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Abstract We aim to combine the semantics of spatial natural language specified as
a linguistically motivated ontology, the Generalized Upper Model, with spatial log-
ics or ontologies that specify space according to certain conceptualisations, based
on regions, shapes, orientations, distances, or object properties.

Such combinations, however, introduce uncertainties of various kinds, caused by
different levels of detail in the definition of one of the spatial ontologies, under-
specifications within parts of an ontology, or different viewpoints of the topics the
ontologies address.

To model these problems formally, we extend the combination technique of
E-connections by adding (heterogeneous) similarity measures. Local similarity
compares objects within one domain, whilst comparing objects across domains
leads to similarity measures that are motivated by and based on counterpart-
theoretic semantics. The new formalism is called S-connection.
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1. Introduction

“Tesco is the second building from there”, “Take the left where the trees are on the cor-
ner”, “Boots is past Plymouth university on the right hand side”, “I’m going down 50
meters past the pine forest towards the wheat fields”—natural language describes spatial
situations in a flexible way: within one description, it changes fluently in terms of gran-
ularity, combines different modes of spatial relationships, gives as much information as
necessary needed for a specific purpose, refers to situation-dependent knowledge given
by the dialogue discourse, or specifies attributes of spatial entities [1, 2, 3]. Spatial log-
ics, in contrast, specify axiomatically only select aspects of the environment, but they
do this with a relatively high degree of precision concerning those aspects. Spatial qual-
itative calculi as one group of spatial logics, for instance, differ in terms of the spatial
entities and kinds of relationships they describe, as well as reasoning support. Specifi-
cations within a calculus may correspond to aspects about regions, orientations, shapes,
distances, movements, topology, or metric spaces [4, 5].

Both, linguistic and logical formalisations of space, however, are applied at differ-
ent levels within spatially aware information systems interfaced with a natural language
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dialogue system [6]. Hence, relations between both these representations, linguistic and
logical, that provide descriptions of the environment from different viewpoints, have to
be aligned and integrated with each other.

In this paper, we provide a method that formally connects both viewpoints on the
basis of E-connections. While giving examples of how natural language, specified in a
linguistically motivated ontology, is related to different spatial logics, we will elucidate
the impact of uncertainties and similarities influencing this relationship. Connections
of these viewpoints are strongly influenced by external factors, and so the relationship
between instances in different domains can only be determined to a certain degree. A
framework that supports a formalisation of such relationships is given, enriching the
technique of E-connections with (heterogeneous) similarity measures. These so-called
S-connections are motivated by and based on counterpart-theoretic semantics.

2. Linguistic Spatial Semantics

Language has a broad but structured range of ways for relating entities of different kinds
to each other, both semantically and syntactically [7], and can therefore be partly spec-
ified as a formal theory or ontology. A linguistic categorisation particularly for spatial
descriptions has been developed in the Generalized Upper Model (GUM) [8], which has
been successfully applied in a natural language system [6] and which is evaluated against
linguistic corpora with more than 600 entries for English and German. Its structure is
governed by results from linguistic evidence, empirical research, and grammatical indi-
cations: it classifies language into groups of categories and relations according to their
semantics. Hence, GUM is strictly based on the requirement that the distinctions that
should be covered are those that are derived from linguistic evidence. This implies that
GUM captures precisely those aspects given by the semantics, but not by the pragmatic
principles and distinctions associated with particular lexicogrammatical items and struc-
tures.2

GUM’s spatial categorisation is not based on groups of prepositions, but on the way
language characterises spatial relationships either grammatically or inherently.3 Natu-
ral language utterances about spatial contexts are specified accordingly as instances in
GUM. Those distinction not covered by the linguistic structure are therefore not repre-
sented in GUM. Talmy [1] points out that language schematises spatial information only
into underspecified qualitative concepts. These concepts then need to be adapted and in-
terpreted with respect to specific spatial situations. This underspecification renders the
connection between linguistic descriptions and formal spatial theories with uncertainty.

Given the ontological structure of GUM, the most expressive categorisation of lin-
guistic aspects are those describing dynamic or static spatial configurations and, in par-
ticular, different kinds of spatial relationships [8]. In fact, different modes of spatial rela-
tionships give the strongest indication about relative positions or motions of spatial enti-
ties and their attributes [9]. These relationships, however, can only be seen in the context
of the linguistic entities participating in the relationship. Lexical terms, however, are less

2A detailed overview of GUM would go beyond the scope of this paper; see [8] for details.
3Although GUM is based on the semantics of English and German, it is rooted in a language-based ap-

proach to cognition across different languages [7]. Language-dependent differences in spatial semantics should
therefore result in refinements or extensions of GUM.



Figure 1. Spatial modalities represent modes of spatial relationships between entities. (ProjectionRelation
leafs are further distinguished into internal and external projections, subsumed by Parthood or Disjointness and
SpatialDistanceModality respectively.)

indicating the meaning of a spatial linguistic description, as they can be conceptualised
in many ways according to the spatial relationship in use (cf. [10] on the meaning of
“place”). We will therefore focus on these relationships.

GUM4, as a formal theory, is specified in first-order logic. However, large parts of it
can also be expressed in description logics such as SROIQ [11] (underlying the Web
Ontology Language OWL 2.0). Its signature contains categories (unary predicates) and
relations (binary predicates). The spatial extension of GUM introduces all categories and
relations necessary for specifying utterances of spatial descriptions. Different kinds of
spatial relationships are specified by the category SpatialModality. This category consists
of several subtypes, which are defined by their use in natural language and possible
entities they relate to. Related objects are then specified by the relations locatum in static
and actor in dynamic spatial descriptions and the relatum [12], i.e. the locatum/actor has
a certain spatial position with respect to the relatum (corresponding to figure and ground
in [1] or trajectory and landmark in [13]).

All spatial descriptions indicate the type of relationship being described, typically
expressed by a spatial preposition, an adverb, an adjective, parts or implications of the
verb, that defines a specific SpatialModality. The most general distinction between spatial
modalities is made by distance-, functional-, and property-dependent positions between
entities. There are, however, intersections between these three general categories. An
overview of GUM’s spatial modalities is shown in Fig. 1.

The structure of these spatial modalities are given precisely but solely on the basis of
linguistic evidence. Further distinctions made by spatial logics then have to be derived by
situation-dependent, context-sensitive, or world knowledge, i.e. external factors. Possible
realisations of specific linguistic descriptions in models of a spatial logic can therefore
only be defined by elements that satisfy a certain similarity.

4http://www.ontospace.uni-bremen.de/ontology/GUM-3-space.owl
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Figure 2. Ambiguities for GUM’s LeftProjection spatial modality

3. Connections between Spatial Language and Logics

The following examples illustrate the way linguistic descriptions tend to underspecify
their possible spatial realisations. As a consequence, these descriptions can be related to
different models of spatial logics.

ProjectionRelations in GUM define directional relationships between entities. They
represent relationships between entities based on orientations. One of its subclasses,
LeftProjection, defines spatial relations as used in the examples “Three steps to the left”,
“Turn to the left”, “It is to the left of you”, or “In the left part”; it denotes:

1. static locations, on/in the left side or half-plane of the relatum,
2. static locations with respect to the orientation of the relatum,
3. re-orientations towards the direction or an angle to the left,
4. (re-)directions of motions, to the left side of the moving entity, or
5. combinations of movements and re-orientations to the left of the moving entity

or an external left [8].

Although the linguistic surface can reduce the range of realisations, not all possible
distinctions are made. As GUM’s specification of spatial language has been designed
to cover all possible meanings in a flexible (linguistic) way, interpretations of specific
utterances have to be determined in spatial situations by external (non-linguistic) factors
[14]. Possible realisations of ProjectionRelations might therefore be defined in spatial
logics that specify orientations, such as [15, 16, 17]. However, which concrete model
corresponds to the linguistic description and vice versa depends on external aspects.
Whether one or more connections between language and space are necessary, and to what
degree they hold, has to be determined based on indications from these external aspects.

Fig. 2 illustrates spatial situations, in which LeftProjection can be used to describe
relationships between entities. In the left part of Fig. 2.1, for instance, LeftProjection is
defined in “The ball is to the left of the car and the car is to the left of the house”. From
the perspective of someone sitting inside the car, however, “The house is to the left of the
car” is also acceptable without falsifying the previous example. Hence, LeftProjection has
to be interpreted according to the spatial perspective. Furthermore, “The house is to the
left of the ball” from the perspective of the car might be less acceptable depending on the
Figure vs. Ground phenomenon [12], i.e. contextual aspects influence the interpretations
of “left” as well.

Although a geometric relation according to a 90 degree angle or half-plane could
be a logical definition for LeftProjection in this example, ‘left’ can be used to reflect fur-
ther realisations. In the right part of Fig. 2.1, multiple objects are arranged as a circle.
Here, one entity is to the left of the other. Various possibilities for “Drive to the left”
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Figure 3. Connections between linguistic description (GUM) and spatial logics (SL 1, SL 2)

are illustrated in Fig. 2.2. Which specific direction is meant may depend on the course
of the road, external entities or the intrinsic orientation of the car. In contrast to a lin-
guistic LeftProjection, spatial logics define ‘leftness’ in an axiomatic way. In [15], a left-
like relationship is divided into five possible regions according to orientations between
two entities. In [16], ‘left’ is defined as a range of degrees of a point-based orientation
with variable granularity. In [17], a leftside(x,y,z) relation is defined among three entities,
which is specified as non-collinear. Given the examples in Fig. 2, spatial logics provide
different realisations for particular relationships.

Taking into account only the linguistic input from the clauses above, nothing more
than a LeftProjection (“left”) is defined and possible realisations have to be determined
by the context. In particular, these diverse interpretations of “left” cannot be covered by a
logical relation left(a,b) together with spatial axioms such as transitivity, antisymmetry,
and irreflexivity. Parts of the circle objects, for instance, violate transitivity. That the ? is
to the left of the x and the x is to the left of the ] does not indicate that the ? is to the left
of the ] (but rather opposite of it). And in case this would be an acceptable implication
because of the circle-like arrangement, then left(a,b) would actually be symmetric (and
the ] to the left of the ?) and reflexive (and the ? to the left of itself). Instead, the linguistic
description has to be related to different models of spatial logics. Those objects in a
model of a spatial logic that we take to be most adequate as a realisation of the linguistic
description, we call the (spatial) counterparts. Hence, language specifies space according
to linguistic evidence whereas logic specifies space according to its underlying theory of
space. Formal relationships (connections) between both layers then have to be defined in
order to determine counterparts.

Merging all kinds of spatial information into one theory that formulates all connec-
tions between language and space, however, would adversely affect effective reasoning
techniques, decidability, expressiveness, modularity, and flexibility. The semantics of a
spatial description can instead refer to distinct spatial models of spatial logics while un-
derspecifying external factors (e.g. world knowledge, contextual and environmental in-
formation, or the dialogue history). Spatial language and logic can then be formally re-
lated by indicating their similarities. For instance, a LeftProjection may be realised as
one of the examples in Fig. 2. As a result, the spatially-aware system should be able to
determine at least the most likely connection.

In summary, language is connected to different spatial logics with regard to certain
environments (see Fig. 3). This connection can be specified together with a similarity
value determined by external factors, such as the context, domain-knowledge, environ-
ment, properties of spatial objects, alignment, and discourse. Most closely connected en-
tities are called counterparts. E-connections between language and spatial logics together
with similarity values can realise this connection, as described in the next section.



4. Counterparts, Connections, and Similarity

David Lewis provided the first formal theory of counterparts [18], a two-sorted first-order
theory, whose sorts are objects and worlds, and which has four predicates: W (x) says
that x is a world, I(x, y) that x is in the world y, A(x) that x is an actual object, and
C(x, y) that x is a counterpart of y.

He described the basic intuition underlying the idea of counterparthood as follows:

Your counterparts resemble you closely in content and context in important ways. They re-
semble you more closely than do the other things in their worlds. But they are not really you.
For each of them is in his own world, and only you are here in the actual world. [18], p. 27–28

The general idea of counterpart relations being based on a notion of similarity across
worlds also lies at the heart of heterogeneous knowledge representation, and was a major
motivation for the design of ‘modular languages’, E-connections in particular [19].5

4.1. E-Connections as Counterpart Theory

In E-connections, a finite number of formalisms talking about distinct domains are ‘con-
nected’ by relations between entities in different domains, capturing different aspects or
representations of the ‘same object’. For instance, an ‘abstract’ object o of a description
logic L1 can be related via a relation R to its life-span in a temporal logic L2 (a set of
time points) as well as to its spatial extension in a spatial logic L3 (a set of points in a
topological space, for instance). Essentially, the language of an E-connection is the (dis-
joint) union of the original languages enriched with operators capable of talking about
the link relations. The possibility of having multiple relations between domains is essen-
tial for the versatility of this framework, the expressiveness of which can be varied by
allowing different language constructs to be applied to the connecting relations.6

E-connections have also been adopted as a framework for the integration of ontolo-
gies in the Semantic Web [22], and, just as DLs themselves, offer an appealing com-
promise between expressive power and computational complexity: although powerful
enough to express many interesting concepts, the coupling between the combined log-
ics is sufficiently loose for proving general results about the transfer of decidability: if
the connected logics are decidable, then their connection will also be decidable. More
importantly in our present context, they allow the heterogeneous combination of logical
formalisms without the need to adapt the semantics of the respective components.

Note that the requirement of disjoint domains is not essential for the expressivity of
E-connections. What is essential, however, is the disjointness of the formal languages
of the component logics. What this boils down to is the following simple fact: while
more expressive E-connection languages allow to express various degrees of qualitative
identity, for instance by using number restrictions on links to establish partial bijections,
they lack means to express ‘proper’ numerical trans-module identity. This issue, clearly,

5A general overview and discussion of counterpart-theoretic semantics can be found in [20].
6Thus analysed, the main difference between distributed description logics (DDLs) [21] and various E-con-

nections then lies in the expressivity of the ‘link language’ L connecting the different ontologies: while the
link language of basic DDL is a certain sub-Boolean fragment of many-sorted ALC, the basic link language
of E-connections is many-sortedALCI (i.e.ALC with inverses).
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Figure 4. A two-dimensional connection.

is closely related to the problem of trans-world identity well known from counterpart
theory; we will expand on this below when introducing S-connections.

For lack of space, we can here only roughly sketch the formal definitions, but com-
pare [19]: we assume that the languages L1 and L2 of two logics L1 and L2 are pairwise
disjoint. To form a connection CE(L1,L2), fix a non-empty set E = {Ej | j ∈ J} of
binary relation symbols. The basic E-connection language is then defined by enriching
the respective languages with operators for talking about the link relations. A structure

M = 〈W1,W2, EM = (EM
j )j∈J〉,

where Wi = (Wi, .
Wi) is an interpretation of Li for i ∈ {1, 2} and EM

j ⊆W1×W2 for
each j ∈ J , is called an interpretation for CE(L1,L2). Given concepts Ci of logics Li,
i = 1, 2, denoting subsets of Wi, the semantics of the basic E-connection operators is7

(〈Ej〉1C2)M = {x ∈W1 | ∃y ∈ CM
2 : (x, y) ∈ EM

j }

(〈Ej〉2C1)M = {y ∈W2 | ∃x ∈ CM
1 : (x, y) ∈ EM

j }

Fig. 4 displays the connection of an ontology with a spatial logic of regions such as S4u,
with a single link relation E interpreted as the relation ‘is the spatial extension of’. As
follows from the complexity results of [19], E-connections add substantial expressivity
and interaction to the component formalism.

In [14], the problem of relating GUM [8] with spatial calculi, using the example of
the double-cross calculus DCC [15] for projective relations (orientations), is analysed.
The general relation between GUM and DCC is analysed to be a loose coupling as can be
adequately modelled by an E-connection. However, two entirely independent layers need
to be added for a ‘complete’ formal representation of a spatial configuration: domain
knowledge including naïve physics information is added in a KB D, while contextual
information (such as intrinsic orientations, reference system, etc.) is added by a KB O.
Both these layers of information are typically formalised in different (heterogeneous)
logics. The resulting layered formalism is called perspectival E-connections. However,
while these extended E-connections formally reflect different layers of a representation,
they do not take into account loose couplings in the sense of link-relations that are based
on notions of probability or similarity. We next generalise E-connections in this direction.

7Note the close resemblance of this definition with the definition of the semantics of existential restrictions
in DLs, with the important exception that the former is ‘two-sorted’.



4.2. S-Connections: Similarity-based E-Connections

Research on similarity is of a rather broad nature, including work in areas such as phi-
losophy and general cognitive science, (description) logics, bio-informatics, and infor-
mation retrieval, among others. Technically, the notions of probability, fuzziness, and
similarity are closely related, as [23] discusses. For instance, there is no (conceptual or
technical) problem with attaching fuzzy-values or probabilities to link-relations: we can
say that y is in the spatial extension E(x) of point x with probability p ∈ [0, 1], etc.8

Here, we concentrate on modelling a notion of heterogeneous similarity, i.e. simi-
larity of objects drawn from conceptually different domains, specified by means of (het-
erogeneous) similarity measures which are closely modelled on the notions of distance
functions and metrics. The notion of similarity-based E-connections defined below thus
combines the ideas of E-connections [19], distance logics [26], and similarity logics [27].

4.3. (Heterogeneous) Similarity Spaces

By R+
0,∞ we denote the positive real numbers including zero and the symbol∞, denoting

infinity. For i = 1, 2, we set ī = 1 if i = 2 and ī = 2 if i = 1.

Definition 1 A similarity space S = 〈S, ∫〉 (sim-space for short) consists of a set S
together with a similarity measure ∫ , i.e. a function ∫ : S × S 7→ R+

0,∞ satisfying
∫(x, x) = 0 for all x ∈ S. In case ∀x, y ∈ S : ∫(x, y) = 0 ⇐⇒ x = y holds, we
call ∫ discrete. If ∫ satisfies ∀x, y ∈ S : ∫(x, y) = ∫(y, x), we call ∫ symmetric, and if it
satisfies ∀x, y, z ∈ S : ∫(x, y) + ∫(y, z) ≥ ∫(x, z), we call it triangular. If S is discrete,
symmetric and triangular, and ∞ 6∈ range(∫), it is also called a metric, and 〈S, ∫〉 is
called a metric space.

Here, ∫(x, y) = 0 means that x is perfectly similar to y.9 However, note that perfect
similarity implies identity only in the case of discrete spaces. ∫(x, y) < ∫(x, z) means
that x is more similar to y than to z, and ∫(x, y) = ∫(x, z) means that x is equally
similar to y and z. Moreover, we say that x is discernibly similar to y if ∫(x, y) < ∞
and indiscernibly similar otherwise, i.e. if ∫(x, y) =∞. For X,Y ⊆ S sets (rather than
just elements), similarity is defined by extending ∫ as follows:

∫(X,Y ) :=

{
inf{∫(x, y) | x ∈ X, y ∈ Y }, if X,Y 6= ∅
∞, otherwise

If in fact the minimum exists for all non-empty sets X and Y , S is also called a min-
space, compare [27]. Clearly, whenever a space is finite, it is a min-space.

When relating different sets of objects, such as when connecting linguistic ontolo-
gies and spatial logics, the above definitions need to be adapted. For simplicity, we here
restrict our attention to the case of only two such sets.

8This natural idea has been studied for instance in the work of Suzuki on graded accessibility relations [24].
Also, Williamson [25] pursued similar semantic ideas when developing his propositional logics of clarity.

9Contrary to other formal approaches to similarity, closeness in the similarity space (i.e. a low value of
the similarity measure) corresponds to high similarity: this intuition derives from the spatial interpretation of
metric spaces.



Definition 2 A (2-dim) heterogeneous similarity space (hsim-space for short) is a
quadruple H = 〈S1,S2, ∫21 , ∫12 〉 consisting of, for i = 1, 2, sim-spaces Si = 〈Si, ∫i〉, and
heterogeneous similarity measures ∫ īi : Si × Sī 7→ R+

0,∞. H is het-symmetric if for all
x ∈ Si and all y ∈ Sī we have ∫ īi (x, y) = ∫ i

ī
(y, x) (for i = 1, 2). It is het-triangular if

for all x, z ∈ Si and y ∈ Sī we have ∫ īi (x, y) + ∫ i
ī
(y, z) ≥ ∫i(x, z) (for i = 1, 2).

In the heterogeneous case, perfect similarity now means that x ∈ S1 and y ∈ S2 are
indistinguishable from the perspectives of both similarity measures, ∫1 and ∫2.10

4.4. Counterparts in Similarity-based E-Connections

Note that, in this setting, the problems of transworld identity and counterparthood can
be neatly separated: transworld identity may be taken to be synonymous with perfect
similarity as defined above. Counterparthood understood as maximal similarity is a looser
notion, and may be explicated by the following principle (see [28]).

For x ∈ Si and y ∈ Sī, y is a counterpart of x only if nothing in Sī is more similar
to x as it is in Si than is y as it is in Sī.

We take this principle as the defining criterion for counterparthood in similarity spaces:

Definition 3 (Counterparts) Let H = 〈S1,S2, ∫21 , ∫12 〉 be a hsim-space. We call bī ∈ Sī

an ī-counterpart of ai ∈ Si if ∫ īi (ai, bī) = inf{∫ īi (ai, b) | b ∈ Sī} < ∞, which we also
write as Cpī

i(ai, bī). This gives us two relations: Cpī
i ⊆ Si × Sī, i = 1, 2. Moreover, for

X ⊆ Si, we denote by Cpī
i(X) the set {y ∈ Sī | ∃x ∈ X.Cpī

i(x, y)}.

Note that counterparts thus defined may or may not be unique. Moreover, bī may be
an ī-counterpart of ai without ai being an i-counterpart of bī; counterparthood is direc-
tional. Although counterparts need not be unique, in applications it is often desirable
to select amongst the elements with maximal similarity a unique element, according to
certain external criteria. We here solve this problem by incorporating into the structures
an explicit choice function selecting a counterpart.

Definition 4 (Counterpart choice) A hsim-space with choice is a triple 〈H, λ1, λ2〉,
where H = 〈S1,S2, ∫21 , ∫12 〉 is a hsim-space, and, for i = 1, 2, λi : Si −→ Cpī

i(Si) are
choice functions such that, for all x ∈ Si, we have that λi(x) ⊆ Cpī

i(x) is a singleton.

Of course, often the λi are uniquely determined by the similarity measures ∫ īi , in which
case we call λi a deterministic choice function. Apart from the elements with maximal
similarity, i.e. the counterparts, it is also of interest to be able to refer to elements of
a foreign domain that are similar to some degree (i.e. discernibly similar). This can be
achieved by simulating the notion of link relation from E-connections as follows:

Definition 5 (Link-relation) Given a hsim-space H = 〈S1,S2, ∫21 , ∫12 〉, we define the
induced link relations E1

H, E
2
H, EH ⊆ S1 × S2 by setting, for all x ∈ S1 and y ∈ S2:

E1
H(x, y) ⇐⇒ ∫21 (x, y) <∞; E2

H(x, y) ⇐⇒ ∫12 (y, x) <∞;

10The notion of discrete similarity measure makes no immediate sense in the heterogeneous case as identity
is not available. However, the notion can be ‘simulated’ by replacing identity with an independently defined
notion of trans-module identity, ‘equalising’ cross-domain elements whilst respecting the similarity measures.



EH(x, y) ⇐⇒ min
(
∫21 (x, y), ∫12 (y, x)

)
<∞(= E1

H ∪ E2
H).

Intuitively, the relation EH(x, y) holds if x and y are discernibly similar from at least
one ‘viewpoint’, and Ei

H(x, y) holds if x and y are discernibly similar from the point of
view of ∫ īi . We can now recover standard E-connections in the following sense:

Proposition 6 For every E-connection model M = 〈W1,W2, E
M〉 there is a hsim-space

H = 〈S1,S2, ∫21 , ∫12 〉 such that EH = EM.

PROOF. Fix M = 〈W1,W2, E
M〉. Essentially, we need to show that induced link rela-

tions can be arbitrary relations: set, for x ∈ S1 and y ∈ S2

∫21 (x, y) = ∫12 (y, x) =

{
0, if(x, y) ∈ EM

∞, otherwise

Clearly, EM = EH. �

4.5. Similarity Bridge Logic

So far, we have only (generically) described the model-theory of similarity based E-con-
nections. Whilst the component logics can be assumed to be given, we need to describe
possibilities to (syntactically) define the bridge logic of such E-connections. As we have
mentioned above, the spectrum of languages that can be used for this can be varied
almost arbitrarily. We here describe a language that we consider basic in that it reflects
the essential features of the underlying structures. We assume two logics L1 and L2 are
given, with disjoint sort structure. For Li, i = 1, 2, assume object names ai (denoting
elements of the domains) and terms Ai (denoting subsets of the domains) belonging to
the respective logics are given.

Fix a hsim-space with choice H = 〈S1,S2, ∫21 , ∫12 , λ1, λ2〉, and assume, for i = 1, 2,
the logics Li are interpreted in models Mi over sim-spaces Si, i.e. dom(Mi) ⊇ dom(S).

Definition 7 The basic similarity bridge logic Bsim(L1,L2) contains:

• projection operators: 〈E〉īAi and 〈E〉īai, for i = 1, 2 and E ∈ {E1
H, E

2
H, EH} .

These are the basic E-connection-operators (with the standard semantics), with link-
relations E inherited from the similarity measures as defined in Def. 5.

• counterpart operators: 〈C〉īAi and 〈C〉īai, i = 1, 2.
Given the term Ai of logic Li, the operator 〈C〉īAi yields the set of all counterparts of
elements of Ai, i.e.

(〈C〉īAi)M = {y ∈ Sī | ∃x ∈ AMi
i and Cpī

i(x, y)},

and similarly for object names.



• choice operators: 〈λ〉īai, i = 1, 2.
These pick out the unique counterpart of ai as a singleton subset whenever there are
counterparts, and returns ⊥ī otherwise, i.e.

(〈λ〉īai)M =

{
{λi(ai

Mi)}, if defined
⊥ī, otherwise

• heterogeneous similarity operators: 〈�〉i(A1, A2), 〈�〉i(A1, A2), i = 1, 2.
Intuitively, 〈�〉1(A1, A2) gives a term of L1, consisting of all those members of S1 that
are closer to something in A1 than to any of A2’s counterparts in S1 (similarity is evalu-
ated locally). Conversely, 〈�〉1(A1, A2) gives a term of L1, consisting of all those mem-
bers of S1 all of whose counterparts are closer to some of A1’s counterparts than to
any element in A2 (similarity is evaluated externally for the counterparts). Formally, the
semantics is as follows, for i = 1, 2:`

〈�〉i(A1, A2)
´M

= {y ∈ Si | ∫i
`
y, Ai

Mi ∩ Si

´
< ∫i

`
y, Cpi

ī(Aī
Mī) ∩ Si

´
} and`

〈�〉i(A1, A2)
´M

= {y ∈ Si | ∫ī
`
Cpī

i(y), Cpī
i(Ai

Mi) ∩ Sī

´
< ∫ī

`
Cpī

i(y), Aī
Mī ∩ Sī

´
}

As in standard E-connections, we assume that these operators yield new terms of the
respective logics to which the operators of those logics can then be further applied. This
process, inductively, defines the basic similarity language of S-connections.11

5. S-Connection for Directions and Regions in Language and Space

An example how S-connections can be used to relate natural language and spatial log-
ics is outlined in the following. Here, GUM is ‘S-connected’ with the 9+-intersection
for topological relations between a directed line segment (DLine) and a region (9+-
calculus) [29]. Similarities between examples of linguistic motion descriptions in GUM
and related 9+-calculus examples are presented. The linguistic descriptions (a) “They
went out of the park”, (b) “They left the park” are defined by source:GeneralDirectional
and (c) “They entered the park” is defined by destination:GeneralDirectional in GUM.
GeneralDirectional defines directions of motions or orientations determined by the re-
latum and specified by the relations source and destination. (For reasons of space and
simplicity, the reader is referred to [8] for further documentation.)

5.1: Ex. x 5.2: Closest Neighbours (1) 5.3: Closest Neighbours (2) 5.4: Ex. y

Figure 5. Directed line segments and possible relations with a region.

While actor and relatum are linguistically described by “they” and “park” respec-
tively, their counterparts in the 9+-calculus are the DLine for the motion of “they” and

11For simplicity, we have here defined only the ‘concept language’ of S-connections. Assertions and KBs
can be defined in the same way as for E-connections, with the addition of object statements allowing to explic-
itly declare the similarity between named objects such as simī

i(ai, aī) = 3, with the obvious semantics.



the region for “park”. A sample of 9+-models are illustrated in Fig. 5. The topological
dependence in Fig. 5.1 between the DLine and the region is defined as the most similar
realisation for a and b. Given the neighbourhood graph for x by the 9+-calculus, Fig. 5.2
shows its direct neighbours. Some of them are also elements with high similarity for
GUM’s source:GeneralDirectional. Fig. 5.3 shows neighbours directly related to the first
neighbours in Fig. 5.2. Those are, however, rather indiscernibly similar with a and b. As a
and b are equally instantiated in GUM, they are not distinguishable and ∫GUM (a, b) = 0.
A set of similar 9+-elements for a and b are illustrated in Fig. 6, ordered by decreasing
similarity. The first one (denoted x) is the counterpart. Clearly, a and b are equally similar
to x, and so sim2

1(a, x) = sim2
1(b, x).

Figure 6. 9+-calculus counterparts for a “They left the park”

Conversely, the counterpart of c “They entered the park” is y illustrated in Fig. 5.4.
Here, the DLine has exactly the opposite direction of the DLine in x. y is also in-
discernibly similar to a and b. Hence, the S-connections between GUM and the 9+-
intersections differ in similarities of linguistic descriptions and topological relationships,
as indicated by the neighbourhood relation and equal specifications in GUM. An excerpt
from these similarity relations and S-connections is illustrated in Fig. 7.

b
("They left the park")

c
("They entered the park")

GUM 9  −calculus

x

z1

z2

z3

sim (x,z1)2
2

sim (b,x)2
1

sim (b,z3)2
1

sim (x,b)
1
2

+

a
("They went out of the park")

y

sim
 (b

,z1
)

2
1

sim (x,a)1
2

sim (y,c)1
2

Figure 7. Example of S-connections between GUM and 9+-calculus. Similar counterparts are sim2
1(b, x)

(from GUM to SL), sim1
2(x, b) = sim1

2(x, a) (from SL to GUM), and sim2
2(x, z1) (similarities within SL).

6. Discussion

We have introduced S-connections as an extension of E-connections adding similarity
measures across domains and corresponding formal apparatus to interpret these mea-
sures. We have shown that this framework is well-suited to deal with the problem of re-
lating linguistic semantics and spatial logics whilst respecting the uncertainties or under-
specifications that are involved in their relationship. Various examples illustrating how
language underspecifies spatial information are given together with aspects causing such
underspecifications. However, further investigations will need to elaborate on specific
definitions of such measures and on algorithms for calculating them, based on external
linguistic and spatial factors, as described for instance in [30].



As concerns the general theory of S-connections, there are many interesting open
problems. Most obviously, decidability and complexity issues for various component and
bridge logics should be addressed, and an axiomatisation of the basic logic of S-connec-
tions should be given (extending the results of [31]). Other interesting areas are the fol-
lowing: (i) analyse structural properties on the interplay between ‘local’ and ‘global’ (i.e.
heterogeneous) similarity measures; (ii) formulate various notions of qualitative (trans-
module) identity compatible with similarity measures; (iii) investigate notions such as
transitivity of similarity that have a different flavour in the setting of S-connections.

To elaborate just on the last point, note that the triangular inequality gives us a par-
ticular (quantitative) version of transitivity of similarity. Namely, if a is x-similar to b
and b is y-similar to c, then a is at least x+ y-similar to c. Stricter transitivity assertions
could, of course, be defined, and would correspond to global ‘elasticity’ restrictions on
the similarity space. However, similarities between entities in a spatial model will not al-
ways directly entail corresponding similarities between spatial language and spatial logic
configurations, as indicated by the example in Fig. 5. Therefore, a careful analysis of
appropriate transitivity principles for the interplay between spatial language and spatial
logics will be necessary.
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