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Abstract. Two notions are becoming increasingly important in ontolog-
ical engineering: modularity and heterogeneity. Whilst heterogeneity al-
lows ontologies to be specified in different logical formalisms and thus
calls for sophisticated integration and combination techniques, various
notions of modularity have been envisaged in the literature in order to
support maintenance and reuse of (parts of) ontologies. Can these de-
mands be brought to a common basis?
We propose to use the language of category theory, in particular diagrams
and their colimits, for answering this question. We outline a general ap-
proach for representing (heterogeneous) combinations of logical theories,
or ontologies, through interfaces of various kinds, based on diagrams
and the theory of institutions. In particular, we cover theory interpreta-
tions, (definitional) language extensions, symbol identifications, and con-
servative extensions. We study the problem of inheriting conservativity
between sub-theories in a diagram to its colimit ontology. Finally, we ap-
ply this to the problem of localisation of reasoning in ‘modular ontology
languages’ such as DDLs or E -connections.

1 Introduction

In this paper, we propose to use the category theoretic notions of diagram and
colimit in order to provide a common semantic backbone for various notions of
modularity in ontologies.

At least three commonly used notions of ‘module’ in ontologies can be dis-
tinguished, depending on the kind of relationship between the ‘module’ and its
supertheory (or superontology): (1) a module can be considered a ‘logically in-
dependent’ part within its superontology—this leads to the definition of mod-
ule as a part of a larger ontology which is a conservative extensions of it; (2)
a module can be a part of a larger ‘integrated ontology’, where the kind of in-
tegration determines the relation between the modules—this is the approach
followed by modular ontology languages (e.g. DDLs, E -connections etc.); (3) a
‘part’ of a larger theory can be considered a module for reasons of elegance,



re-use, tradition, etc.—in this case, the relation between a module and its su-
pertheory might be a language extension, theory extension/interpretation, etc.
In particular, the general structuring of the modular parts typically mirrors the
‘conceptual structure’ of the larger theory.

The main contributions of the present paper are the following: (i) building
on the theory of institutions, diagrams, and colimits, we show how these dif-
ferent notions of module can be considered simultaneously using the notion
of a module diagram; (ii) we show how conservativity properties can be traced
and inherited to the colimit of a diagram; (iii) we show how this applies to the
composition problem in modular ontology languages such as DDLs and E -con-
nections.

Section 2 introduces institutions, Section 3 the diagrammatic view of mod-
ules, and Section 4 studies the problem of conservativity in diagrams. Finally
we sketch heterogeneous diagrams and apply this to modular ontology lan-
guages in Section 6.

2 Institutions

The study of modularity principles can be carried out to a quite large extent
independently of the details of the underlying logical system that is used. The
notion of institutions was introduced by Goguen and Burstall in the late 1970s
exactly for this purpose (see [26]). They capture in a very abstract and flexible
way the notion of a logical system by leaving open the details of signatures,
models, sentences (axioms) and satisfaction (of sentences in models).

The importance of the notion of institutions lies in the fact that a surprisingly
large body of logical notions and results can be developed in a way that is
completely independent of the specific nature of the underlying institution.1

We assume some acquaintance with the basic notions of category and in-
stitution theory and refer to [1] for an introduction. The reader with no back-
ground in category theory can envisage a category as a “graph with composi-
tion of arrows”, a functor as a “graph homomorphism”. If C is a category, Cop

is the dual category where all arrows are reversed.

Definition 1. An institution I = (Sign, Sen, Mod, |=) consists of

– a category Sign of signatures,
– a functor Sen : Sign−→Set2 giving, for each signature Σ, the set of sentences

Sen(Σ), and for each signature morphism σ : Σ−→Σ′, the sentence translation
map Sen(σ) : Sen(Σ)−→Sen(Σ′), where often Sen(σ)(ϕ) is written as σ(ϕ),

– a functor Mod : Signop −→ CAT 3 giving, for each signature Σ, the category
of models Mod(Σ), and for each signature morphism σ : Σ −→ Σ′, the reduct

1 For an extensive treatment of the model theory in this setting, see [16].
2 Set is the category having all sets as objects and functions as arrows.
3 CAT is the category of categories and functors. Strictly speaking, CAT is not a cat-

egory but only a so-called quasicategory, which is a category that lives in a higher
set-theoretic universe.



functor Mod(σ) : Mod(Σ′)−→Mod(Σ), where often Mod(σ)(M′) is written
as M′|σ,

– a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|,

such that for each σ : Σ−→Σ′ in Sign the following satisfaction condition holds:

(?) M′ |=Σ′ σ(ϕ) iff M′|σ |=Σ ϕ

for each M′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), expressing that truth is invariant under
change of notation and enlargement of context.

The only condition governing the behaviour of institutions is thus the satis-
faction condition (?).4

A theory in an institution is a pair T = (Σ, Γ) consisting of a signature
Sig(T) = Σ and a set of Σ-sentences Ax(T) = Γ, the axioms of the theory. The
models of a theory T are those Sig(T)-models that satisfy all axioms in Ax(T).
Logical consequence is defined as usual: T |= ϕ if all T-models satisfy ϕ. Theory
morphisms, also called interpretations of theories, are signature morphisms
that map axioms to logical consequences.

Examples of institutions include, among others, first- and higher-order clas-
sical logic, description logics, and various (quantified) modal logics:

Example 2. Relational Schemes. A signature consists of a set of relation sym-
bols, where each relation symbol is indexed with a string of field names. Sig-
nature morphisms map relation symbols and field names. A model consists of
a domain (set), and an n-ary relation for each relation symbol with n fields.
A model reduction just forgets the parts of a model that are not needed. A
sentence is a link between two field names of two relation symbols. Sentence
translation is just renaming. A link is satisfied in a model if for each element
occurring in the source field component of a tuple in the source relation, the
same element also occurs in the target field component of a tuple in the target
relation. ut

Example 3. First-order Logic. In the institution FOLms= of many-sorted first-
order logic with equality, signatures are many-sorted first-order signatures, con-
sisting of sorts and typed function and predicate symbols. Signature morphisms
map symbols such that typing is preserved. Models are many-sorted first-order
structures. Sentences are first-order formulas. Sentence translation means re-
placement of the translated symbols. Model reduct means reassembling the
model’s components according to the signature morphism. Satisfaction is the
usual satisfaction of a first-order sentence in a first-order structure.

Example 4. Description Logics. Signatures of the description logicALC consist
of a set of B of atomic concepts and a set R of roles, while signature morphisms
provide respective mappings. Models are single-sorted first-order structures

4 Note, however, that non-monotonic formalisms can only indirectly be covered this
way, but compare, e.g., [28].



that interpret concepts as unary and roles as binary predicates. Sentences are
subsumption relations C1 v C2 between concepts, where concepts follow the
grammar

C ::= B | > | ⊥ |C1 t C2 |C1 u C2 | ¬C | ∀R.C | ∃R.C

Sentence translation and reduct is defined similarly as in FOL=. Satisfaction
is the standard satisfaction of description logics. ALCms is the many-sorted
variant of ALC. ALCO is obtained from ALC by extending signatures with
nominals. The (sub-Boolean) description logic EL restricts ALC as follows:
C ::= B | > |C1 u C2 | ∃R.C. SHOIN extends ALC with role hierarchies, tran-
sitive and inverse roles, (unqualified) number restrictions, and nominals, etc.

Example 5. (Quantified) Modal Logics. The modal logic S4u has signatures as
classical propositional logic, consisting of propositional variables. Sentences are
built as in propositional logic, but add two unary modal operators, � and �.
Models are standard Kripke structures but based on reflexive and transitive
relations. Satisfaction is standard modal satisfaction, where � is interpreted by
the transitive reflexive relation, and � by universal quantification over worlds.

The standard formulation of first-order modal logic QS5 (due to Kripke)
has signatures similar to FOL=, including variables and predicate symbols.
Sentences follow the grammar for FOL=-sentences using Booleans, quantifiers,
and identity, while adding the � operator, but leaving out constants and func-
tion symbols. Models are constant-domain first-order Kripke structures, with
the usual first-order modal satisfaction.

3 Modules as Diagrams

Several approaches to modularity in ontologies have been discussed in recent
years, including the introduction of various so-called ‘modular ontology lan-
guages’. The module system of the Web Ontology Language OWL itself is as
simple as inadequate [14]: it allows for importing other ontologies, including
cyclic imports. The language CASL, originally designed as a first-order alge-
braic specification language, is used for ontologies in [33]. Beyond imports, it
allows for renaming, hiding and parameterisation. Other languages envisaging
more involved integration and modularisation mechanisms than plain imports
include DDLs [9], E -connections [32], and P-DLs [7].

We will use the formalism of colimits of diagrams as a common semantic
backbone for these languages.5 The intuition behind colimits is explained as
follows:

“Given a species of structure, say widgets, then the result of inter-
connecting a system of widgets to form a super-widget corresponds to
taking the colimit of the diagram of widgets in which the morphisms
show how they are interconnected.” [25]

5 However, note that hiding is not covered by this approach.



The notion of diagram is formalised in category theory. Diagrams map an
index category (via a functor) to a given category of interest. They can be thought
of as graphs in the category. A cocone over a diagram is a kind of “tent”: it
consists of a tip, together with a morphism from each object involved in the
diagram into the tip, such that the triangles arising from the morphisms in the
diagram commute. A colimit is a universal, or minimal cocone. For details, see
[2].

In the sequel, we will assume that the signature category has all finite col-
imits, which is a rather mild assumption; in particular, it is true for all the ex-
amples of institutions mentioned above. Moreover, we will rely on the fact that
colimits of theories exist in this case as well; the colimit theory is defined as the
union of all component theories in the diagram, translated along the signature
morphisms of the colimiting cocone.

Definition 6. A module diagram of ontologies is a diagram of theories such that the
nodes are subdivided into ontology nodes and interface nodes.

Composition of module diagrams is simply their union.

Example 7. Consider the union of the diagrams

T1 T2 T2 T3

Σ1

-�

Σ2

-�

where the Σi are interfaces and the Ti are ontologies. Think of e.g. T12 as being
an ontology that imports T1 and T2, where Σ1 contains all the symbols shared
between T1 and T2. Then T12 (and T23) can be obtained as pushouts, and so
can the overall union T123 (which typically is then further extended with new
concepts etc.). A “c” means “conservative”; this will be explained in Sect. 4.

T123

T12

c -

T23

� c

T1

c -

T2

c -� c

T3

� c

Σ1

-�

Σ2

-�

It is clear that theories with an import structure are just tree-shaped di-
agrams, while both shared parts and cyclic imports lead to arbitrary graph-
shaped diagrams. The translation of CASL (without hiding) to so-called devel-
opment graphs detailed in [11] naturally leads to diagrams as well. Finally, the
diagrams corresponding to modular languages like DDLs and E -connections
will be studied in Sect. 6. Thus, diagrams can be seen as a uniform mathemati-
cal formalism where properties of all of these module concepts can be studied.
An important such property is conservativity.



4 Conservative Diagrams and Composition

Conservative diagrams are important because they imply that the combined
ontology does not add new facts to the individual ontologies. Indeed, the no-
tion of an ontology module of an ontology T has been defined as any “sub-
ontology T′ such that T is a conservative extension of T′” [23]—this perfectly
matches our notion of conservative diagram below.

Definition 8. A theory morphism σ : T1 −→ T2 is proof-theoretically conserva-
tive, if T2 does not entail anything new w.r.t. T1, formally, T2 |= σ(ϕ) implies T1 |= ϕ.
Moreover, σ : T1 −→ T2 is model-theoretically conservative, if any T1-model M1
has a σ-expansion to T2, i.e. a T2-model M2 with M2|σ = M1.

It is easy to show that conservative theory morphisms compose. Moreover,
model-theoretic implies proof-theoretic conservativity. However, the converse
is not true in general:

Example 9. [34] Consider the following two EL TBoxes:

Γ1 = {Human v ∃eats.>, Plant v ∃grows in.Area, Vegetarian v Healthy}
Γ2 = {Human v ∃eats.Food, Foodu Plant v Vegetarian}

It is easily seen that Γ1 ∪ Γ2 is a proof-theoretic conservative extension of Γ1
w.r.t. EL. However, [34] also show this is not the case w.r.t. ALC, as witnessed
by

A := Humanu ∀eats.Plant v ∃eats.Vegetarian,

since Γ1 ∪ Γ2 |= A, but Γ1 6|= A. In particular, it follows that Γ1 ∪ Γ2 is not a
model-theoretic conservative extension of Γ1.

Definition 10. A (proof-theoretic, model-theoretic) conservative module dia-
gram of ontologies is a diagram of theories such that the theory morphism of any ontol-
ogy node into the colimit of the diagram is (proof-theoretically resp. model-theoretically)
conservative.

By conservativity, the definition immediately yields:

Proposition 11. The colimit ontology of a proof-theoretic (model-theoretic) conserva-
tive module diagram is consistent (satisfiable)6 if any of the component ontologies is.

Thus, in particular, in a conservative module diagram, an ontology node Oi
can only be consistent (satisfiable) if all other ontology nodes Oj, j 6= i, are
consistent (satisfiable) as well.

The main question is how to ensure these conservativity properties in the
united diagram. To study this, we introduce some notions from model the-
ory, namely various notions of interpolation (for proof-theoretic conservativ-
ity) and amalgamation (for model-theoretic conservativity).

6 Contrary to the terminology used in DL, we distinguish here proof-theoretic (syn-
tactic) consistency of a theory T (which means T 6|= ϕ for some sentence ϕ) from
model-theoretic (semantic) satisfiability (which means M |= T for some model M).



Interpolation plays a crucial role in connection with proof systems in struc-
tured theories, see [10], and comes in various forms.

The most common formulation, i.e. Craig (or Arrow) interpolation, how-
ever, relies on a connective→ being present in the institution. A slightly more
general formulation, often called turnstile interpolation is as follows: if ϕ |= ψ,
then there exists some χ that only uses symbols occurring in both ϕ and ψ, with
ϕ |= χ and χ |= ψ. This, of course, follows from Craig interpolation in the
presence of a deduction theorem.

For the general study of module systems, we need to generalise such def-
initions in at least two important ways. The first concerns the rather implicit
use of signatures in the standard definitions. Making signatures explicit means
to assume that ϕ lives in a signature Σ1, ψ lives in a signature Σ2, the entail-
ment ϕ |= ψ lives in Σ1 ∪ Σ2, and the interpolant in Σ1 ∩ Σ2. Since we do not
want to go into the technicalities for equipping an institution with unions and
intersections (see [17] for details), we replace Σ1 ∩ Σ2 with a signature Σ, and
Σ1 ∪ Σ2 with Σ′ such that Σ′ is obtained as a pushout from the other signatures
via suitable signature morphisms (cf. the diagram below). Secondly, we move
from single sentences to sets of sentences. This is useful since we want to sup-
port DLs and TBox reasoning, and DLs like (sub-Boolean) EL do not allow to
rewrite ‘conjunctions of subsumptions’, i.e., we cannot collapse a TBox into a
single sentence. (In case of compact logics, the use of sets is equivalent to the
use of finite sets.)

This leads to the following definition. In the sequel, fix an arbitrary institu-
tion I = (Sign, Sen, Mod, |=):

Definition 12. The institution I has the Craig-Robinson interpolation property
(CRI for short), ([41], [18]), if for any pushout

Σ′

Σ1

θ1 -

Σ2

�
θ2

Σ

σ2 -� σ1

any set Γ1 of Σ1-sentences and any sets Γ2, ∆2 of Σ2-sentences with

θ1(Γ1) ∪ θ2(∆2) |= θ2(Γ2),

there exists a set of Σ-sentences Γ (called the interpolant) such that

Γ1 |= σ1(Γ) and ∆2 ∪ σ2(Γ) |= Γ2.

CRI, in general, is strictly stronger than Craig interpolation. However, for
almost all logics typically used in knowledge representation, they are indeed
equivalent. We give a criterion that applies to institutions generally, taken from
[16]:



Proposition 13. A compact institution with implication has CRI iff it has Craig in-
terpolation.

Here, an institution I has implication if for any two Σ-sentences ϕ, ψ, there
exists a Σ-sentence χ such that, for any Σ-model M,

M |= χ iff (M |= ϕ implies M |= ψ)

Moreover, I is compact if T |= ϕ implies T′ |= ϕ for a finite subtheory T′ of
T. Since for modal logics, the deduction theorem (for the global consequence
relation |=) generally fails, these logics do not have implication in the above
sense, and we cannot apply Prop. 13.

However, we can apply a slightly more concrete criterion for modal logics
from the literature (cf. Prop. 2.1 in [4]):

Proposition 14. Let L be a modal logic whose local consequence relation is compact
and such that its class of Kripke frames is closed under point-generated subframes. Then
Craig interpolation for L implies CRI.

Example 15 (Interpolation). The description logicALC can be conceived as a syn-
tactic variant of multi-modal K, for which [22, 21] show Craig interpolation. K
does not have implication, but satisfies the assumptions of Prop. 14. Hence,
ALC has CRI. The situation for DLs with nominals is less positive, in fact, the
presence of nominals generally destroys (standardly formulated) Craig interpo-
lation (compare the discussion in [31], Chapter 3..4, and [5]) but can sometimes
be restored, for instance, by treating nominals as logical constants, i.e., by freely
reusing them. Here is a counterexample formulated in ALCO. Let

Γ := {> v ∃S.C u ∃S.¬C} and
∆ := {∀S.(D t i) v ∃S.D}

where i is a nominal. Clearly, Γ |= ∆, for in every model M |= Γ, every point
has at least two S-successors. But i can only be true in at most one of those
successors, which entails M |= ∆. Now, (using bisimulations) it can be shown
that in ALCO there is no ∆′ built from shared concept names alone (there are
none) such that Γ |= ∆′ and ∆′ |= ∆. If we allow to use non-shared concept
constructors (modalities), an interpolant could obviously be given in logics
such as SHOIN by using (unqualified) number restrictions and by setting
∆′ = {> v (>2S)}. Note, however, that [44] show that interpolation still fails
for ALCQO (since Beth fails), but that the Beth definability property is recov-
ered for ALCO@, or indeed for SHIFO@.

Craig-Robinson for FOLms is shown in [16] (when one of the signature mor-
phisms is injective on sorts). Craig interpolation for FOL is a classic result of
[12], and Craig-Robinson follows since FOL is compact and has implication.

The failure of Craig interpolation for QS5 is shown in [19].7 But it holds for
the quantified extension of K [22], and so does Craig-Robinson.

7 Craig interpolation for QS5 can be restored, however, by extending the language with
propositional quantifiers [20] or nominals and @-operator [3].



Finally, the modal logic S4u has Craig-interpolation,8 is compact [27], and
has implications (for M |= ϕ =⇒ M |= ψ, set χ = �ϕ → �ψ). Thus, S4u has
Craig-Robinson interpolation.

Interpolation for EL has been shown in [42], compare also [29].

These results are summarised in Fig. 1.

The amalgamation property (called ‘exactness’ in [17]) is a major technical
assumption in the study of specification semantics, see [39].

Definition 16. An institution I is (weakly) exact if, for any diagram of signatures,
any compatible family of models (i.e. compatible with the reducts induced by the in-
volved signature morphisms) can can be amalgamated to a unique (or weakly amal-
gamated to a not necessarily unique) model of the colimit. For pushouts, this amounts
to the following (we use notation as in Def. 12): any pair (M1, M2) ∈ Mod(Σ1)×
Mod(Σ2) that is compatible (in the sense that M1 and M2 reduce to the same Σ-
model) can be amalgamated to a (unique) Σ′-model M (i.e., there exists a (unique)
M ∈ Mod(Σ′) that reduces to M1 and M2, respectively).

Institution weakly exact exact CRI
EL + - +
ALCms + + +
ALC + - +
ALCO + - -
ALCQO + - -
SHOIN + - -
FOLms + + +
QS5 + - -

Fig. 1. (Weak) exactness and Craig-Robinson interpolation

Weak exactness for these institutions follows with standard methods, see
[16]. The same holds for exactness for the many-sorted variants. Exactness,
however, obviously fails for the single-sorted logics as well as for QS5 because
in these logics, the implicit universe resp. the implicit set of worlds leads to
the phenomenon that the empty signature has many different models. Again,
some results concerning exactness for commonly used logics in ontological en-
gineering are summarised in Fig. 1. Note that weak exactness is clearly the least
problematic property of the three listed in the table, and thus results relying on

8 S4u can be thought of as the independent fusion of the modal logics S4 and S5, which
both have interpolation, plus the containment axiom �ϕ → �ϕ. The interpolation
property transfers to the fusion by a result of [30]. However, since S4u is a Sahlqvist
axiomatisable logic whose frame conditions are universal Horn, it also follows for S4u
by a result of [35].



it, i.e. most results concerning model-theoretic conservativity, are ‘easier’ to ap-
ply.

The following propositions are folklore in institutional model theory, see
[16].

Theorem 17. 1. In an institution with CRI proof-theoretic conservativity is pre-
served along pushouts.

2. In an institution that is weakly exact, model-theoretic conservativity is preserved
along pushouts.

We now give necessary conditions for the preservation of conservativity when
taking the colimit of the union of conservative diagrams.

Firstly, a diagram is thin, or a preorder, if its index category is thin (i.e.,
there is at most one arrow between two given objects).

Consider the following two module diagrams, both of which are thin. The
first maps p to C1, the second to C2:

T1
p 7→ C1- T2 and T1

p 7→ C2- T2

Assume {p v >} = T1 and {C1 u C2 v ⊥} = T2. Then, clearly, the two
individual ontologies are conservative.

Now consider the diagram resulting from the union of these diagrams and
its colimit:

T1

p 7→ C1-

p 7→ C2

- T2 ............- T3 ⊇ C u C v ⊥

Obviously, the union diagram is not thin. Moreover, it is not conservative in
the colimit because C1 and C2 are identified, and so p is forced to be empty.

Next, a preorder is finitely bounded inf-complete if any two elements with
a common lower bound have an infimum. Consider the following, not finitely
bounded inf-complete union diagram (assume that it is obtained as the union
of its upper and its lower half):

P 6v Q

>,⊥ 6= P
c
-

Q 6= >,⊥
P 6v Q

Q 6v P

�

c

................................................-

Q 6v P
............

............
............

............-

�

cc
-

Again, the individual ontologies are conservative, but the colimit of the union is
not. Hence, call a diagram tame if it does not show these sources of inconsistency/non-
conservativity, i.e. if it is thin and finitely bounded inf-complete.



Theorem 18. 1. Assume institution I has an initial signature9 and has CRI (is
weakly exact). If the involved ontologies are consistent (satisfiable), then composi-
tion of module diagrams via union preserves proof-theoretic (model-theoretic) con-
servativity if the diagram resulting from the union of the individual diagrams and
their colimits is tame.

2. If the union is a disjoint union, the tameness assumption can be dropped.

Note that consistency of the involved ontologies can be replaced with con-
nectedness of the united diagram.

Proof. Take the union of the diagrams, and extend it with the colimits of the
individual diagrams. By assumption, this is tame. The tips of the cocones form
the initial set of maximal nodes of the diagram. Note that each node of the
diagram conservatively lies in one maximal node.

The following construction will preserve the invariant that each node conser-
vatively lies in all those maximal nodes which it is connected to. We obtain the col-
imit of the united diagram by successively taking pushouts. In each successive
step, the pushout for two maximal nodes with a common lower bound is taken
along the infimum, thereby decreasing the set of maximal nodes by one. Here,
we need thinness of the diagram—for otherwise, the diagram for the pushout
would not be uniquely determined.

If there is no pair of maximal nodes with common lower bound, obtain
one by extending the diagram with the initial signature and the unique pair
of morphisms into some pair of maximal nodes. Since the nodes’ theories are
consistent (satisfiable), the newly added arrows are proof-theoretically (model-
theoretically) conservative. If in this process, a diagram with one maximal (=max-
imum) node is reached, this node provides the colimit. By the invariant, each
ontology conservatively lies in this colimit.

If the union is disjoint, then the colimit of the united diagram is just the
coproduct of the colimits of the individual diagrams. But coproducts can be
obtained from successive pushouts and initial objects. Note that here again,
consistency resp. satisfiability of the nodes is needed.

The above examples and Example 20 below show that the conditions from the
theorem are essentially optimal. See Example 7 for a conservative union of con-
servative diagrams.

5 Heterogeneous Module Diagrams

As [40] argue convincingly, relating ontologies may happen across different in-
stitutions, since ontologies are written in many different formalisms, like rela-
tion schemata, description logics, first-order logic, and modal logics.

Heterogeneous specification is based on some graph of logics and logic
translations, formalised as institutions and so-called institution comorphisms,

9 Usually, the empty signature is initial.



see [24]. The latter are again governed by the satisfaction condition, this time
expressing that truth is invariant also under change of notation across different
logical formalisms:

M′ |=J
Φ(Σ) αΣ(ϕ)⇔ βΣ(M′) |=I

Σ ϕ.

Here, Φ(Σ) is the translation of signature Σ from institution I to institution
J, αΣ(ϕ) is the translation of the Σ-sentence ϕ to a Φ(Σ)-sentence, and βΣ(M′)
is the translation (or perhaps: reduction) of the Φ(Σ)-model M′ to a Σ-model.

The so-called Grothendieck institution, see [15, 36], is a technical device for
giving a semantics to heterogeneous theories involving several institution. The
Grothendieck institution is basically a flattening, or disjoint union, of a logic
graph. A signature in the Grothendieck institution consists of a pair (L, Σ)
where L is a logic (institution) and Σ is a signature in the logic L. Similarly,
a Grothendieck signature morphism (ρ, σ) : (L1, Σ1) → (L2, Σ2) consists of
a logic translation ρ = (Φ, α, β) : L1 −→ L2 plus an L2-signature morphism
σ : Φ(Σ1)−→Σ2. Sentences, models and satisfaction in the Grothendieck insti-
tution are defined in a component wise manner.

Hence, the definitions and results of the previous sections also apply to the
heterogeneous case. Special care is needed in obtaining CRI or weak exactness
in the Grothendieck institution; [16] and [37] contain some relevant results. As
[38] report for the tool HETS, for the Grothendieck institution it is often much
easier to obtain weak exactness than Craig-Robinson interpolation.

6 Heterogeneity and Modular Languages

Heterogeneous knowledge representation was also a major motivation for the
definition of modular languages, E -connections in particular [32]. We here show
how the integration of ontologies via ‘modular languages’ can be re-formulated
in module diagrams. We concentrate on DDLs and E -connections, which we
reformulate as many-sorted theories. Finally, we analyse the problem of con-
servativity when composing DDLs or E -connections via composition of their
diagrams, and relate this to the problem of localisation of reasoning. In the fol-
lowing, we will assume basic acquaintance with the syntax and semantics of
both, DDLs and E -connections. Details have to remain sketchy for lack of space.

It should be clear that DDLs or E -connections can essentially be considered
as many-sorted heterogeneous theories: component ontologies can be formu-
lated in different logics, but have to be built from many-sorted vocabulary, and
link relations are interpreted as relations connecting the sorts of the compo-
nent logics (compare [6] who note that this is an instance of a more general
co-comma construction). To be more precise, assume a DDL D = (S1,S2) is
given. Knowledge bases for D can contain bridge rules of the form:

Ci
v−→ Cj (into rule) Ci

w−→ Cj (onto rule)



where Ci and Cj are concepts from Si and Sj (i 6= j), respectively (we consider
here only DDL in its most basic form without individual correspondences etc.).

An interpretation I for a DDL knowledge base is a pair ({Ii}i≤n,R), where
each Ii is a model for the corresponding Si, andR is a function associating with
every pair (i, j), i 6= j, a binary relation rij ⊆ Wi ×Wj between the domains Wi
and Wj of Ii and Ij, respectively.

CE (Tms
1 , Tms

2 ) DDL(Tms
1 , Tms

2 )

Tms
1 ] Tms

2

-�

Tms
1

c

-

Tms
2

�

c

T1
c
-

∅

-�

T2

�

c

Fig. 2. E -connections and DDLs many-sorted

In the many-sorted re-formulation of DDLs, the relation rij is now inter-
preted as a relation between the >-sort of S1 and the >-sort of S2. Bridge rules
are expressed as existential restrictions of the form

(]) ∃rij.Ci v Cj and ∃rij.Ci w Cj

The fact that bridge rules are atomic statements in a DDL knowledge base now
translates to a restriction on the grammar governing the usage of the link re-
lation rij in the multi-sorted formalism (see [8] for a discussion of related is-
sues). In fact, the main difference between DDLs and various E -connections
now lies in the expressivity of this ‘link language’ L connecting the different
sorts of the ontologies. In basic DDL as defined above, the only expressions
allowed are those given in (]), so the link language of basic DDL is a certain,
very weak sub-Boolean fragment of many sorted ALC, namely the one given
through (]). In E -connections, expressions of the form ∃rij.Ci are again concepts
of Sj, to which Booleans (or other operators) of Sj as well as restrictions using
relations rji can be applied. Thus, the basic link language of E -connections is
sorted ALCIms(relative to the now richer languages of Si).10

Such many-sorted theories can easily be represented in a diagram as shown
in Figure 2. Here, we first (conservatively) obtain a disjoint union Tms

1 ] Tms
2

as a pushout, where the component ontologies have been turned into sorted
variants (using an institution comorphism from the single-sorted to the many-
sorted logic), and the empty interface guarantees that no symbols are shared at

10 But can be weakened to ALCms or the link language of DDLs, or strengthened to
more expressive many-sorted DLs such as ALCQIms.



this point. An E -connection KB in language CE (Tms
1 , Tms

2 ) or a DDL KB in lan-
guage DDL(Tms

1 , Tms
2 ) is then obtained as a (typically not conservative) theory

extension.
When connecting ontologies via bridges, or interfaces, this typically is not

conservative everywhere, but only for some of the involved ontologies. We give
a criterion for a single ontology to be conservative in the combination. While the
theorem can be applied to arbitrary interface nodes, when applied to E -con-
nections or DDLs, we assume that bridge nodes contain DDL bridge rules or
E -connection assertions.
Theorem 19. Assume that we work in an institution that has CRI (is weakly exact).
Let ontologies T1, . . . , Tn be connected via bridges Bij, i < j. If Ti is proof-theoretically
(model-theoretically) conservative in Bij for j > i, then T1 is proof-theoretically (model-
theoretically) conservative in the resulting colimit ontology T.
The diagram in Fig. 3 illustrates Theorem 19 for the case n = 3.

T1
c - B13 � T3

B12 -
c -

T
?
��

c

-
B23
�

T2

6
c
-

�

Fig. 3. Colimit integration along bridges for n = 3

Proof. By induction over n. The base n = 1 is clear. Suppose now that the result
holds for n, such that T1 lies conservatively in the colimit ontology T, and we
add Tn+1 with corresponding bridges B1,n+1, . . . , Bn,n+1.

T′c -

. . .
•

c -

•
c -

. . .

�

T

c -

B1,n+1

�

. . . Bn,n+1

6

T1

c -c -

. . . Tn

c -�

Tn+1

-�

The resulting new colimit theory T′ is constructed by successively constructing
pushouts, whence we can use Theorem 17 to lift the conservativities of the mor-
phisms Ti → Ti,n+1 to conservativities of the arrows in the chain from T to T′.
Since conservative theory morphisms compose, T1 is conservative in T′. �



As concerns the applicability of the theorem, we have given an overview of
logics being (weakly) exact or having CRI in Fig. 1. Of course, the conservativity
assumptions have to be shown additionally.

We next give an example of the failure of the claim of the theorem in case
we work in a logic that lacks Craig-Robinson interpolation.

Example 20. The presence of nominals in description or modal logics generally
destroys (standardly formulated) Craig interpolation [4]. Here is a counterex-
ample for the logic ALCO. Let

Γ := {> v ∃S.C u ∃S.¬C} and
∆ := {∀S.(D t i) v ∃S.D}

where i is a nominal. Clearly, Γ |= ∆, for in every model M |= Γ, every point
has at least two S-successors. But i can only be true in at most one of those
successors, which entails M |= ∆. Now, (using bisimulations) it can be shown
that in ALCO there is no ∆′ built from shared concept names alone (there are
none) such that Γ |= ∆′ and ∆′ |= ∆.

Assume now ontologies T1, T2, T3 are formulated in the DLALCO with sig-
natures Sig(T1) ⊆ {S, B, D, i}, Sig(T2) ⊆ {C1, C2}, and Sig(T3) ⊆ {B1, B2}. Also,
assume {∃S.D} ⊆ T1.

Consider now the situation depicted in Fig. 3 with

B12 ⊇ {> v ∃S.∃R1.C1,> v ∃S.∃R1.¬C2},
B13 ⊇ {B1 ≡ ∃R−1

3 .B, B2 ≡ ∃R−1
3 .B},

B23 ⊇ {C1 ≡ ∃R2.B1, C2 ≡ ∃R2.B2}.

Here, the roles R1, R2, R3 can be seen as link relations, and since we apply exis-
tential restrictions ∃S to ∃R2.C1 etc., the example can be understood as a com-
position of (binary) E -connections.

The reader can check that Ti is conservative in Bij for j > i. However, in the
colimit (union) of this diagram, ∀S.D t i v ∃S.D follows, while this does not
follow in T1, and thus T1 is not conservative in the colimit ontology.

Thus, if the assumptions of the theorem are satisfied, reasoning over the sig-
nature of T1 can be performed within T1, i.e. without considering the overall
integration T. This, however, can not be guaranteed for logics lacking CRI. In
the light of this example, it should now come as no surprise that attempts to lo-
calise reasoning in DDLs in a peer-to-peer like fashion whilst remaining sound
and complete have been restricted to logics lacking nominals [43].

7 Discussion and Outlook

Diagrams and their colimits offer the right level of abstraction to study conser-
vativity issues in different languages for modular ontologies. We have singled
out conditions that allow for lifting conservativity properties from individual
diagrams to their combinations.



An interesting point is the question whether proof-theoretic or model-theoretic
conservativity should be used. The model-theoretic notion ensures ‘modular-
ity’ in more logics than the proof-theoretic one since the lifting theorem for the
former only depends on mild amalgamation properties. By contrast, for the
latter one needs Craig-Robinson interpolation which fails, e.g., for some de-
scription logics with nominals, and also for QS5—but these logics are used in
practice for ontology design.

Moreover, when relating ontologies across different institutions, the model-
theoretic notion is more feasible. Finally, it has the advantage of being indepen-
dent of the particular language, which implies avoidance of examples like the
one presented in [34], where a given ontology extension is proof-theoretically
conservative in EL but not in ALC. Of course, model-theoretic conservativity
generally is harder to decide, but it can be ensured by syntactic criteria, and the
work related to this is promising [13].
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2. J. Adámek, H. Herrlich, and G. Strecker, Abstract and Concrete Categories, Wiley, New
York, 1990.

3. C. Areces, P. Blackburn, and M. Marx, ‘Repairing the Interpolation Theorem in
Quantified Modal Logic’, Annals of Pure and Applied Logics, 123(1–3), 287–299, (2003).

4. C. Areces and M. Marx, ‘Failure of interpolation in combined modal logics’, Notre
Dame Journal of Formal Logic, 39(2), 253–273, (1998).

5. Carlos Areces and Balder ten Cate, ‘Hybrid Logics’, in Handbook of Modal Logic, eds.,
Johan van Benthem, Patrick Blackburn, and Frank Wolter, 821–868, Elsevier, Ams-
terdam, (2006).

6. F. Baader and S. Ghilardi, ‘Connecting Many-Sorted Theories’, The Journal of Symbolic
Logic, 72(2), 535–583, (2007).

7. J. Bao, D. Caragea, and V. Honavar, ‘On the Semantics of Linking and Importing in
Modular Ontologies’, in Proc. of ISWC. Springer, (2006).

8. A. Borgida, ‘On Importing Knowledge from DL Ontologies: some Intuitions and
Problems’, in Proc. of DL, (2007).

9. A. Borgida and L. Serafini, ‘Distributed Description Logics: Assimilating Informa-
tion from Peer Sources’, Journal of Data Semantics, 1, 153–184, (2003).

10. T. Borzyszkowski, ‘Logical systems for structured specifications’, Theoretical Com-
puter Science, 286, 197–245, (2002).

11. CoFI (The Common Framework Initiative), CASL Reference Manual, LNCS Vol. 2960
(IFIP Series), Springer, 2004. Freely available at http://www.cofi.info.

12. W. Craig, ‘Three uses of the Herbrand-Genzen theorem in relating model theory and
proof theory’, Journal of Symbolic Logic, 22, 269–285, (1957).

13. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler, ‘Modular Reuse of Ontolo-
gies: Theory and Practice’, Journal of Artificial Intelligence Research (JAIR), 31, (2008).
to appear.

14. B. Cuenca Grau, B. Parsia, and E. Sirin, ‘Combining OWL Ontologies Using E -Con-
nections’, Journal of Web Semantics, 4(1), 40–59, (2006).



15. R. Diaconescu, ‘Grothendieck institutions’, Applied Categorical Structures, 10, 383–
402, (2002).

16. R. Diaconescu, Institution-independent Model Theory, Birkhäuser, 2008. To appear.
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