

DIPARTIMENTO DI INFORMATICA, SISTEMISTICA E COMUNICAZIONE

Abstraction and Meta-knowledge: where does knowledge come from?

Rafael Peñaloza

Bolzano, July 11th, 2025

UNIVERSITÀ DI MILANO-BICOCCA

Knowledge

Domain Knowledge

Sources

Weights and Order

Commonalities

- many different ways to derive a consequence
- compute over all
- order of the derivations irrelevant
- allow for lemmas
- each derivation counts once

Provenance

Provenance Semirings

 $\mathcal{S} = (S, \oplus, \otimes, \mathbf{0}, \mathbf{1})$:

- S: carrier set
- $\bullet~\oplus$ associative, commutative, (idempotent), neutral ${\bf 0}$
- $\bullet~\otimes$ associative with neutral 1; annihilating 0

•
$$s \otimes (t \oplus u) = (s \otimes t) \oplus (s \otimes u)$$

Weakest semiring: languages

$$(2^{\Sigma^*}, \cup, \cdot, \emptyset, \{\varepsilon\})$$

Abstract Provenance

Provenance of a consequence is a (regular) language each word describes one way to derive it

 $\begin{array}{ll} \mbox{Instantiating} \, \cdot \, \mbox{with} \, \otimes \, \mbox{and} \, \cup \, \mbox{with} \, \oplus \, \mbox{solves} \, \mbox{it} \\ \mbox{for any arbitrary semiring} \end{array}$

BUT this can be infinite in general

Special Cases

- ${\ensuremath{\,\circ}}\xspace\otimes$ commutative: polynomials with coefficient 1
- $\bullet \ + \otimes$ idempotent: sums of products of variables
- $\bullet\ +$ absorptive: incomparable sets of variables
- finitely generating
- ordered
- . . .

Computational Issues

What does it mean to have a derivation?

When can we compute it?

- which theories?
- which semirings?

How expensive is it?

rafael.penaloza@unimib.it