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Abstract. Methods for automated classification of chemical data depend on iden-
tifying interesting parts and properties. However, classes of chemical entities
which are highly symmetrical and contain large numbers of homogeneous parts
(such as carbon atoms) are not straightforwardly classified in this fashion. One
such class of molecules is the fullerene family, which shows potential for many
novel applications including in biomedicine. The Web Ontology Language OWL
cannot be used to represent the structure of fullerenes, as their structure is not tree-
shaped. While individual members of the fullerene class can be modelled in stan-
dard FOL, expressing the properties of the class as a whole (independent of the
count of atoms of the members) requires second-order quantification. Given the
size of chemical ontologies such as ChEBI, using second-order expressivity in the
general case is prohibitively expensive to practical applications. To address these
conflicting requirements, we introduce a novel framework in which we hetero-
geneously integrate standard ontological modelling with monadic second-order
reasoning over chemical graphs, enabling various kinds of information flow be-
tween the distinct representational layers.

1 Introduction and motivation

Organic chemistry has seen a dramatic increase in available data in recent years,
tracking progress in the search for novel therapeutics.1 However, large-scale
data that are not appropriately organised can be more of a burden than a ben-
efit. Ontologies and knowledge-based methods for automated classification are
increasingly harnessed to address this challenge. ChEBI – Chemical Entities of
Biological Interest – is a chemical ontology that is widely used to organise and
classify chemical data [4]. However, ChEBI is manually maintained, reducing
its scalability. Methods for automated classification of chemical entities depend
on algorithms which reduce complex molecular graphs to lists of interesting
parts and properties, such as atomic constituents and groups, charges and over-
all molecular weight. Knowledge representation and reasoning for chemistry
has also largely been dominated by this paradigm [13, 12, 14].

1 The basic ideas formulated in this paper were previously presented at the Deep Knowledge
Representation Workshop DKR-11, Banff, Canada, 2011 (2nd prize in the DKR competition).



In recent years there has been a progression in capacity for the synthesis
of highly symmetrical, polycyclic chemical entities, which are made up of a
very small number of part sorts (e.g. mainly carbon atoms) with a very large
number of actual parts. Polycyclic carbon molecules show incredible topolog-
ical versatility, not only forming spheres, tubes and sheets, but also molecu-
lar Möbius strips [8, 2, 11] and knots [7, 17], as illustrated in Figure 1. These
molecules elicit increased interest following advances in synthesis methods to-
wards a nanoscale molecular ‘machinery’ with carefully designed shapes that
are able to rival the power and scale of biological machinery [19].

Fig. 1. Some examples of highly symmetric molecules, con-
stituted almost entirely by carbon atoms. The overall ar-
rangements of atoms in the molecules, rather than the nature
of functional groups, characterise their types.

Since their parts are homoge-
neous, listing part types cannot
distinguish distinct such classes.
Rather, such molecules must be
characterised by their shape or
topology. For example, fullerene
molecules form spherical or ellip-
soidal cages, Möbius molecules
display classical Möbius topolo-
gies, while molecular knots and
interlinked chains display the
topological and shape proper-
ties of macromolecular knots and
chains. To adequately represent
knowledge about these molecules
requires the ability to describe
and reason over features which

apply to the entire molecular graph (i.e. the connection of atoms via bonds).
In what follows, we will argue that formalisms with limited expressivity

such as OWL are not sufficient to represent deep knowledge about this class
of molecules. We will therefore complement OWL with the more expressive
formalism of monadic second-order logic (MSOL).

2 Background

OWL representation. Chemical entities can be represented and exchanged
in the form of chemical graphs, in which atoms form the vertices and covalent
chemical bonds the edges. However, complex graphs that contain cycles cannot
be faithfully modelled at the class level in OWL due to the requirement that all
axioms in OWL have models shaped like a tree [12].



Can we recognise members of the fullerene class of molecules based on
the structure of their chemical graphs? A formulation of C60 fullerene and
a graphene of 60 atoms might refer explicitly to their differing shapes in or-
der to allow automated reasoning to distinguish them, using axioms such as
hasPart only CarbonAtom and hasShape some Sphere or hasShape some Flat.

However, this approach clearly does not allow automated reasoning to de-
duce the class of the molecule based on the properties of the molecular graph,
since a human has to specify the shape of the molecule. Following this pat-
tern, a different shape has to be defined for every differently shaped molecule,
with no means of automatically discerning relationships or similarity between
the stated shapes. Furthermore, those properties of the molecules that depend
on their shapes are not explained by the information contained in the ontology.
Many of the properties of fullerenes stem from the fact that they can enclose
other molecules inside their cage structure, a property not shared by graphene.
The properties of molecular knots stem from the fact that they are mechanically
interlocked. What is required is a framework that is able to define classes of
molecules based on properties of the graphs of their members, and then deduce
which molecular graphs belong to these classes.

Description graphs, rules and FOL. Cycles can be represented adequately
in rules, which are combined with OWL for ontology engineering in the DL-safe
rule extension [16]. The DL-safe rules extension, however, is applicable only to
explicitly named objects in the ontology (individuals), to ensure decidability of
the resulting knowledge base. This means that it is not possible to reason at the
class level about highly symmetric molecules using this formalism.

This shortcoming motivated the introduction of description graphs [15], an
OWL extension for expressing the structure of complex objects at the class level.
However, the knowledge base is still constrained in that the OWL axioms and the
edge properties in the description graphs must be kept separate. The reasoning
capability of the framework is limited to what can be expressed in “graph-safe”
rules: rules which do not mix graph edge properties and OWL object proper-
ties. Furthermore, there are inherent limitations in the use of rules for reason-
ing, since there is no ∀ quantification in the rules formalism, which means that
properties of all atoms in a given graph cannot be used for reasoning [12]. In an
effort to relax these limitations, a radically different semantics has recently been
proposed, based on logic programming: description graph logic programs [14].
Since the semantics from logic programming ensures decidability in a different
way to the OWL model-theoretic semantics, there is no need for property separa-
tion, thus the ontology designer may interchangeably use OWL and description
graph properties in creating the knowledge base. This formalism allows repre-
sentation and reasoning with cyclic chemical structures at the class level. It is



possible, for example, to define a particular member of the fullerenes class, such
as dodecahedrane, and to use reasoning for detection of cycles of fixed lengths.
However, it is not possible to express the properties of fullerenes as a whole.
Using full FOL it is possible to get very close to a definition for the fullerenes,
including axioms that every atom must have 3 or 4 bonds, every atom must be-
long to a cycle, and every cycle (face) must have 5 or 6 members. However, such
constraints (“local perspective”) cannot allow correct classification in all cases.
For example, fullerenes of different sizes (for example, C540, C240 and C60)
can be nested inside one another. The local perspective at each atom and at each
face correctly matches the best definition that is possible to specify in FOL. Yet,
this should be classified as a complex consisting of multiple fullerenes, rather
than as itself a (single) fullerene molecule. To distinguish the complex from a
single molecule, the second-order construct of graph connectedness is needed.
However, it is well-known that connectedness is not first-order definable [5].

3 Properties of graphs for chemical classes

In order to distinguish between fullerenes, graphenes, strips and Möbius strips,
we need to define some properties of graphs based on chemical graph theory
[18]. For simplification we will assume that all graphs are finite, which is true
of all graphs corresponding to real chemical entities.
Planar polyhedral graphs. A chemical graph is planar if it can be drawn on
a flat plane without any edges crossing. Overwhelmingly, most chemical entities
can be described by planar graphs. The only exception found in a recent analysis
of public compound databases were Möbius-like molecules [8]. A graph is cu-
bic if all vertices have degree three, i.e. are connected to three other vertices. It
is connected, if any two vertices are connected by a path, and it is 3-connected
if it is connected and remains so after removal of any two vertices. A graph is
polyhedral iff it is the graph of some convex polyhedron. By Steinitz’ theorem
(1922), this is equivalent to being 3-connected and planar (see [20]). Indeed,
polyhedral graphs, while being planar (2D), are typically represented as convex
polyhedra (3D). A polycyclic cage is any polyhedral graph. Chemical examples
include cubane, tetrahedrane, and of course all fullerenes. A fullerene is a cubic
polyhedral graph consisting of hexagons and pentagons only. By the Euler for-
mula for polyhedra, one can show that the number of pentagons must always be
12. A closed nanotube is a fullerene which is extended into a tube shape with a
circular extension consisting only of hexagons between the two ends, the latter
consisting of two hemispheres of the buckyball structure. An open nanotube
is a cubic polyhedral graph consisting of hexagons and two non-hexagons (the
two non-hexagons are the outer boundaries).



Planar non-polyhedral graphs. A graphene is a planar graph consisting
of hexagons and one face (the outer boundary) not necessarily being a hexagon,
where all vertices involved in the outer boundary have degree two or three, while
the remaining vertices have degree three.
Non-planar graphs. A Möbius strip is non-planar graph, consisting of hexa-
gons and one non-hexagon (the outer boundary).

4 Describing molecule graph classes in MSOL

We want to formalise the definitions of graph classes such that membership in a

Cubic ⇔ ∀x.∃!3y.edge(x, y)

degreen(x)⇔ ∃!ny.edge(x, y)

Planar ⇔ ¬(∃ ) ∧ ¬(∃ )

Connected Subgraph(C)⇔
∀D ⊆ C,E ⊆ C.C = D ∪ E ⇒ ∃u ∈ D, v ∈ E.edge(u, v)

Connected ⇔ ∃C.∀x.x ∈ C ∧ Connected Subgraph(C)

Cycle(C)⇔
Connected Subgraph(C) ∧ ∀x ∈ C ∃y ∈ C.edge(x, y)

Three Connected ⇔ ∀x, y.Connected Subgraph(V \ {x , y})

Polyhedron ⇔ Planar ∧ Three Connected

Polycyclic Cage ⇔ Polyhedron

Face(C)⇔ Cycle(C) ∧ Connected Subgraph(V \ C)
∧∀u, x, y, z ∈ C.edge(u, x) ∧ edge(u, y)
∧edge(u, z)→ (x = y ∨ x = z ∨ y = z)

Pent(C)⇔ Cycle(C) ∧ ∃!5x.x ∈ C

Hex(C)⇔ Cycle(C) ∧ ∃!6x.x ∈ C

Carbon Allotrope ⇔ ∀x.Carbon(x)

Fullerene ⇔ Carbon Allotrope ∧ Polycyclic Cage ∧ Cubic
∧ ∀C.Face(C)→ Pent(C) ∨Hex(C)

Closed Nanotube ⇔ Fullerene ∧

∧ (∃ )

Open Nanotube ⇔ Carbon Allotrope ∧ Polyhedron ∧ Cubic
∧ ∃B,C.Face(B) ∧ Face(C) ∧ B 6= C
∧ ∀D.Face(D)→ B = D ∨ C = D ∨Hex(D)

Graphene ⇔ Carbon Allotrope ∧ Planar
∧ ∃B.Face(B) ∧ (∀x ∈ B.degree2(x) ∨ degree3(x))
∧ ∀C.Face(C)→ B = C
∨(Hex(C) ∧ ∀x ∈ C.degree3(x))

Moebius Strip ⇔ ¬Planar ∧ ∃B.Face(B)
∧∀C.Face(C)→ B = C ∨Hex(C)

Fig. 2. MSOL formalisation of molecule classes.

graph class can be machine-checked.
It has been noted (see [3]) that
the role finite automata play for
the specification of word languages
is played by monadic second-order
logic (MSOL) for expressing graph
properties and defining graph classes.
Although the general problem is
NP-complete, monadic second-order
logic for graphs can be model-
checked quite efficiently; indeed,
for graphs with bounded tree-width,
model checking can be done in linear
time. MSOL for graphs consists of
untyped first-order logic, extended
with quantification over sets (and
membership in such sets). We as-
sume binary predicates edge , edge2
and edge3 for all bonds, double
bonds and triple bonds, respectively.
We also assume unary predicates
like Carbon for the atoms (and suit-
able atom classes) in the periodic ta-
ble. When writing MSOL formulas,
we use syntactic sugar like unique-
existential quantifiers and number
quantifiers, which can easily be
coded out even in first-order logic.
We also will freely use standard set-

theoretic notation where it can easily be coded out into MSOL. V denotes the
set of all vertices. While the expressive power of MSOL suffices to axiomatise



most graph classes that we are interested in, even with the above syntactic sugar,
often the axioms can become cumbersome and large. We therefore additionally
use the nested conditions of [9, 10]. The simplest and most prominent formulas
here are of form (∃G), where G is a graph with some edges annotated with +.
The semantics is that G can be injectively embedded into the given graph, where
each edge labelled with + may be mapped to a finite path (this may be used to
express that a certain G is a minor of the given graph). The MSOL formalisation
of the above notions is shown in Fig. 2. Note that graph classes are represented
as MSOL model classes; this means that e.g. a graph is cubic if and only if it
(when seen as a MSOL model) satisfies the formula ∀x.∃!3y.edge(x, y). The
correctness of the definition of polyhedral graph follows from Steinitz’ theorem
discussed above, and the correctness of the definition of planarity follows from
Kuratowski’s characterisation in terms of forbidden minors.

5 Connecting Ontology and Graph Layers

We have seen that monadic second-order logic combined with nested conditions
provides a convenient formalism for adequate formalisation of graph-conditions
relevant for the modelling of chemicals. However, how can such specifications
of graph classes be related to existing ontologies of molecules such as ChEBI [4]
that are formulated in a light-weight ontology language like OWL-EL? Clearly,
one cannot expect to be able to formalise deeper graph-theoretical properties
in OWL. However, using the MSOL formalisation, we can build what we call
a grounded ontology: class names such as fullerene are equipped with a (or
several) formal MSOL specification(s), and specific instances, i.e. object names
are equipped with concrete graphs. Such an association, if done systematically,
will give rise to a number of automated reasoning problems such as model and
subclass checking, deduction in MSOL, and abduction, here put into a new con-
text. To motivate the following definition, note the following considerations.
Two (different) ontology classes may be equipped with the same MSOL theo-
ries. This reflects an intensionality in the definition of the ontological classes
which, although having different ontological definitions, denote the same struc-
tural class of molecules. Conversely, one and the same ontology class may be
equipped with different MSOL theories. This corresponds to an intensionality
in the realm of graph classes, where different descriptions of a graph class may
be found in the literature (e.g. if the molecule has different structural variants).
Therefore, we express soundness of the relation between ontology classes and
monadic second-order theories as functionality modulo logical equivalence.



We consider the ontology as the primary, and the graph-based formalisation
as a secondary source of information. This is reflected in the following formal
definition for ontologies expressed in ALC:2

Definition 1. Fix anALC ontology O = 〈T,A〉, where T is a TBox, and A is an
ABox. Let C be the set of ALC (sub)concept descriptions (atomic or complex)
and I the set of object names appearing in O, T a set of finite MSOL theories3,
and G a set of MSOL finite undirected graphs. An ontology-graph association
(oga for short) is a pair of relations ; = 〈;T,;A〉, where

;T⊆ C× T and ;A⊆ I×G

; is total if for any concept C ∈ C and object a ∈ I there exist T ∈ T, G ∈ G
such that C ;T T and a ;A G.
; is sound if for all O |= C v D and a : C and b : D we have: C ;T S,
D ;T T implies S �MSOL T and a ;A G implies G |=MSOL S and b ;A H
implies H |=MSOL T .
; is complete if for all C ;T S, D ;T T we have: S �MSOL T implies
O |= C v D and for all a ;A G and b ;A H with G |=MSOL S and
H |=MSOL T we have a : C and b : D.
; is graph-extensional if C ;T S, C ;T T =⇒ �MSOL S ↔ T .
; is class-extensional if C ;T S, D ;T S =⇒ O |= C ≡ D.

Proposition 1. Completeness implies class-extensionality (not vice versa), and
soundness implies graph-extensionality (not vice versa).

The logical structure of ontology-graph associations is illustrated in Figure 3.
Note that the new aspect here is that there is a shift of levels, namely graphs
are models in MSOL, while they are individuals in OWL. The correspondences
(including reasoning) are as follows: Rather than integrating or combining dif-
ferent logics and running the risk of losing any of the desirable properties of the
special purpose formalisms, our approach realises an interlinked formalisation
of different aspects of the domain of chemical molecules that relies on a map-
ping between the different layers. Whilst (lightweight) ontology languages are
used to cope with the rather large chemical ontologies, MSOL is used to ade-
quately capture some of the ontologically relevant spatial structure of molecule
classes. Obviously, to make this approach worthwhile, we need to establish sys-
tematic ways of exchanging information between these two layers of different
abstraction and expressiveness.

2 We focus here on OWL ontologies with at most ALC expressivity. However, all definitions
carry over to FOL ontologies mutatis mutandis.

3 We can therefore meaningfully use Boolean combinations of such theories.
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Fig. 3. Ontology-graph association:
OWL and MSOL.

MSOL term chemical notion OWL term
MSOL theory molecule class OWL class
graph molecule OWL individual
model checking instance checking OWL ABox checking
logical entailment subclass relation OWL subclass (TBox)
consistent theory nonempty class satisfiable OWL class

Fig. 4. Grounded ontology: correspondences between
MSOL, OWL, and chemical notions.

Deduction. Proven entailment between MSOL theories may be used to assert subsumption

between the corresponding classes in the chemical ontology (e.g. the ontology in Fig. 5 has

been obtained in this way). This corresponds to ensuring completeness as defined above.
Abduction. Abduction [6] can be used to hypothesise new correspondences. For example,

given AuB ;T T1, A ;T T2 and |=MSOL T1 ↔ T1 ∧ T2, this may have the explanation

B ;T T3.

Fig. 5. Class hierarchy computed from MSOL implications

Other related reasoning problems are induction, i.e. given a set of example
molecules (e.g. MOL datafiles), learn a corresponding graph class specified in
MSOL, and model checking, i.e. given a Möbius strip, check (using a tool such
as [1]) that it is non-planar. Moreover, to show that it is additionally a loop is an
interesting and non-trivial subsumption check. Although MSOL entailment is
in general undecidable, logical entailment in second-order logic can be approx-
imated with automated theorem provers like LEO-II (http://www.ags.uni-sb.
de/˜leo/). An initial OWL ontology computed from the logical implications
among the MSOL axiomatisations given in Sec. 4 is shown in Fig. 5 (available
at ontohub.org). Here, the implications between the graph classes are mostly



definitorial and therefore easy to check automatically, and trigger the creation
of corresponding subsumptions in the ontology.

6 Conclusions

Representation and reasoning with structured objects such as molecules is still
an area of active research and development for ontologists and chemoinformati-
cians. Chemical ontologies such as ChEBI [4] provide one solution to this prob-
lem through careful manual classification. Formal ontology aims to supplement
such manual efforts with explicit computable knowledge representation and ac-
companying automated reasoning. We here focus on a particularly interesting
and challenging class of molecules for such formalisation, and examine an ap-
proach which uses the expressive power of monadic second-order logic (MSOL)
to formalise properties that cannot be defined in OWL, proposing to systemati-
cally link the two layers.

Compared to algorithmic approaches of molecule classification, we can of-
fer a language for a declarative description of molecules and molecule classes,
which offers a path to not only instance checking (as in the algorithmic case),
but also to subclass checking, through MSOL theorem proving. We propose to
combine this with OWL ontologies such as ChEBI, thus obtaining a “grounded
ontology”, where OWL subclass relations can be verified or inferred by looking
at the corresponding graph properties in MSOL.

In the semi-automatic generation of MSOL theories chemical graphs datasets
via inductive reasoning, a problem that has to be considered is that abstracting
a graph class from a finite number of sample molecules can sometimes produce
ambiguous results. Importantly, classes of molecules conforming to particular
graph theories may have characteristic emergent properties in terms of chemi-
cal and biochemical reactivity and activity profile that none of the superclasses
(with less restrictive accompanying graph theories) display. The activity and
reactivity properties of molecules would need to be included in a separate onto-
logical layer within the framework we describe. Note that the MSOL approach
can only classify molecules based on properties of their graphs. However, from
a graph-theoretic point of view, the molecular trefoil is equivalent to a simple
loop. In order to distinguish it from the loop, one has to consider its embedding
into Euclidean space, and use knot theory. Future work should consider invari-
ants from knot theory (such as genus, polynomials and groups) in a similar role
as that in which we presently propose to use MSOL. Also, the results of com-
putational graph theory will be useful, e.g. for optimising parts of the model
checking for graphs.



References

1. S. Arnborg, ‘A general purpose MSOL model checker and optimizer based on Boolean func-
tion representation’, Technical report, KTH, Stockholm, Sweden, (1994).

2. E. W. S. Caetano, V. N. Freire, S. G. dos Santos, D. S. Galvao, and F. Sato, ‘Möbius and
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