Abstraction and Concept Invention: Towards Neuro-Symbolic Conceptual Blending

Mena Leemhuis, Oliver Kutz Free University of Bozen-Bolzano

July 11, 2025

Mena Leemhuis, Oliver Kutz Free University of Bozen-Bolzano

Conceptual Blending

Conceptual Blending

Abstraction in Conceptual Blending

Abstraction in Conceptual Blending

Question

How does a framework for conceptual blending look like?

A Symbolic Approach to Blending – Amalgamation

Amalgamation

- generalizing the input until a common generic space is reached
- combining two intermediate concepts to get a blend

Challenge

- determination of the generic space
- I rating the blend quality

A Subsymbolic Approach to Blending – Visual Blending

Considering Latent Spaces – Visual Blending

(generated with the implementation of He et al., 2024)

Considering Latent Spaces – Visual Blending

(generated with the implementation of He et al., 2024)

Advantage

- saliency information
- running the blend

Considering Latent Spaces – Visual Blending

(generated with the implementation of He et al., 2024)

Challenge

- missing conceptual information
- I blend is not necessarily represented

A Neuro-Symbolic Approach to Blending

Knowledge Base Embeddings

- modeling an ontology geometrically
- concepts as boxes
- logical operations as geometric operations

Knowledge Base Embeddings

- modeling an ontology geometrically
- concepts as boxes
- logical operations as geometric operations

Pathomalgametry — Blending Path-finding, Amalgamation and Geometric Embeddings

• input concepts C_1 and C_2

- input concepts C_1 and C_2
- generic space *GS* represented geometrically

- input concepts C_1 and C_2
- generic space *GS* represented geometrically

- input concepts C_1 and C_2
- generic space *GS* represented geometrically
- examples for blends B and B'

- path-finding due to quality measures
- determining optimality principles geometrically

Examples for Quality Measures I

\rightarrow prefer smaller generalizations over larger ones

Examples for Quality Measures II

ightarrow the generalization should conform to the generic space

Special Types of Blends

- the blend does not necessarily need to be represented
- approximation possible

Conclusion & Future Work

- neuro-symbolic conceptual blending
- incorporating a background knowledge ontology
- combing path-search, amalgamation and geometry

Future Work

- extensive experimental evaluation
- coping with imprecise embeddings
- testing of different quality measures and path-finding strategies

Bibliography I

Confalonieri, Roberto, Manfred Eppe, Marco Schorlemmer, Oliver Kutz, Rafael Peñaloza, and Enric Plaza (Aug. 2018). "Upward Refinement Operators for Conceptual Blending in the Description Logic \mathcal{EL}^{++} ". In: Annals of Mathematics and Artificial Intelligence 82.1–3, pp. 69–99. ISSN: 1573-7470. DOI: 10.1007/s10472-016-9524-8.

Fauconnier, Gilles and Mark Turner (2002). The Way We Think: Conceptual Blending and the Mind's Hidden Complexities. New York: Basic Books. ISBN: 0465087868.

He, Qiyuan, Jinghao Wang, Ziwei Liu, and Angela Yao (2024). "AID: Attention Interpolation of Text-to-Image Diffusion". In: arXiv.

Leemhuis, Mena and Oliver Kutz (2025). "Introducing Pathomalgametry: Conceptual Blending with Geometric Path-finding and Amalgamation". In: International Conference on Computational Creativity (ICCC'25), Campinas, Brazil. to appear.