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3. Conjunctive Queries

Instructions: Work in groups of 2 students. You can write up your answers by
hand (provided your handwriting is legible) or use a word processing system like
Latex or Word. Note that experience has shown that Word is in general difficult to
use for this kind of task. If you prefer to write up your solution by hand, submit
a scanned electronic version. Please, include name and email address in your
submission.

1. Evaluation of Special Types of Conjunctive Graph Queries

In this exercise we want to analyze the difficulty to evaluate certain queries over
directed graphs. The formulation of the exercise is pretty long, but that should not
frighten you. It is long because it contains many detailed hints.
We can store a directed graph in a database using a binary relation edge/2.

• The k-th circle query Ck/1 asks for all nodes x that lie on a circle of length
k, that is, a path consisting of k edges that starts and ends at x. Thus, Ck is
defined as

Ck(x) :– edge(x, z1), edge(z1, z2), . . . , edge(zk−1, x).

• Intuitively, the k-th star query Sk/1 asks for all nodes x that are in the center
of a star with k rays. More precisely, Sk is defined as

Sk(x) :– edge(x, z1), edge(x, z2), . . . , edge(x, zk).

• The k-th spider-web query asks for nodes x that are in the center of a graph
that has a form similar to a spider web, that is, a star with k rays that are
connected by edges forming a circle. Formally, Wk is defined as

Wk(x) :– edge(x, z1), edge(x, z2), . . . , edge(x, zk),
edge(z1, z2), edge(z2, z3), . . . , edge(zk, z1).



• The k-th clique query Clk/0 asks whether the graph stored in the relation
edge has a clique of size k, that is, a subgraph of size k with an edge from
each node to each other node. Formally, Clk is defined as

Clk() :– edge(z1, z2), edge(z1, z3) . . . , edge(z1, zk),
edge(z2, z1), edge(z2, z3), . . . , edge(z2, zk),
. . .

edge(zk, z1), edge(zk, z2), . . . , edge(zk, zk−1).

To get a better idea for the pattern that these queries ask for, draw the pattern as a
graph.

1. For each type of query, design an efficient algorithm to compute the set of
answers Q(I) for a query Q applied to an instance of size I.

(8 Points)

2. For each of the algorithms, assess the running time, expressed in |I| and |Q|,
using O(·) (“big Ohhh” :-) )notation? Explain your assessment.

(4 Points)

Hint 1: You can describe your algorithms in natural language or in pseudo-code.
It may help you to formulate your algorithm as a sequence of relational algebra
operators applied to the relation edge. For example, an algorihtm for evaluating
the k-the path query Pk, defined in the lecture as

Pk(x) :– edge(x, y1), edge(y1, y2), . . . , edge(yk−1, yk),

one can define the algorithm

R := πedge.1(edge)

for i := 1 to k − 1 do
R := πedge.1(edge onedge.2=R.1 R)

return R,

which uses a the integer variables k and i and the relation variable R.
An assignment to a relation variable is executed in the same way as an assignment
to a numerical variable: first, the expression on the rhs is evaluated, then the result
is assigned to the variable on the lhs.



In the algebra expressions in the algorithm, we have referred to the arguments of
a relation by numbers that are disambiguated by the relation name. For instance,
“edge.2” referes to the second argument of the relation edge.
Of course, this is not the only approach one can take. Formulating the algorithm
in terms of operations on graphs (e.g., labeling of nodes) is another option.

Hint 2: The running time of the algorithm above can be roughly assessed as
follows.
Let n := |I|.

1. The projection in line 1 requires duplicate elimination. This can be achieved
by sorting edge according to the first argument and by a subsequent scan
that eliminates duplicates of the first argument. This operation requires
O(n log n) steps. The resulting relation R is unary and has size at most n.

2. The join in the loop (line 3) joins two relations of size at most n. The join
can be computed by sorting edge on the second argument and then merging
the result with R. This requires O(n log n+ 2n) = O(n log n) many steps.
The resulting relation has size at most n.

3. The projection can be computed as above, in time O(n log n).

4. Thus, all in all the expression in the loop can be computed with O(n log n+
n log n) = O(n log n) many steps.

5. Initially, the relationR is computed in timeO(n log n). The loop is executed
k−1 times, at a cost ofO(n log n) per execution. Thus, the whole execution
costs

O(k n log n) = O(|Q| × |I| × log |I|).

2. Evaluation of Conjunctive Queries with Unary Relation Symbols

Recall that relational conjunctive queries1 have only relational atoms in their body,
and no equalities or inequalities. We know that the combined complexity of evalu-
ating relational conjunctive queries is NP-complete. However, the reduction used
queries with binary relation symbols.

What can you say about the difficulty of evaluating relational boolean conjunctive
queries that have only unary relations in their body (that is, relations of arity 1)?
Is this an NP-hard, a coNP-hard, or a polynomial time problem?

1sometimes also called “simple” conjunctive queries



Distinguish between the problem for

1. relational queries (that is, queries without built-in predicates)

2. general conjunctive queries, which may contain the built-in predicates “<”,
“≤”, and “6=”.

To prove NP-hardness or coNP-hardness of a problem, provide a reduction from
a known NP-hard or coNP-hard problem to the new one. To prove that it is in
polynomial time, give an algorithm, show that it solves the problem, and explain
why it runs in polynomial time.

(6 + 6 Points)

Hint: Remember the reductions in the lecture by which we showed the NP-
hardness of evaluating conjunctive query evaluation.

3. Containment of Relational Conjunctive Queries without Self Joins

A conjunctive query has a self join if its body contains two relational atoms with
the same relation symbol. Thus, in the body of a query without self join, any two
relational atoms have distinct relation symbols.

We know that containment is NP-complete for arbitrary relational conjunctive
queries.

Question: How difficult is it to decide containment of relational conjunctive
queries that have no self join? Can this problem be solved in polynomial time? Or
is it NP-complete?

(6 Points)
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