers plus an existence predicate. This allows to eliminate the
objectual (actualist) quantifiers (they are now definable), and straightens the theory considerably.
The existence predicate is a unary predicate whose interpretation — unlike the identity symbol
— is completely standard, i.e doesn’t have to meet extra conditions. Hence it can actually be
suppressed in the notation, making proofs even more simple.

Definition 1 (Symbols and Language). The languages of modal predicate logic contain the fol-
lowing symbols.

1. A denumerable set V := {xi : i ∈ ω} of object variables.
2. A denumerable set C := {ci : i ∈ ω} of constants.
3. A set Π of predicate symbols containing the unary existence predicate E.
4. Boolean functors ⊥, ∧, ¬.
5. Quantifiers

∨
,
∧

.
6. A set M := {�λ : λ < κ} of modal operators.

Furthermore, each symbol from Π has an arity, denoted by Ω(P ). In particular, Ω(E) = 1.

The variables are called xi, i ∈ ω. We therefore use x (without subscript!), y, yj or z, zk, as
metavariables. We assume throughout that we have no function symbols of arity greater than 0.
However, this is only a technical simplification. Notice that in [10] we even had no constants. This
was so because the treatment of constants in the counterpart semantics is a very delicate affair,
which we will discuss below. Moreover, for simplicity we assume that there is only one modal
operator, denoted by � rather than �0. Nothing depends on this choice in fact. The standard
quantifiers ∀ and ∃ are treated as abbreviations.

(∀y)ϕ :=
∧
y.E(y) → ϕ

(∃y)ϕ :=
∨
y.E(y) ∧ ϕ

Moreover, ♦ϕ abbreviates ¬�¬ϕ. The sets of formulae and terms in this language are built in the
usual way. Unless otherwise stated, equality ( .=) is not a symbol of the language.

Definition 2 (First–Order MPL). A first–order modal predicate logic is a set L of
formulae satisfying the following conditions.

1. L contains all instances of axioms of first–order logic.
2. L is closed under all rules of first–order logic.
3. L contains all instances of axioms of the modal logic K.
4. L is closed under the rule ϕ/�ϕ.
5. ♦

∨
y.ϕ↔

∨
y.♦ϕ ∈ L.

To eliminate some uncertainties we shall note that the notions of free and bound occurrences of
a variable are exactly the same as in ordinary first–order logic. A variable x occurs bound if this
occurrence is in the scope of a quantifier

∧
x or

∨
x. We denote the simultaneous replacement
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of the terms si for xi (i < n) in χ by [s0/x0, . . . , sn−1/xn−1]χ. Or, writing ~s = 〈si : i < n〉 and
~x = 〈xi : i < n〉, we abbreviate this further to [~s/~x]χ.

If the language contains equality, then the following is required of L.
Eq1.

∧
x.x

.= x ∈ L.
Eq2.

∧
x.

∧
y.x

.= y → y
.= x ∈ L.

Eq3.
∧
x.

∧
y.

∧
z.x

.= y ∧ y .= z → x
.= z ∈ L.

Eq4.
∧
y0.

∧
y1. . . .

∧
yn.yi

.= yn → {P (y0, . . . , yn−1) ↔ [yn/yi]P (y0, . . . , yn−1)} ∈ L, where P ∈
Π, n = Ω(P ).

We start with a very basic semantics, standard constant–domain semantics. We assume no equality.

Definition 3 (Frames, Structures and Models). A predicate Kripke–frame is a triple
〈W,�, U〉, where W is a set (the set of worlds), � ⊆ W × W a binary relation on W (the
accessibility relation), and U a set (the universe). A modal first–order structure
is a quadruple 〈W,�, U, I〉, where 〈W,�, U〉 is a predicate Kripke–frame and I a function mapping
a predicate P to a function assigning to each world w an Ω(P )–relation on U and a constant symbol
c to a member of U . I is called an interpretation. Further, Iw is the relativized interpretation
function at w, which assigns to each P ∈ Π the value I(P )(w) and to each constant symbol c the
value I(c)(w). A valuation is a function β : V → U . A model is a triple 〈F, β, w〉 such that
F is a modal first–order structure, β a valuation into it and w a world of F.

As usual, γ ∼x β means that γ(y) = β(y) for all y ∈ V different from x. If P is a predi-
cate symbol and 〈t1, . . . , tΩ(P )〉 a Ω-tuple of terms, let ε be the function that assigns the tuple
〈ε0(t0), . . . , εΩ(P )−1(tΩ(P )−1)〉, where εi = β if ti ∈ V and ε = Iw if ti ∈ C.

Definition 4 (Truth in a Model). Given a modal first–order structure F = 〈W,�, U, I〉, a model
〈F, β, w〉, and a formula ϕ, we define 〈F, β, w〉 � ϕ as follows.

〈F, β, w〉 � P (~t) ⇔ ε(~t) ∈ Iw(P )
〈F, β, w〉 � ϕ ∧ χ ⇔ 〈F, β, w〉 � χ;ϕ
〈F, β, w〉 � ¬ϕ ⇔ 〈F, β, w〉 2 ϕ
〈F, β, w〉 �

∨
x.ϕ ⇔ for some γ with γ ∼x β : 〈F, γ, w〉 � ϕ

〈F, β, w〉 � ♦ϕ ⇔ exists w′ such that w � w′ and 〈F, β, w′〉 � ϕ

§3. Completeness. Let L be a first–order MPL. We first show in analogy to the nonmodal case
that there exists a Henkin–completion L∗. The proof presented below is a variation of proofs that
can be found in the literature, confer e.g. [7]. The use of maximal consistent sets for completeness
proofs in modal predicate logics goes back to [14].

Definition 5. A logic L is called Henkin–complete if for all
∨
y.χ there exists a constant

c such that
∨
y.χ↔ [c/y]χ ∈ L.

Theorem 6. Let L be a first–order MPL in the language L. Then there exists a language L∗

extending L by some constants and a conservative extension L∗ of L which is Henkin–complete.

Proof. The proof is standard. We pick a formula
∨
y.χ in the language. Suppose that there

exists no constant c such that
∨
y.χ ↔ [c/y]χ ∈ L. Then we expand the language by a new

constant d and take the smallest logic L+ containing L and the formula
∨
y.χ↔ [d/y]χ. We claim

first that L+ is a conservative extension of L. If not, there is a δ ∈ L such that δ ∈ L+−L. It does
not contain the constant d. Now we have L+ ` δ, whence L ` (

∨
y.χ ↔ [d/y]χ) → δ. However,

by the rules of predicate logic, we also have L `
∨
z.((

∨
y.χ ↔ [z/y]χ) → δ). Distributing the

quantifier and observing that d does not occur in δ we get L ` (
∨
z.(

∨
y.χ ↔ [z/y]χ)) → δ.

However, L `
∨
z.(

∨
y.χ↔ [z/y]χ). Consequently, δ ∈ L. Contradiction.

Now, in a first step we add for all ϕ =
∨
y.χ ∈ L the axiom ϕ ↔ [cϕ/y]χ. This gives the

language L1 and the logic L1. We iterate this infinitely often. This yields the language L∗ and the
logic L∗. By the previous proof, it is conservative, and by construction it is Henkin–complete. a
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Notice that this method of Henkin–closure does not work for the counterpart semantics of [10].
The reason is the asymmetry between variables and constants. Instead, a slightly different defini-
tion was used, where instead of constants variables were used as witnesses.

Let CL∗ be the set of constant terms of L∗. Now take L∗ and define WL∗ to be the set of all
maximal consistent L∗–sets. If ∆ ∈WL∗ , the following interpretation is defined.

I∆(P ) := {〈ci : i < Ω(P )〉 : P (~c) ∈ ∆}
This defines a first–order model on the world ∆. Finally, we put ∆ � Σ if for all �δ ∈ ∆ we have
δ ∈ Σ. IL∗ is defined by piecing the I∆ together; it assigns to each world ∆ the function I∆. Then
we put

CanL∗ := 〈WL∗ ,�, CL∗ , IL∗〉
This is a modal first–order structure. The following is immediate from the definitions.

Lemma 7. Let L∗ be Henkin–complete and ∆ be a maximally L∗–consistent set. Then if
∨
y.χ ∈

∆, there is a constant d such that [d/y]χ ∈ ∆.

Lemma 8. Let ϕ be a sentence and ∆ a maximally L∗–consistent set. Then

〈CanL∗ ,∆〉 � ϕ⇔ ϕ ∈ ∆

Proof. The base case, ϕ = P (~c), follows trivially from the definition of I∆. The induction
steps for ⊥, ¬ and ∧ are routine. Now, let ϕ =

∨
y.χ. Suppose that ϕ ∈ ∆. Then, since

L∗ is Henkin–complete, there exists a constant d such that ϕ ↔ [d/x]χ ∈ L∗. Consequently,
[d/x]χ ∈ ∆. This is a sentence, and by induction hypothesis 〈CanL∗ ,∆〉 � [d/x]χ. Hence, by
definition, 〈CanL∗ ,∆〉 �

∨
y.χ. This argument is reversible. Finally, let ϕ = ♦χ. Assume that

〈CanL∗ ,∆〉 � ♦χ. Then there exists a Σ such that ∆ � Σ and 〈CanL∗ ,Σ〉 � χ. By induction
hypothesis, χ ∈ Σ. By definition of �, ♦χ ∈ ∆. Now assume ♦χ ∈ ∆. Put ∆� := {δ : �δ ∈ ∆}.
We claim that ∆� ∪ {χ} is consistent. Otherwise, we have ∆� `L∗ ¬χ. There is a finite set,
indeed a formula δ ∈ ∆� such that δ → ¬χ ∈ L∗. It follows that �δ → �¬χ ∈ L∗. Since �δ ∈ ∆
we therefore have �¬χ ∈ ∆, which contradicts the assumption that ♦χ ∈ ∆. Hence, ∆� ∪ {χ} is
consistent and is therefore contained in a maximally L∗-consistent set Σ. By induction hypothesis,
〈CanL∗ ,Σ〉 � χ. By definition, ∆ � Σ. So, 〈CanL∗ ,∆〉 � ♦χ, as had to be shown. a

Now we have given all the ingredients for a proof of the following well–known result. However,
notice that as opposed to the proof given in [7], we did not explicitly use the Barcan formulae.

Theorem 9. Every modal predicate logic without equality is complete with respect to modal
first–order structures.

§4. Coherence Structures. Let us now see what happens if equality is introduced into the
language. Evidently, if equality was just a member of Π instead of being a logical symbol, the
previous proofs would go through. However, the interpretation of equality is an equivalence relation
in each world. But this is not what is generally assumed. The interpretation of equality must be
identity. Nonetheless, we must ask: identity of what? Think about the example of Hesperus and
Phosphorus. As for the real world they are identical, but there are some people for whom they are
not. Let George be such a person. Then there is a belief world of George’s in which Hesperus and
Phosphorus are not identical. Many have argued that George’s beliefs are inconsistent. This is
what comes out if we assume standard semantics. But we could turn this around in the following
way. We say that equality does not denote identity of objects but of something else, which we shall
call the object trace. We say that Hesperus and Phosphorus are different objects, which happen
to have the same trace in this world, but nonidentical trace in each of George’s belief worlds. To
make this distinction between object and object trace more acceptable we shall give a different
example. Suppose someone owns a bicycle b and he has it repaired. The next day he picks it up;
but then it has a different front wheel. Surely, he would consent to the statement that the bicycle
he now has is that bicycle that he gave to the repair shop yesterday. But its front wheel isn’t.
Let’s assume for simplicity that atoms are permanent, they will never cease to exist nor come into
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existence. Next, let us assume (again simplifying things considerably) that the trace of an object
is just the collection of atoms of which it consists. Then, while the object b continued to exist,
its trace has changed from one day to the other. In order not to get confused with the problem
of transworld identity, let us stress that we think of the objects as transcendental. b is neither a
citizen of this world today nor of yesterday’s world, nor of any other world. But its trace in this
world does belong to this world. In fact, we may or may not assume that object traces are shared
across worlds. Technically matters are simpler if they are not, but nothing hinges on that. So, in
addition to the bicycle b we have two wheels w and w′, and the trace of b contained the object
trace of w yesterday, and it contains the trace of w′ today. In the light of these examples it seems
sensible to distinguish an object from its trace. Of course, we are not committed to any particular
view of traces and certainly do not want to assume that object traces are simply conglomerates of
atoms.

Now, in the classical semantics, identity across worlds was a trivial matter. Objects were tran-
scendental, and in using the same letter we always refer to the same object across worlds. However,
identity is not relative to worlds. If Hesperus is the same object as Phosphorus in one world, it is
the same in all worlds. The distinction between object and trace gets us around this problem as
follows. Denote the objects by h and p; further, let this world be w0 and let w1 be one of George’s
belief worlds. Then the traces of h and p are the same in this world, but different in w1. This
solves the apparent problem. In our words, equality does not denote identity of two objects, but
only identity of their traces in a particular world.

Definition 10 (Coherence Frames and Structures). By a coherence frame we understand
a quintuple 〈W,�, U, T, τ〉 where 〈W,�, U〉 is a predicate Kripke–frame, T a set, the set of things,
and τ : U ×W → T a function. We call τ the trace function and τ(o, w) the trace of o in
w. An interpretation is a function I mapping each P ∈ Π to a function from W to UΩ(P ) and
each constant symbol c to a member of U . I is called equivalential if for all ~a,~b ∈ UΩ(P ) and
w ∈ W , if τ(ai, w) = τ(bi, w) for all i < Ω(P ) then ~a ∈ I(P )(w) iff ~b ∈ I(P )(w). A coherence
structure is a sextuple 〈W,�, U, T, τ, I〉 where 〈W,�, U, T, τ〉 is a coherence frame and I an
equivalential interpretation.

This notion of equivalence is perhaps a curious one. It says that the basic properties of objects
cannot discriminate between objects of equal trace. So, if Pierre believes that London is beautiful
and Londres is not, we have two objects which happen to have the same trace in this world. Hence
they must share all properties in this world. So, London and Londres can only be both beautiful
or both ugly. This seems very plausible indeed. From a technical point of view, however, the fact
that they cannot simply have different properties is a mere stipulation on our part. However, it is
conceivable that there are basic predicates that are actually intensional, which would mean that
they fail the substitution under (extensional) equality.

An alternative setup for strictly extensional basic predicates is the following. An interpretation
is a function assigning to predicates in a world not tuples of objects but tuples of things. Then
an object has a property iff its trace does. This approach is certainly more transparent because
it attributes the fact that an object bears a property only to the fact that its trace does. Yet,
technically it amounts to the same.

Definition 11 (Coherence Models). A coherence model is a triple 〈C, β, w〉, where C is a
coherence frame, β : V → U a valuation, w ∈ W and ε as in Definition 4. We define the truth of
a formula inductively as follows.

〈C, β, w〉 � P (~t) ⇔ ε(~t) ∈ Iw(P )
〈C, β, w〉 � s

.= t ⇔ τ(ε(s), w) = τ(ε(t), w)
〈C, β, w〉 � χ ∧ ϕ ⇔ 〈C, β, w〉 � χ;ϕ
〈C, β, w〉 � ¬ϕ ⇔ 〈C, β, w〉 2 ϕ
〈C, β, w〉 �

∨
x.ϕ ⇔ for some γ with γ ∼x β : 〈C, γ, w〉 � ϕ

〈C, β, w〉 � ♦ϕ ⇔ there is w′ such that w � w′ and 〈C, β, w′〉 � ϕ
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It is a matter of straightforward verification to see that if L is a modal predicate logic and C
a coherence frame, then C � L. Notice that the fourth postulate for equality holds in virtue of
the special clause for equality and the condition that the interpretation must be equivalential.
For if 〈C, β, w〉 � yi

.= yn, then τ(β(yi), w) = τ(β(yn), w). So, if 〈C, β, w〉 � P (y0, . . . , yn−1)
for P ∈ Π, then 〈β(yi) : i < n〉 ∈ I(P )(w). Let β′ ∼yi

β be such that β′(yi) = β(yn). By
equivalentiality, 〈β′(yi) : i < n〉 ∈ I(P )(w). This means that 〈C, β′, w〉 � P (y0, . . . , yn−1), and so
〈C, β, w〉 � [yn/yi]P (y0, . . . , yn−1).

The difference with the counterpart semantics is that we have disentangled the quantification
over objects from the quantification over worlds. Moreover, objects exist independently of worlds.
Each object leaves a trace in a given world, though it need not exist there. Furthermore, two
objects can have the same trace in any given world without being identical. However, identity of
two objects holds in a world iff they have the same trace in it. If we also have function symbols,
the clauses for basic predicates and equality will have to be generalized in the obvious direction.

The last thing we have to do is to define the object traces in the canonical structure. To do this,
let ∆ ∈WL∗ and c a constant. Then put [c]∆ := {c ∈ CL∗ : c .= d ∈ ∆}. Now set

τL∗(c,∆) := 〈[c]∆,∆〉

Then let
TL∗ := {〈[c]∆,∆〉 : ∆ ∈WL∗ , c ∈ CL∗}

Finally, put
CohL∗ := 〈WL∗ ,�, CL∗ , TL∗ , τL∗ , IL∗〉

This is a coherence structure. For by Eq4, I is equivalential, as is easily checked.

Lemma 12. Let ϕ be a sentence and ∆ a maximally L∗–consistent set. Then

〈CohL∗ ,∆〉 � ϕ⇔ ϕ ∈ ∆

Theorem 13. Every modal predicate logic with or without equality is complete with respect to
coherence structures.

§5. Coherence Structures and Counterpart Structures. Counterpart frames and struc-
tures were introduced in Kracht and Kutz [10]. They generalize the functor–semantics of Ghilardi.
Call a relation R ⊆M ×N a CE–relation (CE stands for ‘counterpart existence’) if for all x ∈M
there exists a y ∈ N such that x R y and, likewise, for all y ∈ N there exists an x ∈ M such that
x R y. This is a slight adaptation of the definition of that paper to take care of the fact that we
now deal with possibilist quantifiers plus an existence predicate as opposed to ‘proper’ free-logical
quantifiers. Furthermore, we shall make more explicit the world dependence of the universes.

Definition 14 (Counterpart Frames and Structures). A quadruple 〈W,T,U,C〉 is a counter-
part frame if W,T 6= ∅ are non–empty sets, U a function assigning to each member v of W
a non–empty subset Uv of T (its domain) and finally, C a function assigning to each pair of
worlds v, w a set C(v, w) of CE–relations from Uv to Uw. A quintuple 〈W,T,U,C, I〉 is called a
counterpart structure if 〈W,T,U,C〉 is a counterpart frame and I an interpretation, that
is, a function assigning to each w ∈W and to each n–ary predicate letter a subset of Un

w.

We say that v sees w in F if C(v, w) 6= ∅. A valuation is a function η which assigns to every
possible world v and every variable an element from the universe Uv of v. We write ηv for the
valuation η at v. A counterpart model is a quadruple M = 〈F, I, η, w〉, where F is a counterpart
frame, I an interpretation, η a valuation and w ∈ W . Note that interpretations in counterpart
frames differ from interpretations in coherence frames in that they don’t assign values to constants.
That is to say, unless otherwise stated, when working with counterpart frames we assume that the
language does not contain constants.

Let v, w ∈ W be given and ρ a CE–relation from Uv to Uw. We write η
ρ→ η̃ if for all x ∈ V :

〈ηv(x), η̃w(x)〉 ∈ ρ. In the context of counterpart frames, η̃ ∼v
x η denotes a local x–variant at the
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domain of world v, i.e., η̃ is a valuation that may differ from η only in the values that it assigns to
the variable x at world v.

Definition 15 (Truth in a Counterpart Model). Let ϕ(~y) and ψ(~z) be modal formulae with the
free variables y0, . . . , yn−1 and z0, . . . , zm−1, respectively. Let F be a counterpart frame, I an
interpretation, v a possible world and let η be a valuation. We define:

〈F, I, η, v〉 � xi
.= xj ⇔ ηv(xi) = ηv(xj) in Uv

〈F, I, η, v〉 � R(~y) ⇔ 〈ηv(y0), . . . , ηv(yn−1)〉 ∈ Iv(R)
〈F, I, η, v〉 � ¬ϕ ⇔ 〈F, I, η, v〉 2 ϕ
〈F, I, η, v〉 � ϕ ∧ χ ⇔ 〈F, I, η, v〉 � ϕ;χ
〈F, I, η, v〉 � ♦ϕ(~y) ⇔ there are w ∈W,ρ ∈ C(v, w) and η̃ : η

ρ→ η̃ such that 〈F, I, η̃, w〉 � ϕ(~y)
〈F, I, η, v〉 �

∨
x.ϕ(x) ⇔ there is η̃ ∼v

x η such that 〈F, I, η̃, v〉 � ϕ(x)

As usual, F � ϕ means that for all interpretations I, all valuations η and worlds v, it holds that
〈F, I, η, v〉 � ϕ.

The intuition behind counterpart frames is that objects do not exist; the only things that exist
are the object traces (which belong to the domains of the worlds), and the counterpart relations.
However, the notion of an object is still definable, even though it shall turn out that counterpart
frames can have very few objects in this sense.

Definition 16. Let F = 〈W,T,U,C〉 be a counterpart frame. An object is a function f : W →
T such that (i) f(v) ∈ Uv for all v ∈ W , (ii) for each pair v, w ∈ W with C(v, w) 6= ∅ there is
ρ ∈ C(v, w) such that 〈f(v), f(w)〉 ∈ ρ.

So, objects are constructed using the counterpart relation. If the trace b in world w is a coun-
terpart of the trace a in world v, then there may be an object leaving trace a in v and trace b in
w. If not, then not. However, there are frames which are not empty and possess no objects. Here
is an example. Let W = {v}, T = {a, b}, Uv = {a, b}, and C(v, v) = {ρ} with ρ = {〈a, b〉, 〈b, a〉}.
It is easy to see that this frame has no objects. The crux is that we can only choose one trace per
world, but when we pass to an accessible world, we must choose a counterpart. This may become
impossible the moment we have cycles in the frame.

Counterpart frames show a different behaviour than coherence frames. As we have shown above,
for each modal predicate logic there exists an adequate structure. However, counterpart struc-
tures satisfy a formula that is actually not generally valid, when one thinks of the quantifiers as
quantifying over intensional rather than extensional (trace-like) objects.

Proposition 17. Let F be a counterpart frame, x and y variables not occurring in ~z. Then for
all formulae ϕ(x, ~z)

F �
∧
x.

∧
y.(x .= y) → (ϕ(x, ~z) ↔ ϕ(y, ~z))

Proof. It is clear that we can restrict our attention to formulae of the type ϕ(x, ~z) = ♦χ(x, ~z).
Let η be a valuation and v a world. Assume that 〈F, I, η, v〉 � x

.= y. Then ηv(x) = ηv(y). We will
show that 〈F, I, η, v〉 � ♦χ(x, ~z) → ♦χ(y, ~z). Suppose therefore that 〈F, I, η, v〉 � ♦χ(x, ~z). Then
there exists a world w, a ρ ∈ C(v, w) and a valuation η̃ such that η

ρ→ η̃ and 〈F, I, η̃, w〉 � χ(x, ~z).
Now define η′ by η′w(y) := η̃w(x), and η′w′(y′) := η̃w′(y′) for all w′ and y′ such that either w′ 6= w
or y′ 6= y. Then 〈F, I, η′, w〉 � χ(y, ~z). Furthermore, for all variables y′: 〈ηv(y′), η′w(y′)〉 ∈ ρ. For if
y′ 6= y this holds by definition of η and choice of η̃. And if y′ = y we have ηv(x) = ηv(y), so that
ρ 3 〈ηv(x), η̃w(x)〉 = 〈ηv(y), η′w(y)〉. It follows that η

ρ→ η′ and therefore that 〈F, I, η, v〉 � ♦χ(y, ~z),
as had to be shown. a

From the previous theorem we deduce that also the following holds.

(‡)
∧
x.

∧
y.(x .= y ∧ ♦>) → ♦(x .= y)

Namely, take ∧
x.

∧
y.x

.= y.→ .♦(x .= z) ↔ ♦(y .= z)
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By the above theorem, this is generally valid. Substituting x for z we get∧
x.

∧
y.x

.= y.→ .♦(x .= x) ↔ ♦(y .= x)

Applying standard laws of predicate logic yields (‡). We remark here that the logics defined in
the literature (for example Ghilardi [6], Skvortsov and Shehtman [13] and Kracht and Kutz [10]),
differ from modal predicate logics as defined here only in the additional laws of equality that they
assume.

The modal Leibniz law of [10] allows for simultaneous substitution of all free occurrences of x
by y in ♦χ (denoted by ♦χ(y//x), provided that x .= y is true.∧

x.
∧
y.x

.= y.→ .♦χ(x) → ♦χ(y//x)

Now, notice that in a modal predicate logic as defined above, the rule of replacing constants for
universally quantified variables is valid. In counterpart frames this creates unexpected difficulties.
For, suppose we do have constants and that they may be substituted for variables. Then we may
derive from (‡), using the substitution of c for x and d for y:

(c .= d ∧ ♦>) → ♦(c .= d)

Since a constant has a fixed interpretation in each world, this means that if two constants are equal
in a world and there exists some accessible possible world, then there will also be some accessible
world in which they are equal. This is not generally valid. What is happening here is a shift from
a de re to a de dicto interpretation. If we follow the traces of the objects, the formula is valid,
but if we substitute intensional objects, namely constants, it becomes refutable. Notice, that this
situation is also reflected in the way, non-rigid constants are treated in [5]. There, the two possible
readings of the above formula, the de dicto and de re reading, are distinguished by actually binding
the interpretation of the constants to the respective worlds by using the term-binding λ-operator.

Applied to Hesperus and Phosphorus, this means that if they are equal, then there is a belief
world of George’s in which they are equal. However, if George believes that they are different,
this cannot be the case. So, the counterpart semantics cannot handle constants correctly—at least
not in a straightforward way, i.e., without restricting the possible values of constants in accessible
worlds. This paradox is avoided in Kracht and Kutz [10] by assuming that the language actually
has no constants.

§6. Objectual Counterpart Structures. The connection between coherence frames and
counterpart frames is not at all straightforward. Since the logic of a counterpart frame is a first–
order modal predicate logic, one might expect that for every counterpart frame there is a coherence
frame having the same logic. This is only approximately the case. We will show in Theorem 24
that for every counterpart structure there is a coherence structure having the same theory. This
is not generally true for frames. However, adopting a modification of coherence frames proposed
by Melvin Fitting in [3], namely balanced coherence frames (in [3] the corresponding frames are
called Riemann FOIL frames), it can indeed be shown that for every counterpart frame there is a
balanced coherence frame with the same theory.

Let us begin by elucidating some of the connections between counterpart and coherence frames.
Note again that since counterpart structures as defined above don’t interpret constants, we have
to assume that the language does not contain constants.

First, fix a coherence structure C = 〈W,�, U, T, τ, I〉. We put Uv := {τ(o, v) : o ∈ U}. This
defines the domains of the world. Next, for v, w ∈W we put ρ(v, w) := {〈τ(o, v), τ(o, w)〉 : o ∈ U}
and C(v, w) := ∅ if v � w does not obtain; otherwise, C(v, w) := {ρ(v, w)}. Finally, 〈τ(ai, w) : i <
Ω(P )〉 ∈ J(P )(w) iff 〈ai : i < Ω(P )〉 ∈ I(P )(w). Then 〈W,T,U,C, J〉 is a counterpart structure.
We shall denote it by CP(C). Notice, that there is at most one counterpart relation between any
two worlds.

Conversely, let a counterpart structure N = 〈W,T,U,C, I〉 be given. We put v�w iff C(v, w) 6= ∅.
U := T . Let O be the set of all objects o : W → T . Further, τ(o, w) := o(w). This defines
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a coherence frame if the set of objects is non–empty. Finally, 〈oi : i < Ω(P )〉 ∈ J(P )(w) iff
〈oi(w) : i < n〉 ∈ I(P )(w). It is easy to see that this is an equivalential interpretation. So,
〈W,�, O, U, τ, J〉 is a coherence structure, which we denote by CH (N).

Unfortunately, the logical relation between these two types of structures is more than unclear,
not the least since the notion of satisfaction in them is different. Moreover, the operations just
defined are not inverses of each other. For example, as we have already seen, there exist counterpart
structures with nonempty domains which have no objects. In this case CP(CH (N)) � N. Also
let C be the following coherence frame. W := {v, w, x, y}, T := {1, 2, 3, 4, 5, 6}, U = {a, b},
� = {〈v, w〉, 〈w, x〉, 〈x, y〉}. Finally, τ(a,−) : v 7→ 1, w 7→ 2, x 7→ 4, y 7→ 5, τ(b,−) : v 7→ 1, w 7→
3, x 7→ 4, y 7→ 6. Generating the counterpart frame we find that 2 and 3 are counterparts of 1, and
5 and 6 are counterparts of 4. Hence, there are more objects in the counterpart frame than existed
in the coherence frame, for example the function v 7→ 1, w 7→ 2, x 7→ 4, y 7→ 6.

Definition 18. Let N be a counterpart frame. A sequence 〈(wi, ti) : i < n〉 is called a thread
if (1) for all i < n: wi ∈ W , ti ∈ Uwi , and (2) for all i < n − 1: wi � wi+1 and 〈ti, ti+1〉 ∈ ρ for
some ρ ∈ C(wi, wi+1). N is rich in objects if for all threads there exists an object o such that
o(wi) = ti for all i < n.

Notice that if � is cycle free then N is automatically object rich. Otherwise, we must only
be able to come back to the same thing when going in a cycle. This is a rather strict condition.
Nevertheless, we can use unravelling to produce an equivalent cycle free structure from a given
one, which is then object rich. Additionally, we can ensure that between any two worlds there is at
most one counterpart relation. We call counterpart frames that satisfy the condition |C(v, w)| ≤ 1
for all worlds v, w ∈W Lewisian counterpart frames.

Theorem 19. For every counterpart structure N there exists a Lewisian counterpart structure
N′ rich in objects such that N and N′ have the same theory.

Proof. Let N = 〈W,T,U,C, I〉 be a counterpart structure. A path in N is a sequence π =
〈w0, 〈wi, ρi : 0 < i < n〉〉 such that ρi ∈ C(wi−1, wi) for all 0 < i < n. We let e(π) := wn−1

and r(π) = ρn−1 and call these, respectively, the end point and end relation of π. Let W ′

be the set of all paths in N and T ′ := T . Further, let U′
π := Ue(π) and for two paths π and

µ put C′(π, µ) := r(µ) if r(µ) ∈ C(e(π), e(µ)) and empty otherwise. Finally, let P be an n–ary
predicate letter. Then I′(P )(π) := I(P )(e(π)). Now let N′ = 〈W ′, T ′,U′,C′, I′〉. This is a Lewisian
counterpart structure and clearly rich in objects. The following can be verified by induction. If β
is a valuation on N, and w a world, and if β′ is a valuation on N′ and π a path such that e(π) = w
and β′π(xi) = βw(xi), then 〈N, β, w〉 � ϕ iff 〈N′, β′, π〉 � ϕ for all ϕ. The theorem now follows; for
given β and w, β′ and π satisfying these conditions can be found, and given β′ and π also β and
w satisfying these conditions can be found. a

Notice by the way that in the propositional as well as the second–order case this theorem is false.
This is so because the interpretation of a predicate in π must be identical to that of µ if the two
have identical end points. If this is not the case, the previous theorem becomes false. However,
if we are interested in characterizing MPLs by means of models, it follows from the above result
that we can restrict ourselves in the discussion to Lewisian counterpart structures that are rich in
objects.

But we can also strike the following compromise. Let us keep the counterpart semantics as it is,
but interpret formulae in a different way. Specifically, let us define the following.

Definition 20 (Objectual Counterpart Interpretation). We say that M = 〈W,T,U,C, I, β, v〉
is an objectual counterpart model, if F = 〈W,T,U,C〉 is a counterpart frame as before, I
is an objectual interpretation, that is, a counterpart interpretation that additionally assigns
objects to constant symbols, β an objectual valuation in F, i.e., a function that assigns to
each variable an object, and v a world. In this context, εv(o) := βv(o) if o is a variable and
εv(o) = I(o)(v) if o is a constant symbol.
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Write β →~y
v,w β if for some ρ ∈ C(v, w) we have 〈βv(xi), βw(xi)〉 ∈ ρ for all xi ∈ ~y. Furthermore,

write β →~y
v,w γ if for some ρ ∈ C(v, w) we have 〈βv(xi), γw(xi)〉 ∈ ρ for all xi ∈ ~y, where γ is

an objectual valuation. Terms ti denote either variables or constants, ~y tuples of variables and
~c tuples of constants. The symbol �∗ is called the weak objectual truth-relation and is
defined thus:

〈F, I, β, v〉 �∗ ti
.= tj ⇔ εv(ti) = εv(tj)

〈F, I, β, v〉 �∗ R(~t) ⇔ 〈εv(t0), . . . , εv(tn−1)〉 ∈ Iv(R)
〈F, I, β, v〉 �∗ ¬ϕ ⇔ 〈F, I, β, v〉 2∗ ϕ
〈F, I, β, v〉 �∗ ϕ ∧ χ ⇔ 〈F, I, β, v〉 �∗ ϕ;χ
〈F, I, β, v〉 �∗ ♦ϕ(~y,~c) ⇔ there is β →~y

v,w γ such that 〈F, I, γ, w〉 �∗ ϕ(~y,~c)
〈F, I, β, v〉 �∗

∨
y.ϕ(y,~c) ⇔ there is β̃ ∼y β such that 〈F, I, β̃, v〉 �∗ ϕ(y,~c)

The strong objectual truth-relation �† is like �∗ except for the clause for ♦ which is given
by:

〈F, I, β, v〉 �† ♦ϕ(~y,~c) ⇔ there is β →~y
v,w β and 〈F, I, β, w〉 �† ϕ(~y,~c)

These interpretations remove the asymmetry between variables and constants in the sense that
constants and variables are now assigned the same kind of values. However, while the strong
objectual interpretation brings us very close to coherence semantics, the weak interpretation still
bears essential properties of counterpart semantics, namely that we may move via a counterpart
relation to a new object. More precisely we have the following:

Proposition 21. The rule of substituting constants for universally quantified variables is valid
in the strong objectual interpretation, i.e. for every counterpart frame F = 〈W,T,U,C〉 it holds
that

F �†
∧
x.ϕ→ [c/x]ϕ.

Furthermore, there is an objectual counterpart model M such that

M 2†
∧
x.

∧
y.(x .= y) → (ϕ(x, ~z) ↔ ϕ(y, ~z))

Both claims are false for the weak objectual interpretation.

Proof. For the first claim suppose that β is an objectual valuation, I an objectual interpretation,
v a world and that 〈F, I, β, v〉 �†

∧
x.ϕ. We only need to consider the case where ϕ = ♦ψ. We

then have that for every x-variant β̃: 〈F, I, β̃, v〉 �† ♦ψ(x). I.e., for every object o = β̃(x) there
is β̃ →x

v,w β̃ and 〈F, I, β̃, w〉 �∗ ψ(x). Now I(c) = β̃(x) for some x-variant β̃ of β from which the
claim follows immediately.

For the second claim, fix the following simple model M. Let W = {v, w}, T = {a, b, b′},
U(v) = {a}, U(w) = {b, b′}, C(v, w) = ρ = {〈a, b〉, 〈a, b′〉} and I(P )(w) = {b} and β(x) = o with
o(v) = a and o(w) = b and β(y) = o′ with o′(v) = a and o′(w) = b′. o and o′ are the only objects
in this model. It should be obvious that M �† x

.= y ∧ ♦P (x) while M 2† ♦P (y).
Consider now the weak objectual interpretation. Take the model just defined and assume fur-

thermore that I(c) = o′. Then clearly v �∗
∧
x.♦P (x) while w 2∗ P (c), which shows that the

rule is not valid. That the formula in the second claim is still valid under the weak objectual
interpretation should be clear. a

The following is also straightforward.

Theorem 22. Let N = 〈W,T,U,C, I〉 be a counterpart structure rich in objects, v a world and
let β be an objectual valuation and β̃ a counterpart valuation such that βv(xi) = β̃v(xi) for all
variables. Then for all ϕ:

〈N, β, v〉 �∗ ϕ ⇔ 〈N, β̃, v〉 � ϕ

The proof is by induction on ϕ. The two relations differ only with respect to formulae of the
form ♦χ. Here, object richness assures that for each choice of counterparts in the successor worlds
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an object exists. (Actually, for that we only need that every element of a domain is the trace of
some object.)

§7. A Logic That is Coherence Frame Incomplete. In this section we will give an ax-
iomatization of a modal predicate logic that is the logic of a single counterpart frame having two
distinct counterpart relations. This logic turns out not to be valid on any coherence frame. So fix
the following counterpart frame F: let W = {w} be the set of worlds, Uw = {a, b} be the universe of
w and C(w,w) = {f, g} the set of counterpart relations from w to itself, where f : a→ a, b→ b
and g : a → b, b → a. Notice that this frame is not object rich, for 〈a, b〉 is a thread in F but
there is no object that leaves both a and b as trace in w.

F is a frame for the logic L axiomatized as follows:

(a) The T schema: p→ 3p.
(b) The alt2 schema: 3p ∧3q ∧3r → 3(p ∧ q) ∨3(p ∧ r) ∨3(q ∧ r)
(c) The 4 schema: 33p→ 3p
(d) ∀x0, x1, x2.(x0 = x1 ∨ x1 = x2 ∨ x0 = x2) (There exist at most two things)
(e) ∃x0, x1.¬(x0 = x1) (There exist at least 2 things)
(f) ∀x0, x1.x0 = x1 → 2(x0 = x1) (Necessity of Identity)
(g) ∀x0, x1.¬(x0 = x1) → 2¬(x0 = x1) (Necessity of Distinctness)
(h) ∀x0, x1.P (x0) ∧ ¬P (x1) → 2(P (x0) ∧ ¬P (x1) ∨ ¬P (x0) ∧ P (x1))
(i) ∀x0, x1.P (x0) ∧ ¬P (x1) → 3(P (x0) ∧ ¬P (x1)) ∧3(¬P (x0) ∧ P (x1))
(j) Axioms and rules of MPLs as given in Definition 2.

This may or may not be closed under second–order substitutions. It is arguable from a philo-
sophical point of view whether this defines a genuine logic, because it makes existence assumptions
about e.g. the number of objects in the world. Nevertheless it surely defines a logic, say L, in
the technical sense of definition 2. The point we are about to make is that L has no counterpart
models with just one counterpart relation between worlds. This may be seen as follows:

Axioms (f) and (g) say that counterpart relations are injective functions. The propositional
reduct of this logic is the logic K.alt2.T.4 which possesses exactly two Kripke frames, namely the
1-point reflexive frame and the 2-point frame, where accessibility is universal.

Postulates (d) and (e) say that every world is inhabited by exactly two objects.
Now (h) says in this situation that we may not go to another world, because (h) can be easily

falsified in the two point frame (P is true of exactly one object in, say, world u, but true of both in
world v), but not in the one point frame (because of (d)–(g)). So, the two objects may only swap
their roles. So we have just one world. Finally, (i) forces the frame to have at least two counterpart
relations.

It follows that whereas L is characterized by its canonical coherence model, compare Theorem
13, there is no coherence frame in which L is valid, that is to say, L is coherence frame incomplete.
For an object in a coherence frame cannot leave two distinct traces in one world, which is required
according to (i). We will show in Section 9 how the notion of coherence frame can be modified to
gain the same expressive power as counterpart semantics without moving to the full second-order
semantics.

§8. Passing Back and Forth. By the previous theorem, we can introduce the notion of
an object into counterpart frames, which then makes them rather similar to coherence frames.
However, counterpart structures with object valuations are still different from coherence structures.
A different approach is to embed the language of counterpart structures into the language of
coherence structures in the following way. Write � for the possibility operator, which has the
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definition given by �∗. Now define a translation as follows.

(x .= y)γ := x
.= y

P (~y)γ := P (~y)
(¬ϕ)γ := ¬ϕγ

(ϕ ∧ χ)γ := ϕγ ∧ χγ

(
∨
x.ϕ)γ :=

∨
x.ϕγ

(�ϕ(y0, . . . , yn−1))γ :=
∨
z0. . . .

∨
zn−1.

∧
i<n zi

.= yi ∧ ♦ϕ(~z/~y)γ

Here, yi (i < n) are the free variables of ϕ and zi (i < n) distinct variables not occurring in ϕ.
This is actually unique only up to renaming of bound variables. Further, notice that

∧
i<n denotes

a finite conjunction, not a quantifier. This translation makes explicit the fact that variables inside
a � are on a par with bound variables. (In linguistics, one speaks of � as an unselective binder.)
Notice now that

(
∧
x0.

∧
x1.x0

.= x1 → (�ϕ(x0) ↔ �ϕ(x1)))γ

=
∧
x0.

∧
x1.x0

.= x1 → ((�ϕ(x0))γ ↔ (�ϕ(x1))γ)
=

∧
x0.

∧
x1.x0

.= x1 → ((
∨
x3)(x3

.= x0 ∧ ♦ϕ(x3)γ) ↔ ((
∨
x3)(x3

.= x1 ∧ ♦ϕ(x3)γ))

This principle is actually valid in coherence structures. For it is a substitution instance of the
following theorem of predicate logic.∧

x0.
∧
x1.x0

.= x1 → ((
∨
x3.x3

.= x0 ∧ ϕ) ↔ (
∨
x3.x3

.= x1 ∧ ϕ))

Proposition 23. Let N be a counterpart structure and x a world. Then for any ϕ:

〈N, x〉 � ϕγ ⇔ 〈N, x〉 � ϕ

In object rich structures also � and �∗ coincide, which makes all four notions the same. So,
while in counterpart structures formulae ϕ and ϕγ are equivalent, they are certainly not equivalent
when interpreted in coherence structures.

From the completeness result of this paper, the following can be established.

Theorem 24. For every counterpart structure N there exists a coherence structure C such that
for any formula ϕ and any world x:

〈N, x〉 �∗ ϕ ⇔ 〈C, x〉 � ϕ

We sketch a construction that yields such a coherence structure. We perform the construction
only for the frame, the valuation is straightforward to construct. The construction is in stages
and a somewhat more complicated unravelling. In each stage we construct a coherence structure
Hn, and a map hn from the set of worlds of Hn to the set of worlds of N. At stage 0, we take
the disjunction of all frames 〈{x},�0, U, T, 〉, where w is a world of C, �0 = ∅, U := T = Ux.
Finally, τ(o, x) := o. Put h0(x) := x. At Stage n + 1, take a world w without successor in Hn

and a successor relation ρ ∈ C(hn(w), v) for some v, and a function γ from objects of hn(w) to
ρ–counterparts in v. Add a new successor world wγ to Hn. This is the first step. It defines the
set Wn+1 and �n+1. Let Γ be the set of all choice functions γ. Now Un+1 := Un × Γ, Tn+1 := Tn.
τn+1(〈o, γ〉, u) := τ(o, u) for all u 6= wγ ; τn+1(〈o, γ〉, wδ) := δ(τn(o, w)), for all γ, δ ∈ Γ which are
choice functions of C(w, v). Now hn+1 extends hn by hn+1(wγ) := v, where v is the target world
of γ.

§9. Balanced Coherence Frames and Worldline Semantics. In his [11], Gerhard Schurz
introduced a semantics, called worldline semantics, in the context of analyzing Hume’s is-ought
thesis, i.e. the logical problem whether one may infer ethical value (normative) statements from
factual (descriptive) statements. This semantics is very close to the coherence semantics defined
in this paper. A worldline frame is a quintuple 〈W,R,L,U,Df〉, where W is a set or worlds, R
the accessibility relation, U 6= ∅ a non-empty set of possible objects, ∅ 6= L ⊆ {l : W → U} a
set of functions from possible worlds to possible objects (members of L are called worldlines),
Df : W → U a domain function such that Df(w) := Dw ⊆ Uw, where Uw := {d ∈ U : ∃l ∈
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L(l(w) = d)} (the set of term extensions at world w) and Lw = {l ∈ L : ∃d ∈ Dw(l(w) = d)} (the
set of worldlines with extension in Dw). An interpretation V into a worldline frame is a function
such that V (t) ∈ L for any term t and Vw(Q) ⊆ Un

w for any n-ary predicate Q. If V is a worldline
interpretation denote by V [l/x] the interpretation that is like V except that it assigns worldline l
to the variable x. Since, unlike Schurz, we assume that free logical quantifiers are a defined notion,
we suppose in the following that Dw = Uw for all w. Then, in particular, Df(w) = Uw and Lw = L
for all w, which means that Df can be omitted.

Then the truth relation in worldline semantics can be defined as follows:

Definition 25 (Truth in Worldline Semantics). Let F = 〈W,R,L,U〉 be a worldline frame, V
an interpretation and w a world, define

〈F, V, w〉 � P (~t) ⇔ Vw(~t) ∈ Vw(P )
〈F, V, w〉 � s

.= t ⇔ V (s)(w) = V (t)(w)
〈F, V, w〉 � χ ∧ ϕ ⇔ 〈F, V, w〉 � χ;ϕ
〈F, V, w〉 � ¬ϕ ⇔ 〈F, V, w〉 2 ϕ
〈F, V, w〉 �

∨
x.ϕ ⇔ for some l ∈ L : 〈F, V [l/x], w〉 � ϕ

〈F, V, w〉 � ♦ϕ ⇔ there is w′ such that w � w′ and 〈F, V, w′〉 � ϕ

It should be rather clear that the main difference between worldline and coherence semantics
is terminological. While in worldline semantics one quantifies over worldlines and evaluates pred-
icates and identity statements with respect to the value of a worldline at a particular world, in
coherence semantics we quantify over modal individuals without specifying their internal struc-
ture, but assume a trace function that maps an individual at a world to its trace. So we can
give the following translation. Given a coherence model 〈F, I, β, w〉 based on the coherence frame
〈W,�, U, T, τ〉, define a worldline model 〈G, V, w′〉 based on the worldline frame 〈W ′, R, L, U ′〉 as
follows. Set W ′ := W , R := �, U ′ = T , and w′ = w. Further, given u ∈ U , define fu : W ′ → U ′

by letting fu(w) := t, if τ(u,w) = t. Then set L := {fu : u ∈ U}. Then, for v ∈ W ′, we have
U ′

v := {t ∈ U ′ : ∃l ∈ L(l(v) = t)} = {t ∈ T : ∃u ∈ U(τ(u, v) = t)}. Call G the worldline companion
of F.

Proposition 26. For every coherence frame F and its worldline companion G and for all ϕ:

F � ϕ iff G � ϕ

In particular, if a logic L is frame complete with respect to coherence frames, it is frame complete
with respect to worldline frames.

Proof. The proof is by a rather straightforward structural induction on ϕ. The only task is to
define appropriate interpretations, so we only consider the atomic cases. Fix a coherence frame F
and its worldline companion G. Suppose ϕ = P (x0, . . . , xn−1) and that 〈F, I, β, w〉 2 ϕ for some
equivalential interpretation I, valuation β and world w. Define

〈t0, . . . tn−1〉 ∈ Vw(P ) iff ti = τ(w, ui) and 〈u0, . . . un−1〉 ∈ Iw(P ) (∗)
and βw(xi) = Vw(xi). Then, clearly, 〈G, V, w〉 2 P (x0, . . . xn−1). Conversely, given an interpreta-
tion V and 〈G, V, w〉 2 ϕ, we can define an interpretation I and a valuation β as in (∗) such that
I is equivalential and 〈F, I, β, w〉 2 ϕ. The case ϕ = (xi

.= xj) is treated in the same way. a
Since Schurz showed, among other things, that worldline semantics provides for the same class
of frame complete logics in the absence of extra equality axioms as standard constant domain
semantics, it follows that the same holds for coherence frames. This means that while coherence
frames allow for a more natural treatment of non-rigid designation for example, unlike counterpart
frames, they don’t enlarge the class of frame complete logics unless one moves to the full second-
order semantics as we will do in paragraph 12. But there is a way around this problem. Instead of
introducing algebras of admissible interpretations, we can assume that certain worlds are copies of
each other. The basic idea of incorporating an equivalence relation between worlds, which assumes
that predicates are always interpreted in the same way in equivalent worlds, into a new notion of
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frame is due to Melvin Fitting, compare his [3]. Here we use a slightly different approach, namely
add a first-order bisimulation to coherence frames. To be precise, call a relation E ⊆ W ×W a
world-mirror, if E is an equivalence relation and whenever vEw and v� u1, there is a u2 such
that w�u2 and u1Eu2. Intuitively, two mirrored worlds v and w may be understood as a situation
seen from two different perspectives (because v and w may have “different histories”, but have the
“same future”).

Definition 27 (Balanced Coherence Frames). A balanced coherence frame is a pair
〈F,E〉 where F = 〈W,�, U, T, τ〉 is a coherence frame and E is a world-mirror on W . An interpre-
tation I is called balanced, if it is equivalential and 〈u0, . . . , un−1〉 ∈ Iv(P ) iff 〈u0, . . . , un−1〉 ∈
Iw(P ) for all n-ary relations P and for all worlds v, w such that vEw. A balanced coherence
model is a quintuple 〈F,E, I, β, w〉, where 〈F,E〉 is a balanced coherence frame, I a balanced
interpretation, β a valuation and w a world.

The next theorem gives the connection between counterpart frames and balanced coherence
frames.

Theorem 28. For every counterpart frame F there exists a balanced coherence frame F∗ such
that for all formulae ϕ:

F � ϕ⇐⇒ F∗ � ϕγ .

Proof. Fix a counterpart frame F = 〈W,T,U,C〉. Let F′ = 〈W ′, T ′,U′,C′〉 be the unravelled
Lewisian counterpart frame defined as in Theorem 19. We define a balanced coherence frame
F∗ = 〈W ∗,�, U∗, T ∗, τ,E〉 from F′. Let W ∗ = W ′, T ∗ = T ′ and define π� ν ⇔ C′(π, ν) 6= ∅. Since
F′ is rich in objects, there is an object o : W ′ → T for every thread in F′. Define U∗ as the set of all
objects in F′ and set τ(o, w) = t⇔ o(w) = t. Finally, for π, ν ∈W ∗, set πEν ⇔ e(π) = e(ν), where
e(π), e(ν) again denote the endpoints of e(π) and e(ν), respectively. Clearly, E is a world-mirror
for it is an equivalence relation and if π�µ and πEν, there is a path µ′ such that r(µ) = r(µ′) and
ν � µ′, hence µEµ′.

Now suppose that F 2 ϕ. Then there is a valuation β, an interpretation I and a world v
such that 〈F, I, β, v〉 2 ϕ. By Theorem 19, 〈F′, I′, β′, ν〉 2 ϕ, where I′(P )(π) := I(P )(e(π)) for
all worlds π, β′π(xi) := βw(xi) if e(π) = w and ν is a world in F′ such that e(ν) = v. Set
I∗(P )(π) := {〈o0, . . . , on−1〉 ∈ (U∗)n : 〈o0(e(π)), . . . , on−1(e(π))〉 ∈ I′(P )(π)} and choose an
object valuation β∗ on F∗ such that β∗(xi)(ν) = β′(xi). Such a valuation exists because F′ is
rich in objects. Furthermore, I∗ is a balanced interpretation, so 〈F∗, I∗, β∗, ν〉 defines a balanced
coherence model. We claim that M∗ = 〈F∗, I∗, β∗, ν〉 2 ϕγ . The atomic and Boolean cases
are trivial and the quantificational case follows from object richness. So consider the case ϕ =
♦ψ(y0, . . . , yn−1). We have to show that M∗ �

∧
z0. . . .

∧
zn−1.(

∧
i<n zi

.= yi → �¬ψ(~z/~y)γ).
Choose objects o0, . . . , on−1 and a ~z-variant β̃∗ such that oi(π) = β̃∗π(zi) = β∗π(yi) for all i. Then
〈F∗, I∗, β̃∗, ν〉 �

∧
i<n zi

.= yi. Assume further that for some π ∈ W ∗ we have ν � π, i.e. that
there is ρ ∈ C′(ν, π). Then, since F′ is a Lewisian counterpart frame, ρ is unique and hence
〈oi(ν), oi(π)〉 ∈ ρ for all i. Then, by assumption, we have 〈F, I, β̃, w〉 2 ψ, where e(π) = w and
β̃π(zi) = β̃∗π(zi), so by induction it follows that 〈F∗, I∗, β̃∗, π〉 � ¬ψ(~z/~y)γ .

Conversely, suppose that F∗ 2 ϕγ . Again we consider only the case of ϕγ =
∨

i<n zi.(
∧

i<n zi
.=

yi ∧ ♦ψ(~z/~y)γ) and assume that we can find a countermodel for ψ if a countermodel for ψγ

is given. Pick a balanced interpretation I∗, an object valuation β∗ and a world ν such that
〈F∗, I∗, β∗, ν〉 2 ϕγ . Let M′ be the Lewisian counterpart model 〈F′, I′, β′, ν〉 where F′ is as above,
I′(P )(π) = {〈t0, . . . , tn−1〉 ∈ (T ′)n : ∃oi ∈ U∗ with oi(π) = ti(i < n) ∧ 〈o0, . . . on−1〉 ∈ I∗(P )(π)}
for all worlds π and β′ν(yi) = β∗(yi)(ν). We claim that M′ � �¬ψ, which implies by Theorem 19
that F 2 ϕ. So suppose there is a world π such that ν � π in F′, i.e. that there is δ ∈ C(e(ν), e(π))
and δ = r(π). Suppose β̃′ is a counterpart valuation such that β̃′ : β′ δ→ β̃′. By object richness
there are objects ui ∈ U∗(i < n) such that ui(ν) = β′ν(yi) and ui(π) = β̃′π(yi). Hence there is an
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objectual ~z-variant β̃∗ such that β̃∗(zi)(ν) = β∗(yi)(ν) for all i. Then 〈F∗, I∗, β̃∗, ν〉 �
∧

i<n zi
.= yi

whence 〈F∗, I∗, β̃∗, π〉 � ¬ψγ(~z/~y). But β̃∗(zi)(π) = β̃′π(yi) and the claim follows. a
This result has interesting consequences. For example, since counterpart semantics is frame com-
plete with respect to all first-order extensions QL of canonical propositional modal logics L (com-
pare [6]), the same holds true for the translation QLγ with respect to balanced coherence frames.
Now we noted above that coherence frames per se characterize the same logics as standard con-
stant domain semantics if no extra equality axioms are involved. But it is known that already
rather simple canonical propositional logics have frame incomplete predicate extensions. In [2]
it is shown that to complete frame incomplete MPLs by adding appropriate axioms, one needs
mixed de re formulae rather than substitution instances of purely propositional formulae. So the
above result gives a hint on where the source for frame incompleteness with respect to standard
semantics is to be found. In particular, note that the translation .γ leaves propositional formulae
untouched, whereas de re formulae of the form ♦ϕ(y0, . . . , yn−1) are transformed into formulae∨
z0. . . .

∨
zn−1.

∧
i<n zi

.= yi ∧♦ϕ(~z/~y)γ , which are de re formulae involving equality. So what we
need if we want to use standard possible worlds semantics to characterize a large class of logics
via frame completeness are two things: firstly, a different understanding of the modal operator as
given by .γ , and, secondly, the assumption that certain worlds are copies of each other.

§10. Varieties of Equality. Scott [12] proposes various kinds of identity. The first is the one
we have discussed so far, namely identity in trace. The second, stronger notion, is the inherent
identity in trace, which we shall denote by .=?. Two objects satisfy this at a world if they are
identical in trace at all subsequent worlds. The third is the global identity in trace, which we
denote by ≈. Two objects are globally identical in trace at a world if their traces are identical
in all worlds that can be reached from this world by either moving forward or backward along
the relations. The fourth is strong identity in trace, denoted by ≈+. Two objects are strongly
identical in trace if they have identical trace in all worlds. The fifth is identity as object, denoted
by ≡. This is the numerical identity of objects. The semantics can be formally defined as follows.
Denote by T (w) the set of all worlds which are accessible from w in a series of steps. More formally,
we define this as follows.

Definition 29 (Transit). Let C = 〈W,�, U, T, τ, I〉 be a coherence frame. Then define v �n w
inductively by (a) v �0 w iff v = w, (b) v �n+1 w iff there is a u ∈ W such that v �n u � w.
Further, put v �∗ w iff there is an n such that v �n w. Define T (v) := {w : v �∗ w}, and
Z(v) := {w : v(� ∪�`)∗w}.

Here, R` := {〈y, x〉 : 〈x, y〉 ∈ R} is the converse relation of R.

Definition 30 (Equality in Coherence Models). Let 〈C, β, v〉, be a coherence model.

〈C, β, v〉 � x
.= y :⇔ τ(β(x), v) = τ(β(y), v)

〈C, β, v〉 � x
.=∗
y :⇔ for all w ∈ T (v) : τ(β(x), w) = τ(β(y), w)

〈C, β, v〉 � x ≈ y :⇔ for all w ∈ Z(v) : τ(β(x), w) = τ(β(y), w)
〈C, β, v〉 � x ≈+ y :⇔ for all w ∈W : τ(β(x), w) = τ(β(y), w)
〈C, β, v〉 � x ≡ y :⇔ β(x) = β(y)

As it turns out, although all these notions are different semantically, we can only distinguish
simple identity in trace from the other relations, that is to say, the latter four cannot be defined by
means of modal axioms in the standard modal language using .=. Metatheoretically, the interrela-
tions between ≈, ≈+, .=∗ and ≡ can—besides the usual axioms for identity (reflexivity, symmetry,
transitivity)—be given by the following postulates.∧

x.
∧
y.x ≡ y → x ≈+ y∧

x.
∧
y.x ≈+ y → x ≈ y∧

x.
∧
y.x ≈ y → x

.=∗
y∧

x.
∧
y.x

.=∗
y → x

.= y∧
x.

∧
y.x

.=∗
y → �(x .=∗

y)
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Global identity in trace implies strong identity in trace if the frame is connected. A frame is called
cyclic if for all v: T (v) = Z(v). S5–frames are cyclic. Tense frames are also cyclic. (Notice that
we have not defined T (v) for polymodal frames. See however [9] for a definition.) Inherent identity
in trace implies global identity in cyclic frames.

§11. Objects in Metaframes. Shehtman and Skvortsov have introduced in [13] the metaframe
semantics and shown that it is complete for all modal predicate logics. Their results were stated
and proved for superintuitionistic logics and extensions of S4. However, by removing some of the
category theoretic definitions one can generalize these results easily to arbitrary modal predicate
logic.

Definition 31. Σ denotes the category of finite ordinals and functions between them.

Definition 32 (Metaframe). A general metaframe M is a contravariant functor from
the category Σ into the category of general frames. In particular, for every n, M(n) = 〈Fn,�n,Fn〉
is a general frame, and for each σ : m → n, M(σ) is a p–morphism from M(n) to M(m). A
metaframe is a contravariant functor from Σ into the category of Kripke–frames. We call the
members of Fn n–points.

The idea is this. M(0) represents the frame of possible worlds and M(n) for n > 0 represents
n–tuples over worlds. The arrows are needed to be able to identify the worlds and the tuples.
For example, there is a unique map 0n : 0 → n for each n. Consequently, we have a map
M(0n) : M(n) → M(0). Thus, for each a ∈ M(n), the world of a is M(0n)(a). Further, there
is a (unique) natural embedding in,n+1 : n → n + 1 : i 7→ i. Hence, we define a projection of
a ∈M(n+1) onto M(n) by M(in,n+1)(a). We shall write a ↓ b if a ∈M(n+1) for some n ∈ ω and
b = M(in,n+1)(a). Further, write pn

i : 1 → n for the unique map sending 0 to i and if σ : m→ n,
write xσ := 〈xσ(0), xσ(1), . . . , xσ(m−1)〉.

Definition 33 (Interpretation). Let M be a general metaframe. An interpretation on M
is a function ξ assigning to each predicate letter P an internal set of M(Ω(P )), i.e. ξ(P ) ∈ FΩ(P ).

For a ∈M(n) and σ : m→ n, m = Ω(P ) we define

〈M, ξ, a〉 � P (xσ) :⇔ M(σ)(a) ∈ ξ(P )
〈M, ξ, a〉 � xi

.= xj :⇔ M(pn
i )(a) = M(pn

j )(a)
〈M, ξ, a〉 � ¬χ :⇔ 〈M, ξ, a〉 2 χ
〈M, ξ, a〉 � ϕ ∧ χ :⇔ 〈M, ξ, a〉 � ϕ;χ
〈M, ξ, a〉 � ♦χ :⇔ exists b�n a : 〈M, ξ, b〉 � χ
〈M, ξ, a〉 �

∨
xn.χ :⇔ exists b ↓a : 〈M, ξ, b〉 � χ

We can identify M(0) with the sets of worlds, M(1) with the sets of objects, M(2) with the
sets of pairs of objects, and so on. Now, the definitions will not suffice to define a MPL from a
metaframe unless it satisfies a further condition. Let σ : m→ n. Write σ+ for the unique function
from m+1 to n+1 such that σ+ � m = σ and σ(m) = n. Further, for m ≤ n, im,n : m→ n : j 7→ j
is the unique inclusion.

Definition 34 (Modal Metaframe). A metaframe satisfies the lift property if for all σ :
m→ n and a ∈M(n), b ∈M(m+1) such that M(σ)(a) = M(im,m+1)(b) = d ∈M(m) there exists
a c ∈M(n+ 1) such that

a = M(in,n+1)(c) and b = M(σ+)(c)
A metaframe is a modal metaframe if it satisfies the lift property.

Shehtman and Skvortsov give a canonical procedure to obtain a modal metaframe from a modal
predicate logic, see also Bauer [1]. Let L be given. We then let M(n) be the set of all complete
n–types Γ = Γ(x0, . . . , xn−1). They form a frame, where Γ�n ∆ iff for all �ϕ ∈ Γ we have ϕ ∈ ∆.
Further, if σ : m→ n, then M(σ) : M(n) →M(m) is defined by

M(σ)(∆) := {χ : [xσ(0)/x0, xσ(1)/x1, . . . , xσ(m−1)/xm−1]χ ∈ ∆}
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Actually, the definition of truth in a model can be changed somewhat. First, it can be shown that
if the free variables of χ are in the set {xi : i < n}, we have

〈M, ξ, a〉 � χ ⇔ for all b ↓a : 〈M, ξ, b〉 � χ

In this form we see that the truth of a formula is upward persistent. (The above–mentioned
conditions on metaframes are such that this holds.)

Now write a ∼i c for the following. Let σ : n→ n : i 7→ n−1, n−1 7→ i, j 7→ j (j 6∈ {i, n−1}). (If
i is not less than n−1, this map is the identity.) Then a ∼i c iff there exist b such that M(σ)(a) ↓b
and M(σ)(c) ↓b. Then we have

〈M, ξ, a〉 �
∨
xi.χ ⇔ there is c ∼i a : 〈M, ξ, c〉 � χ

This is the form that we shall use later on. (It is closer in spirit to cylindrification.)
This construction is highly abstract. We shall demonstrate this construction with a very simple

example. Our language contains only equality. Suppose that we have a logic L which contains
ϕ ↔ �ϕ for every formula ϕ. Then we have Γ �n ∆ iff Γ = ∆ for all n–types Γ and ∆. So,
the relations are trivial. Suppose also that the logic contains the sentence saying that there are
exactly three objects. We shall calculate the cardinalities of the M(n). There is exactly one
0–type Γ0, since the logic is POST–complete. There exists exactly one 1–type, since all objects
are indistinguishable. There exist 2 2–types, namely the type containing x0

.= x1 and the other
containing x0 6 .= x1. The general formula is as follows. Let n be given. Choose a function
f : {0, 1, . . . , n− 1} into the set {0, 1, 2}. Then for this function the associated type is

tf := {xi
.= xj : f(i) = f(j), i, j < n} ∪ {¬(xi

.= xj) : f(i) 6= f(j), i, j < n}
Now let f ≈ g iff there is a permutation π : {0, 1, 2} → {0, 1, 2} such that f = π ◦ g. Obviously,
tf = tg iff f ≈ g. (Case 1) f(i) = f(j) for all i, j < n. There are 3 functions, all representing
the same type. (Case 2) The image of f has at least two members. There are 3n − 3 many such
functions. Each type is represented by six functions. This gives (3n−1 − 1)/2 functions. In total
we have (3n−1 + 1)/2 functions. The series is

1, 2, 5, 14, 41, 122, . . .

It is clear that the objects in such a frame are very difficult to recover. For this reason, Shehtman
and Skvortsov define a cartesian metaframe (see below in Section 13 for a definition). This is
a metaframe in which for each 0-type Γ, the set of all n–types ∆ with sentential reduct Γ is
isomorphic to the n–fold cartesian product of the set of 1–types with sentential reduct Γ. Moreover,
the projections are the maps M(ιni ), where ιni : 1 → n : 0 7→ i. As Bauer [1] shows, each metaframe
that allows to fuse types (a condition which we shall not define here) has a logically equivalent
cartesian metaframe. The canonical metaframe defined above satisfies this condition. Thus, every
logic is complete with respect to cartesian metaframes. Still, these proofs are very tedious. In the
next section we shall show how the present results allow to prove completeness with respect to
metaframe semantics using the previous completeness result.

§12. Going Second Order. In Kracht and Kutz [10] we have defined a notion of second order
modal logics. Although they technically correspond to Π1

1–formulae, we shall nevertheless call
them second order logics. To be precise we shall describe them as logics over a slightly different
language. Namely, while before we had a set Π of predicate symbols, now we assume to have
predicate variables of any given arity.

Definition 35 (Symbols and Language). The languages of second order modal predi-
cate logic, abbreviated collectively by MPL2, contain the following symbols.

1. A denumerable set V := {xi : i ∈ ω} of object variables.
2. A denumerable set C := {ci : i ∈ ω} of constants.
3. For each n ∈ ω, a denumerable set PV n := {Pn

i : i ∈ ω} of predicate variables.
4. Boolean functors ⊥, ∧, ¬.
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5. Quantifiers
∨

,
∧

.
6. A set M := {�λ : λ < κ} of modal operators.

Furthermore, Ω(Pn
i ) = n for all n, i ∈ ω.

There may also be predicate constants but we have chosen to do without them for the purpose
of simplicity, with the exception of equality. As before, we deal with only one modal operator. The
generalization is obvious. The following substitution principle has first been discussed by Steven
Kleene in his [8].

Definition 36 (Second Order Substitution). Let ϕ and χ be formulae of MPL2 and P be a
predicate variable. Then [χ/P ]ϕ denotes the formula that is obtained by replacing every occurrence
of [~y/~x]P by [~y/~x]χ, where bound variables get replaced in the usual (first–order) way to prevent
accidental capture.

We shall describe this substitution principle in a little more detail. Notice that χ can have free
variables that are not among the variables x0, . . . , xΩ(P )−1. Let ~z be these variables. Then we
replace ϕ by a bound variant ϕ′, in which all variables of ϕ occurring in ~z are replaced by suitable
variables not occurring in either ϕ or χ. Next, we perform the replacement of any occurrence
of [~y/~x]P for some variables ~y by [~y/~x]χ. This time, no bound variant needs to be chosen. For
example, let ϕ =

∨
x2.

∧
x0.

∧
x1.P

1
0 (x2) ∧ P 2

1 (x0, x2) → P 2
1 (x1, x0). Let χ =

∨
x1.P

3
0 (x2, x1, x0).

Suppose that we want to replace P 2
1 by χ. Then since x2 occurs free in χ, we shall replace bound

occurrences of x2 in ϕ by x4. This gives

ϕ′ =
∨
x4.

∧
x0.

∧
x1.P

1
0 (x2) ∧ P 2

1 (x0, x4) → P 2
1 (x1, x0)

Finally, we must replace P 2
1 (x0, x4) by [x4/x1]χ =

∨
x1.P

3
0 (x2, x1, x0) and P 2

1 (x1, x0) by [x1/x0, x0/x1]χ =∨
x3.P

3
0 (x2, x3, x1).

[χ/P 2
1 ]ϕ =

∨
x4.

∧
x0.

∧
x1.P

1
0 (x2) ∧

∨
x1.P

3
0 (x2, x1, x0) →

∨
x3.P

3
0 (x2, x3, x1)

This language does not contain an existence predicate constant, but this is only for convenience.
There are no further complications in introducing predicate constants as well, but we have omit-
ted them here to keep the notation reasonably simple. The following definition is analogous to
Skvortsov and Shehtman [13].

Definition 37 (Second Order MPL). A second order MPL is a set L of MPL2–formulae
satisfying the following conditions.

1. L contains all instances of axioms of first–order logic.
2. L is closed under all rules of first–order logic.
3. L is closed under second–order substitution.
4. L contains all instances of axioms of the modal logic K.
5. L is closed under the rule ϕ/�ϕ.
6. ♦

∨
y.ϕ↔

∨
y.♦ϕ ∈ L.

Clearly, a second order MPL can be viewed as a special sort of a first–order MPL, by taking Π
to be the union of the sets PV m. This allows us to speak, for example, of the Henkin–closure of L.
However, these languages are technically distinct, since the predicate variables are not interpreted
in the structure. Their value is not fixed in the structure, just like the value of an object variable
is not fixed in a first–order structure. This means that technically we get a different notion of
structure. However, the way we get these structures is by abstracting them from the corresponding
first–order structures. Thus, we begin with a second order MPL L and interpret it as a first–order
MPL, also called L, for which we then build the canonical structure CanL∗ . Starting with this
structure we shall define the second–order structure for L∗.

Definition 38 (Second Order Coherence Frame). A second order coherence frame is
a triple 〈W,�, U〉, where 〈W,�〉 is a Kripke–frame and U a set.
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Given a second order coherence frame, we call an n–point a member of W × Un; an n–set a
subset of W × Un. Let p = 〈v,~a〉 and q = 〈w,~c〉 be n–points. We write p ∼k q if ai = ci for all
i 6= k.

Vk(A) := {q : exists p ∈ A : p ∼k q}
(If k < n does not obtain, then we may put Vk(A) := A.) Next, let σ : m→ n. Then we define σ̂
on n–points as follows.

σ̂(〈v,~a〉) := 〈v, 〈a(σ(i)) : i < m〉〉
If p is an n–point, σ̂(p) is an m–point. So, −̂ is a contravariant functor from Σ into the set of
functions from points to points. This is also directly verified. If τ : `→ m then

σ̂ ◦ τ(p) = 〈v, 〈a(σ ◦ τ(i)) : i < `〉〉
= σ̂(〈v, 〈a(τ(i)) : i < `〉〉)
= τ̂(σ̂(p))
= τ̂ ◦ σ̂(p)

For an m–set A we put
Cσ(A) := {p : σ̂(p) ∈ A}

It is directly verified that C is covariant, that is, Cσ◦τ = Cσ ◦ Cτ . For we have for an `–set A:

Cσ◦τ (A) = {p : σ̂ ◦ τ(p) ∈ A}
= {p : τ̂(σ̂(p)) ∈ A}
= {p : σ̂(p) ∈ Cτ (A)}
= Cσ(Cτ (A))
= Cσ ◦ Cτ (A)

And finally we set
�A := {〈w,~a〉 : exists v � w : 〈v,~a〉 ∈ A}

Definition 39 (n–Complexes and Towers). An n–complex over a 2nd order coherence frame
is a set Cn of n–sets closed under intersection, complement, the operations Vk, � and Cσ for every
σ : n → n. A tower is a sequence 〈Cn : n ∈ ω〉 such that Cn is an n–complex for every n, and
for every σ : n→ m, Cσ : Cn → Cm.

Definition 40 (Generalized Second Order Coherence Frames). A generalized second or-
der coherence frame is a quadruple S = 〈W,�, U,T〉, where 〈W,�, U〉 is a second order
coherence frame and T = 〈Ci : i ∈ ω〉 a tower over it. A valuation into S is a pair ξ and β of
mappings, where ξ is defined on all predicate variables, and ξ(Pm

i ) ∈ Cm for all m, i ∈ ω and β
assigns to each xi ∈ V a member of U .

〈S, ξ, β, v〉 � Pm
i (~y) :⇔ 〈β(yi) : i < m〉 ∈ ξ(Pm

i )
〈S, ξ, β, v〉 � ¬χ :⇔ 〈S, ξ, β, v〉 � χ
〈S, ξ, β, v〉 � ϕ ∧ χ :⇔ 〈S, ξ, β, v〉 � ϕ;χ
〈S, ξ, β, v〉 �

∨
y.χ :⇔ for some β′ ∼y β : 〈S, ξ, β′, v〉 � χ

〈S, ξ, β, v〉 � ♦χ :⇔ for some w � v : 〈S, ξ, β, w〉 � χ

We write S � ϕ if for all valuations ξ, β and all worlds v: 〈S, ξ, β, v〉 � ϕ.
Notice that Shehtman and Skvortsov define the truth of a formula at an n–point. We can do

the same here. Namely, we set
〈S, ξ, 〈v,~a〉〉 � ϕ

iff for any valuation β such that β(xi) = ai for all i < n we have

〈S, ξ, β, v〉 � ϕ

An inductive definition can be given as well. We can also define a valuation on a metaframe in the
following way. We say that a function β : V →

⋃
nM(n) is a valuation if β(xn) ∈ M(n), and if

β(xn+1) ↓ β(xn) for every n. Thus, β(xn) is an n–point which is the projection of the n+ 1–point
β(xn+1).
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We shall show that second order MPLs are complete with respect to this semantics. So, let L be
a second order MPL. We understand it as a first–order MPL, which we denote by the same letter.
Then we can construct the canonical first–order coherence structure CanL∗ = 〈WL∗ ,�, CL∗ , IL∗〉.
We shall now define a second order canonical frame from it. This construction is completely
general. First, observe that we can transport the notion of n–point as well as the satisfaction of a
formula at an n–point to frames (and first–order coherence frames).

Take a modal (first–order) structure S = 〈W,�, U, I〉. Let ϕ be a formula such that the free
variables occurring in it are contained in {xi : i < n}. Then we write [ϕ]n for the set of n–points
satisfying ϕ. Formally,

[ϕ]n := {p : 〈S, p〉 � ϕ}
Now set

Cn := {[ϕ]n : fvar(ϕ) ⊆ {xi : i < n}}
Finally, we put T := 〈Cn : n ∈ ω〉. Now let

S2 := 〈W,�, U,T〉

Lemma 41. S2 is a second order generalized coherence frame. Furthermore, with ξ(P ) := I(P )
we have for every n–point p and every formula ϕ with free variables in {xi : i < n}:

〈S, p〉 � ϕ ⇔ 〈S2, ξ, p〉 � ϕ

Proof. We need to verify that T is a tower. This follows from the following equations. (In the
last clause, σ : n→ m.)

[¬χ]n = −[χ]n
[ϕ ∧ χ]n = [ϕ]n ∩ [χ]n
[
∨
xk.χ]n = Vk([χ]n)

[♦χ]n = �[χ]n
[[~xσ/~x]χ]n = Cσ([χ]m)

Only the last clause needs comment.

[[~xσ/~x]χ]n = {p ∈ U ×Wn : 〈S, p〉 � [~xσ/~x]χ}
= {p ∈ U ×Wn : 〈S, σ̂(p)〉 � χ}
= {p ∈ U ×Wn : σ̂(p) ∈ [χ]m}
= Cσ([χ]m)

The second claim is immediate to verify. a

Theorem 42 (Second Order Completeness). Let L be a second order modal logic without equal-
ity with Henkin–closure L∗ and ϕ a formula. Then Can2

L∗ � ϕ iff ϕ ∈ L. It follows that L is
complete with respect to second order generalized coherence frames.

Proof. We pass to the Henkin–closure L∗ of the (first–order MPL) L. Let ξL∗ be defined by

ξL∗(Pm
i ) := [Pm

i (x0, . . . , xm−1)]m
Then, by first order completeness and Lemma 41 we get

〈Can2
L∗ , ξL∗〉 � ϕ⇔ ϕ ∈ L∗

We have to show that if ϕ ∈ L∗ then for every valuation ξ into Can2
L∗ we have

〈Can2
L∗ , ξ〉 � ϕ

For this establishes Can2
L∗ � ϕ in case ϕ ∈ L. If ϕ 6∈ L then we have anyway

〈Can2
L∗ , ξL∗〉 2 ϕ

by first–order completeness and Lemma 41. Now for the proof of the claimed fact. Assume that ξ
is given. By definition of the tower TL∗ there exists for every predicate variable P a formula πP (~x)
such that

ξ(P ) = ξL∗(πP (~x))



The Semantics of Modal Predicate Logic II. Modal Individuals Revisited 21

Let pvar(ϕ) denote the set of predicate variables occurring in ϕ. Define

ϕ∗ := [πP /P : P ∈ pvar(ϕ)]ϕ

This formula is unique up to renaming of bound variables. Then, by induction, it is verified that

〈Can2
L∗ , ξ,∆〉 � ϕ ⇔ 〈Can2

L∗ , ξL∗ ,∆〉 � ϕ∗

Since ϕ ∈ L and L is closed under second order substitution we have ϕ∗ ∈ L as well. Hence the
right hand side obtains, and therefore the left hand side is true as well. This is what we had to
prove. a

This construction of retracting the valuation ξ and adding the tower of definable sets is applicable
to any first order coherence frame.

§13. Cartesian Metaframes. In this section we shall use the previous completeness proof to
derive a very simple completeness proof for the metaframe semantics. Shehtman and Skvortsov
give the following definition.

Definition 43 (Cartesian Metaframes). A metaframe M is called cartesian if the following
holds.

1. There is a set U and a family {Wu : u ∈ U} of nonempty and pairwise disjoint sets such that
M(0) = U and M(n) =

⋃
u∈U (Wu)n for every n. We write a�1 b iff there are u, v ∈ U such

that a ∈Wu, b ∈Wv, u�0 y and 〈u, a〉�1 〈v, b〉.
2. 〈v,~a〉�n 〈w,~c〉 iff

(a) v �0 w
(b) ai �1 ci for all i < n and
(c) for all i < j < n: if ai = aj then also ci = cj.

3. For every σ : n → m, m,n > 0, M(σ) = σ̂ : ~a 7→ 〈a(σ(i)) : i < n〉. For σ : 0 → n, n > 0,
M(σ) : ~a 7→ u, where u is such that ~a ∈ (Wu)n.

For σ : n → 0, there is no definition of M(σ) given. One possibility is to choose an object
u∗ ∈ Wu for every u ∈ U and then let M(σ) : u 7→ (u∗)n. It is an approximation of the idea that
the elements of the nth frame are n–tuples. While cartesian metaframes assume that the n–tuples
are tuples of things, we shall offer another variant, where the idea is that the tuples are in fact
tuples of objects.

Definition 44 (Cubic Metaframe). A metaframe M is called cubic if the following holds.
1. There are sets U and W such that M(0) = U and M(n) = U ×Mn for every n.
2. 〈u,~a〉�n 〈v,~c〉 iff ~c = ~a and u�0 v.
3. For every σ : n→ m, M(σ) = σ̂ : 〈u,~a〉 7→ 〈u, 〈a(σ(i)) : i < n〉〉.

It is first of all to be checked that the above requirements define a contravariant functor from Σ to
the class of generalized frames. (a)M(n) is a general frame, as is easily seen. (b) for each σ : m→ n,
M(σ) is a p–morphism from M(n) to M(m). Namely, suppose that p = 〈v,~a〉�n 〈w,~c〉 = q. Then
~c = ~a and v�w. Hence 〈a(σ(i)) : i < m〉 = 〈c(σ(i)) : i < m〉, and so σ̂(p)�m σ̂(q). Second, suppose
that σ̂(p) �m q′. Then q′ = 〈w′, c′(i) : i < m〉 for some w′ such that v � w′ and c′(i) = a(σ(i))
for each i < m. So, put q := 〈w′,~a〉. Then p �n q and M(σ)(q′) = q. Third, let A ∈ T(m).
Then Cσ(A) ∈ T(n), by definition of towers. This proves that M(σ) is a p–morphism. (c) For
each σ : m → n and τ : n → q, M(τ ◦ σ) = M(σ) ◦ M(τ). But by previous calculations,
M(τ ◦ σ)(p) = σ̂ ◦ τ̂(p) = M(σ) ◦M(τ)(p).

Proposition 45. For every cubic metaframe M there exists a semantically equivalent cartesian
metaframe N .

Proof. Let M be a cubic metaframe. Put N(0) := M(0) and Wu := {u} ×W for all u ∈ U
and 〈u, a〉 �1 〈v, b〉 iff u �0 v and a = b. Then N(n) := {〈〈u, ai〉 : i < n〉 : ai ∈ W} for all n and
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~a �n ~c iff there are u and v such that u �0 v and ai = 〈u, oi〉, ci = 〈v, oi〉 for some o ∈ W . The
p–morphisms M(σ) are straightforwardly defined. a

The reason that this works is a construction that we have used before: the trace of an object at u
may be the pair consisting of u and the object itself. It is easy to establish a bijective correspondence
between second order generalized coherence frames and cubic generalized metaframes. Given a
second order coherence frame 〈W,�, U,T〉, we simply define M(n) := 〈W × Un,�n,T(n)〉, where
〈v,~a〉�n 〈w,~c〉 iff ~a = ~c and v�w. This is a cubic generalized metaframe. Conversely, let M be a
cubic generalized metaframe, with M(n) = 〈W × Un,�n,Mn〉 for every n. Then let � := �0 and
T(n) := Mn. Then it is easily checked that 〈W,�, U,T〉 is a second order general coherence frame.
As an immediate consequence we get the following

Theorem 46. Every second order MPL without equality is complete with respect to cubic gen-
eralized metaframes.

Notice that the way this result has been obtained is by abstraction from the first–order case,
rather than the first–order case being an application of the second–order case. Completeness with
respect to cartesian generalized metaframes now follows, given that cubic metaframes are special
cartesian metaframes.

§14. Equality. Let us turn to the treatment of equality in coherence frames and metaframes.
We have argued earlier that two objects may be equal in one world and different in another.
Equality in a world has been regulated by the trace function. The most direct way to account
for equality between objects is therefore to add the trace function into the generalized coherence
frame. Another way is to add equality as a predicate constant whose interpretation is a equivalence
relation on U in each individual world. Thus, we add a constant ∆ ∈ C2 such that the following
holds. Write a ∆w b iff 〈w, a, b〉 ∈ ∆.

1. a0 ∆ a0 for all w ∈W , a0 ∈ U .
2. If a0 ∆w a1 then a1 ∆w a0, for all w ∈W , a0, a1 ∈ U .
3. If a0 ∆w a1 and a1 ∆w a2 then a0 ∆w a2 for all w ∈W , a0, a1, a2 ∈ U .

Additionally, a valuation must satisfy the following property. Call A ∈ Cn equivalential if for all
p = 〈w,~a〉 ∈ A, q = 〈w,~b〉 such that ai ∆w bi for all i < n then q ∈ A. Then we require that for
every predicate P , ξ(P ) must be an equivalential set. However, notice that equivalential sets are
not closed under �!

It may be disappointing to see that we have not been able to reduce .= to simple identity.
However, there is to our knowledge no semantics under which this is so (and for reasons given
below it is not to be expected either). Let us look for example at metaframes. In a metaframe,
〈M, ξ, a〉 � xi

.= xj if prn,i(a) = prn,j(a). Furthermore, a frame interpreting .= (called an m=–
metaframe) must satisfy the following requirement:

(0]) For all n and a, b ∈M(n) a = b iff prn,i(a) = prn,i(b).

This condition effectively eliminates the distinction between object and trace. However, in general
metaframes the possibility of distinct developments for identical objects still exists: let a be in
M(2). Think of a as the pair 〈a0, a1〉. If pr2,0(a) = pr2,1(a), then a0 = a1. Now, accessibility is
a relation between pairs, so if a �2 b = 〈b0, b1〉, we may or may not have b0 = b1. If we move to
cartesian metaframes, the situation is different, however. For now, if a0 �1 b0 and a1 �1 b1 then
from a0 = a1 we expect a�2 〈b0, b0〉, 〈b1, b1〉, 〈b1, b0〉 as well. Shehtman and Skvortsov make some
maneuvers to avoid this consequence.

First, let us look at a definition of cartesian metaframes and assume that the clause that ai = aj

implies ci = cj was not there. Then the following principle is valid. If ϕ(y, ~z) is a formula such
that x0 and x1 do not occur in ~z then

M �
∧
x0.

∧
x1.x0

.= x1 → (♦[x0/y]ϕ(y, ~z) ↔ ♦[x1/y]ϕ(y, ~z))
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For let ξ be a valuation and a ∈ M(n). Assume that 〈M, ξ, a〉 � x0
.= x1. Then we have

prn,0(a) = prn,1(a). Let α0 : n − 1 → n : i 7→ i + 1 and α1 : n − 1 → n : 0 7→ 0, i 7→ i + 1(i 6=
0). Put a0 := M(α0)(a), a1 := M(α1)(a). Intuitively, a0 is a reduced by its 0th coordinate,
a1 is a reduced by its 1st coordinate. From this it follows that a0 = a1. Assume next that
〈M, ξ, a〉 � ♦[x0/y]ϕ(y, ~z). Then there is a b such that a �n b and 〈M, ξ, b〉 � [x0/y]ϕ(y, ~z). Put
b0 := M(α0)(b) and b1 := M(α1)(b). We have a0 �n−1 b0, since M(α0) is a p–morphism, and
likewise a1 �n−1 b1. Since x0 is not free in [x1/y]ϕ(y, ~z) we have 〈M, ξ, b1〉 � [x0/y]ϕ(y, ~z). From
this follows 〈M, ξ, a1〉 � ♦[x0/y]ϕ(y, ~z), and so 〈M, ξ, a〉 � ♦[x1/y]ϕ(y, ~z). Likewise for the other
direction.

So we find, as indicated, that without the clause, metaframes imitate counterpart semantics.
However, Shehtman and Skvortsov have added it. Thereby they avoid counterpart semantics, but
there is a price to be paid.

Lemma 47. Let M be a cartesian m=–metaframe. Then

M �
∧
x0.

∧
x1.x0

.= x1 → �(x0
.= x1).

So, neither of the alternatives is completely general. It turns out that metaframe semantics could
have been saved in the same way as coherence semantics, namely by adding a constant interpreting
equality. This seems to be necessary. If we do not treat equality in this way, we must assume that
the interpretation of identity is an equivalence relation. Shehtman and Skvortsov have shown that
the condition (0]) makes the semantics less general: there are formulae which are not generally
valid but valid in all metaframes satisfying (0]). This indicates that equating objects and object
traces even done in metaframes à la Shehtman and Skvortsov cannot eliminate the problems of
identity.

§15. Conclusion. In this paper we have defined a new semantics for modal predicate logic,
namely coherence frames. Coherence frames differ from counterpart frames in that variables are
interpreted in the same way as constants, namely by objects. We have shown completeness both for
first–order and for second–order MPLs with respect to generalized coherence frames. From this we
have derived a completeness theorem for second order MPLs with respect to generalized metaframe
semantics. In fact, completeness with respect to cubic generalized metaframes is obtained rather
directly.

The proposal of distinguishing between an object and its trace is certainly a very far reaching
one but not without justification. Many philosophers have argued that there may exist different
identity criteria for objects (see van Leeuwen [15] for a review of these ideas). A statue is not the
same as the material it is made of. Hence, though perhaps trace identical, the two are not the same
objects. There are predicates that are sensitive to this difference (again see [15]). These predicates
reject the postulate Eq4. It goes beyond the scope of this paper to review the possibilities that
coherence structures offer in this respect.

Acknowledgement. We would like to thank Kit Fine, Melvin Fitting, Greg Restall, Gerhard
Schurz and Frank Wolter for various helpful discussions and remarks as well as an anonymous
referee for his or her comments and corrections.

REFERENCES

[1] Sebastian Bauer, Metaframes, Typen und Modelle der modalen Prädikatenlogik, Master’s thesis, Fach-
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