
Enabling Fine-grained RDF Data Completeness
Assessment

Fariz Darari∗, Simon Razniewski, Radityo Eko Prasojo, and Werner Nutt

Free University of Bozen-Bolzano, Italy
∗fariz.darari@stud-inf.unibz.it

Abstract. Nowadays, more and more RDF data is becoming available
on the Semantic Web. While the Semantic Web is generally incomplete
by nature, on certain topics, it already contains complete information and
thus, queries may return all answers that exist in reality. In this paper we
develop a technique to check query completeness based on RDF data an-
notated with completeness information, taking into account data-specific
inferences that lead to an inference problem which is ΠP

2 -complete. We
then identify a practically relevant fragment of completeness informa-
tion, suitable for crowdsourced, entity-centric RDF data sources such as
Wikidata, for which we develop an indexing technique that allows to scale
completeness reasoning to Wikidata-scale data sources. We verify the ap-
plicability of our framework using Wikidata and develop COOL-WD, a
completeness tool for Wikidata, used to annotate Wikidata with com-
pleteness statements and reason about the completeness of query answers
over Wikidata. The tool is available at http://cool-wd.inf.unibz.it/.

Keywords: RDF, data completeness, SPARQL, query completeness, Wikidata

1 Introduction

Over the Web, we are witnessing a growing amount of data available in RDF. The
LOD Cloud1 recorded that there were 1014 RDF data sources in 2014, covering
various domains from life science to government. RDF follows the Open-World
Assumption (OWA), assuming data is incomplete by default [1]. Yet, given such
a large quantity of RDF data, one might wonder if it is complete for some
topics. As an illustration, consider Wikidata, a crowdsourced KB with RDF
support [2]. For data about the movie Reservoir Dogs, Wikidata is incomplete,
as it is missing the fact that Michael Sottile was acting in the movie.2 On the
other hand, for data about Apollo 11, it is the case that Neil Armstrong, Buzz
Aldrin, and Michael Collins, who are recorded as crew members on Wikidata,
are indeed all the crew (see Figure 1).3 However, such completeness information
is not recorded and thus it is left to the reader to decide whether some data on
the Web is already complete.

1 http://lod-cloud.net/
2 By comparing the data at https://www.wikidata.org/wiki/Q72962 with the com-

plete information at http://www.imdb.com/title/tt0105236/fullcredits
3 http://www.space.com/16758-apollo-11-first-moon-landing.html



2 Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner Nutt

Fig. 1. Wikidata is actually complete for all the Apollo 11 crew

Nevertheless, the availability of explicit completeness information can benefit
data access over RDF data sources, commonly done via SPARQL queries. To
illustrate, suppose that in addition to the complete data of Apollo 11 crew,
Wikidata is also complete for the children of the three astronauts. Consequently,
a user asking for the children of Apollo 11 crew should obtain not only query
answers, but also the information that the answers are complete.

Motivated by the above rationales, we argue that it is important to describe
completeness of RDF data and provide a technique to check query completeness
based on RDF data with its completeness information. Such a check is called
completeness entailment. In previous work, Darari et al. [3] proposed a frame-
work to describe completeness of RDF data and check query completeness based
on completeness information. One fundamental limitation of this work is that
the completeness check is agnostic of the content of the RDF data to which
the completeness information is given, which results in weaker inferences. In the
next section, we show that incorporating the content of RDF data may provide
stronger inferences about query completeness. From the relational databases,
Razniewski et al. [4], proposed wildcard-based completeness patterns to provide
completeness information over databases. To check query completeness, they
defined a pattern algebra, which works upon database tables enriched with com-
pleteness patterns. The work incorporated database instances in completeness
check, which are conceptually similar to the content of RDF data. However, only
a sound algorithm was provided for completeness check.

In this work, we make the following contributions:

1. We provide a formalization of the completeness entailment problem for RDF
data, and develop a sound and complete algorithm to solve the completeness
entailment problem.

2. We identify a practically relevant fragment of completeness information suit-
able for crowdsourced, entity-centric RDF data sources like Wikidata, and
develop an indexing technique to improve the feasibility of completeness en-
tailment within the fragment.

3. We develop COOL-WD, a tool to manage completeness over Wikidata.

Our paper is structured as follows: Section 2 presents a motivating scenario.
In Section 3, we provide a formalization to the completeness problem, followed



Enabling Fine-grained RDF Data Completeness Assessment 3

by Section 4 where we describe formal notions and a generic algorithm to check
completeness entailment. Section 5 introduces a fragment of completeness infor-
mation, suitable for crowdsourced, entity-centric RDF KBs like Wikidata, and
presents an optimization technique for checking completeness entailment within
this fragment. Section 6 reports our experimental evaluations. In Section 7, we
describe COOL-WD. Related work is given in Section 8, whereas further discus-
sion about our work is in Section 9. Section 10 concludes the paper and sketches
future work.

2 Motivating Scenario

Let us consider a motivating scenario for the main problem of this work, that is,
the check of query completeness based on RDF data with its completeness infor-
mation. Consider an RDF graph about the crew of Apollo 99 (or for short, A99),
a fictional space mission, and the children of the crew, as shown below.

Consider now the query Q0 asking for the crew of A99 and their children:

Q0 = (W0, P0) = ({ ?crew , ?child }, { (a99 , crew , ?crew), (?crew , child , ?child) })

Evaluating Q0 over the graph gives only one mapping result, where the crew is
mapped to Tony and the child is mapped to Toby. Up until now, nothing can
be said about the completeness of the query since: (i) there can be another crew
member of A99 with a child; (ii) Tony may have another child; or (iii) Ted may
have a child.

Let us now consider the same graph as before, now enriched with complete-
ness information, as shown below.

Informally, the above figure contains three completeness statements: C1,
which states that the graph contains all crew members of A99; C2, which states
the graph contains all Tony’s children; and C3, which states the graph contains
all Ted’s children (i.e., Ted has no children). With the addition of completeness
information, let us see whether we may answer our query completely.



4 Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner Nutt

First, since we know that all the crew of A99 are Tony and Ted, the query Q0

then becomes equivalent to the following two queries:

– Q1 = (W1, P1) = ({ ?child }, { (a99 , crew , tony), (tony , child , ?child) })
– Q2 = (W2, P2) = ({ ?child }, { (a99 , crew , ted), (ted , child , ?child) })

where the variable ?crew is instantiated with Tony and Ted, respectively.
Moreover, for Q2 according to our graph and completeness information, Ted

has no children. Thus, there is no way that Q2 will return an answer, so Q2 can
be safely removed. Now, only Q1 is left. Again, from our graph and completeness
information, we know that Toby is the only child of Tony. Thus, Q1 in turn is
equivalent to the following boolean query:

Q3 = (W3, P3) = ({}, { (a99 , crew , tony), (tony , child , toby) })
with the variable ?crew is instantiated to Tony and ?child to Toby. However, our
graph is complete for Q3 as it contains the whole body of Q3. Since from our
reasoning the query Q3 is equivalent to our original query Q0, we conclude that
our graph with its completeness information can guarantee the completeness
of Q0, that is, Toby is the only child of Tony, the only crew member of A99
having a child.

Note that using the data-agnostic approach from [3], it is not possible to
derive the same conclusion. Without looking at the actual graph, we cannot
conclude that Ted and Tony are all the crew members of Apollo 99. Consequently,
just having the children of Tony and Ted complete does not help in reasoning
about Apollo 99. In the rest of the paper, we discuss how the intuitive, data-
specific reasoning from above can be formalized.

3 Formal Framework

In this section, we remind the reader of RDF and SPARQL, and provide formal-
ization to our completeness problem.

RDF and SPARQL. Assume three pairwise disjoint infinite sets I (IRIs), L
(literals), and V (variables). A tuple (s, p, o) ∈ I × I × (I ∪ L) is called a triple,
while a finite set of triples is called an RDF graph.

The standard query language for RDF graphs is SPARQL [5]. At the core of
SPARQL lies triple patterns, which are like triples, but also variables are allowed
in each position. In this work, we focus on the conjunctive fragment of SPARQL,
which uses sets of triple patterns, called basic graph patterns (BGPs). Evaluating
a BGP P over G gives the set of mappings JP KG = {µ | µP ⊆ G and dom(µ) =
var(P ) }. Over P , we define a freeze mapping ĩd that maps each variable ?v
in P to a fresh IRI ṽ. From such a mapping, we construct the prototypical graph
P̃ := ĩdP that encodes any possible graph that can satisfy the BGP. A query
Q = (W,P ) projects the evaluation results of a BGP P to a set W of variables.
Moreover, a CONSTRUCT query has the abstract form (CONSTRUCT P1 P2) where
both P1 and P2 are BGPs. Evaluating a CONSTRUCT query over G results in a
graph where P1 is instantiated with all the mappings in JP2KG.



Enabling Fine-grained RDF Data Completeness Assessment 5

Completeness Statements. A completeness statement describes which parts of
an RDF graph are complete. We adopt the definition of completeness statements
in [3].

Definition 1 (Completeness Statement). A completeness statement C is
defined as Compl(PC) where PC is a non-empty BGP.

Example 1. The completeness statements in our motivating scenario are as fol-
lows: C1 = Compl({ (a99 , crew , ?c) }), C2 = Compl({ (tony , child , ?c) }), and
C3 = Compl({ (ted , child , ?c) }).

To serialize completeness statements in RDF, we refer the reader to [3]. Now,
let us define the semantics of completeness statements. First, we associate the
CONSTRUCT query QC = (CONSTRUCT PC PC) to each statement C. From now
on, we fix a graph G upon which we describe its completeness. Given a graph
G′ ⊇ G, we call (G,G′) an extension pair. In general, with no completeness
statement, every extension pair is a valid extension pair, that is, G′ is a possible
state of the ideal world where all the information is complete. For instance,
without completeness statement, in the motivating scenario, all of the following
would be valid extensions: That there are more crew members of A99; that Tony
has more children; and that Ted has children. Completeness statements restrict
the valid extensions of a graph.

Definition 2 (Valid Extension Pairs). Let G be a graph and C a complete-
ness statement. We say that an extension pair (G,G′) is valid wrt. C, written
(G,G′) |= C, if JQCKG′ ⊆ G.

The above definition naturally extends to sets of completeness statements.
Over a set C of completeness statements and a graph G, we define the transfer
operator TC(G) =

⋃
C∈CJQCKG. We have the following characterization: for all

extension pairs (G,G′), it is the case that (G,G′) |= C iff TC(G
′) ⊆ G.

Query Completeness. We write Compl(Q) to denote that a query Q is complete.
Over an extension pair, a query is complete iff it returns the same results over
both the graphs of the extension pair.

Definition 3 (Query Completeness). Let (G,G′) be an extension pair and
Q be a query. We define that: (G,G′) |= Compl(Q) iff JQKG′ = JQKG.4

Completeness Entailment We now define the main problem of our work, the
completeness entailment.

Definition 4 (Completeness Entailment). Given a set C of completeness
statements, a graph G, and a query Q, we define that C and G entail the
completeness of Q, written as C, G |= Compl(Q), if for all extension pairs
(G,G′) |= C, it holds that (G,G′) |= Compl(Q).

4 Since in this work we focus on conjunctive queries which are monotonic, the direction
JQKG′ ⊇ JQKG comes for free.



6 Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner Nutt

In our motivating scenario, we have seen that the graph about the crew
of A99 and the completeness statements there entail the completeness of the
query Q0 asking for the crew of A99 and their children.

In this work, we assume bag semantics for query evaluation, which is the
default of SPARQL.5 Consequently, this allows us to focus on the BGPs used in
the body of conjunctive queries for completeness entailment.

4 Checking Completeness Entailment

In this section, we present an algorithm for performing the completeness check
as demonstrated in our motivating scenario.

4.1 Preliminaries

Before presenting the algorithm, we introduce important notions.
First, we need to have a notion for a BGP with a stored mapping from

variable instantiations. Let P be a BGP and µ be a mapping such that dom(µ)∩
var(P ) = ∅. We define the pair (P, µ) as a partially mapped BGP, which is a BGP
with a stored mapping. Over a graph G, the evaluation of (P, µ) is defined as
J(P, µ)KG = {µ ∪ ν | ν ∈ JP KG }. It is easy to see that P ≡ (P, ∅). Furthermore,
we define the evaluation of a set of partially mapped BGPs over a graph G as
the union of evaluating each of them over G.

Example 2. Consider our motivating scenario. Over the BGP P0 of the query Q0,
instantiating the variable ?crew to tony results in the BGP P1 of the query Q1.
Pairing P1 with this instantiation gives the partially mapped BGP (P1, { ?crew 7→
tony }). Moreover, it is the case that J(P1, { ?crew 7→ tony })KG = { { ?crew 7→
tony, ?child 7→ toby } }.

Next, we would like to formalize the equivalence between partially mapped
BGPs wrt. a set C of completeness statements and a graph G.

Definition 5 (Equivalence under C and G). Let (P, µ) and (P ′, ν) be par-
tially mapped BGPs, C be a set of completeness statements, and G be a graph.
We define that (P, µ) is equivalent to (P ′, ν) wrt. C and G, written (P, µ) ≡C,G
(P ′, ν), if for all (G,G′) |= C, it holds that J(P, µ)KG′ = J(P ′, ν)KG′ .

The above definition naturally extends to sets of partially mapped BGPs.

Example 3. Consider all the queries in our motivating scenario. It is the case
that { (P0, ∅) } ≡C,G { (P1, { ?crew 7→ tony }), (P2, { ?crew 7→ ted }) } ≡C,G
{ (P3, { ?crew 7→ tony, ?child 7→ toby }) }.

Next, we would like to figure out which parts of a query contain variables
that can be instantiated completely. For this reason, we define

crucC,G(P ) = P ∩ ĩd
−1

(TC(P̃ ∪G))

5 http://www.w3.org/TR/sparql11-query/



Enabling Fine-grained RDF Data Completeness Assessment 7

as the crucial part of P wrt. C and G. It is the case that C, G |= Compl(crucC,G(P )),
that is, we are complete for the crucial part. Later on, we will see that the cru-
cial part is used to ‘guide’ the instantiation process during the completeness
entailment check.

Example 4. Consider the query Q0 = (W0, P0) in our motivating scenario. We

have that crucC,G(P0) = P0 ∩ ĩd
−1

(TC(P̃0 ∪ G)) = { (a99 , crew , ?crew) } with

ĩd = { ?crew 7→ c̃rew , ?child 7→ c̃hild }. Consequently, we can have a complete
instantiation of the crew of A99.

The operator below implements the instantiations of a partially mapped BGP
wrt. its crucial part.

Definition 6 (Equivalent Partial Grounding). Let C be a set of complete-
ness statements, G be a graph, and (P, ν) be a partially mapped BGP. We define
the operator equivalent partial grounding:

epg((P, ν), C, G) = { (µP, ν ∪ µ) | µ ∈ JcrucC,G(P )KG }.

The following lemma shows that such instantiations produce a set of partially
mapped BGPs equivalent to the original partially mapped BGP, hence the name
equivalent partial grounding. The lemma holds since the instantiation is done
over the crucial part, which is complete wrt. C and G.

Lemma 1 (Equivalent Partial Grounding). Let C be a set of completeness
statements, G be a graph, and (P, ν) be a partially mapped BGP. We have that

{ (P, ν) } ≡C,G epg((P, ν), C, G).

Example 5. Consider our motivating scenario. We have that:

– epg((P2, { ?crew 7→ ted }), C, G) = ∅
– epg((P3, { ?crew 7→ tony, ?child 7→ toby }), C, G) = {(P3, {?crew 7→ tony,

?child 7→ toby})}
– epg((P0, ∅), C, G) = { (P1, { ?crew 7→ tony }), (P2, { ?crew 7→ ted }) }

Generalizing from the example above, there are three cases of epg((P, ν), C, G):

– If JcrucC,G(P )KG = ∅, it returns an empty set.
– If JcrucC,G(P )KG = { ∅ }, it returns {(P, ν)}.
– Otherwise, it returns a non-empty set of partially mapped BGPs where some

variables in P are instantiated.

From these three cases and the finite number of triple patterns with variables
of a BGP, it holds that the repeated applications of the epg operator, with the
first and second cases above as the base cases, are terminating. Note that the
difference between these two base cases is on the effect of their corresponding
epg operations, as illustrated in Example 5: for the first case, the epg operation
returns an empty set, whereas for the second case, it returns back the input
partially mapped BGP.



8 Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner Nutt

We define that a partially mapped BGP (P, ν) is saturated wrt. C and G, if
epg((P, ν), C, G) = { (P, ν) }, that is, if the second case above applies. Note that
the notion of saturation is independent from the mapping in a partially mapped
BGP: given a mapping ν, a partially mapped BGP (P, ν) is saturated wrt. C
and G iff (P, ν′) is saturated wrt. C and G for any mapping ν′. Thus, wrt. C
and G we say that a BGP P is saturated if (P, ∅) is saturated.

The completeness checking of saturated BGPs is straightforward as we only
need to check if they are contained in the graph G.

Proposition 1 (Completeness Entailment of Saturated BGPs). Let P
be a BGP, C be a set of completeness statements, and G be a graph. Suppose P
is saturated wrt. C and G. Then, it is the case that: C, G |= Compl(P ) iff P̃ ⊆ G.

Based on the above notions, we are ready to provide an algorithm to check
completeness entailment. The next subsection gives the algorithm.

4.2 Algorithm for Checking Completeness Entailment

Now we introduce an algorithm to compute all saturated, equivalent partial
grounding results of a BGP wrt. C and G. Following from Proposition 1, we
can then check whether all the resulting saturated BGPs are contained in the
graph G to see if the completeness entailment holds.

ALGORITHM 1: sat(Porig, C, G)

Input: A BGP Porig, a set C of completeness statements, a graph G
Output: A set Ω of mappings

1 Pworking ← { (Porig, ∅) }
2 Ω ← ∅
3 while Pworking 6= ∅ do
4 (P, ν)← takeOne(Pworking)

5 Pequiv ← epg((P, ν), C, G)
6 if Pequiv = { (P, ν) } then
7 Ω ← Ω ∪ ν
8 else
9 Pworking ← Pworking ∪Pequiv

10 end

11 end
12 return Ω

Consider a BGP Porig, a set C of completeness statements, and a graph G.
The algorithm works as follows: First, we transform our original BGP Porig into
its equivalent partially mapped BGP (Porig, ∅) and put it in Pworking. Then,
in each iteration of the while loop, we take and remove a partially mapped
BGP (P, ν) from Pworking via the method takeOne. Afterwards, we compute
epg((P, ν), C, G). As discussed above there might be three result cases here: (i)
If epg((P, ν), C, G) = ∅, then simply we remove (P, ν) and will not consider it
anymore in the later iteration; (ii) If epg((P, ν), C, G) = { (P, ν) }, that is, (P, ν)
is saturated, then we collect the mapping ν to the set Ω; and (iii) otherwise,



Enabling Fine-grained RDF Data Completeness Assessment 9

we add to Pworking a set of partially mapped BGPs instantiated from (P, ν). We
keep iterating until Pworking = ∅, and finally return the set Ω.

The following proposition follows from the construction of the above algo-
rithm and Lemma 1.

Proposition 2. Given a BGP P , a set C of completeness statements, and a
graph G, the following properties hold:

– For all µ ∈ sat(P, C, G), it is the case that µP is saturated wrt. C and G.

– It holds that {(P, ∅)} ≡C,G { (µP, µ) | µ ∈ sat(P, C, G) }.

From the above proposition, we can derive the following theorem, which
shows the soundness and completeness of the algorithm to check completeness
entailment.

Theorem 1 (Completeness Entailment Check). Let P be a BGP, C be a
set of completeness statements, and G be a graph. It holds that

C, G |= Compl(P ) iff for all µ ∈ sat(P, C, G) . µ̃P ⊆ G.

Example 6. Consider our motivating scenario. We have that sat(P0, C, G) =
{ { ?crew 7→ tony, ?child 7→ toby } }. It is the case that for all µ ∈ sat(P0, C, G),

it holds that µ̃P0 ⊆ G. Thus, by Theorem 1 the entailment C, G |= Compl(P )
holds.

By reduction from validity of ∀∃3SAT formula, one can show that the com-
plexity of the completeness entailment is ΠP

2 -complete.

Corollary 1 (Complexity of Completeness Check). Deciding whether the
entailment C, G |= Compl(P ) holds, given a set C of completeness statements, a
graph G, and a BGP P , is ΠP

2 -complete.

In what follows, we provide optimization techniques for the algorithm, which
work for generic cases of completeness entailment.

Early failure detection. In our algorithm, the containment checks for saturated
BGPs are done at the end. Indeed, if there is a single saturated BGP not con-
tained in the graph, we cannot guarantee query completeness. Thus, instead of
having to collect all saturated BGPs and then check the containment later on,
we can improve the performance of the algorithm by performing the containment
check right after the saturation check (Line 6 of the algorithm). So, as soon as
there is a failure in the containment check, we stop the loop and conclude that
the completeness entailment does not hold.



10 Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner Nutt

Completeness skip. Recall the definition of the operator epg((P, ν), C, G) =
{ (µP, ν ∪ µ) | µ ∈ JcrucC,G(P )KG }, which relies on the cruc operator. Now,
suppose that crucC,G(P ) = P , that is, we are complete for the whole part of the
BGP P . Thus, we actually do not have to instantiate P in the epg operator, since
we know that the instantiation results are contained in G as the consequence of
it being complete wrt. C and G. In conclusion, whenever crucC,G(P ) = P , we
just remove (P, ν) from Pworking and thus skip its instantiations.

Despite these optimizations, for a large number of completeness statements,
the completeness entailment check may take long. In the next section, we identify
a practically relevant fragment of completeness statements, for which we develop
an indexing technique to make the entailment check feasible.

5 A Practical Fragment of Completeness Statements

This section identifies SP-statements, a fragment of completeness statements
possessing several properties that are suitable to be used in practice. In the next
sections, we show by experimental evaluations the feasibility of this fragment
with an indexing technique we describe below, and demonstrate a completeness
tool for Wikidata using the fragment.

5.1 SP-Statements

An SP-statement Compl({ (s, p, ?v) }) is a completeness statement with only
one triple pattern in the BGP of the statement, where the subject and the
predicate are IRIs, and the object is a variable.6 In our motivating scenario, all
the completeness statements are in fact SP-statements. The statements possess
the following properties, which are suitable for practical use:

– Having a simple structure, completeness statements within this fragment are
easy to create and to be read. Thus, they are suitable for crowdsourced KBs,
where humans are involved.

– An SP-statement denotes the completeness of all the property values of the
entity which is the subject of the statement. This fits entity-centric KBs like
Wikidata, where data is organized into entities (i.e., each entity has its own
data page).

– Despite their simplicity, SP-statements can be used to guarantee the com-
pleteness of more complex queries such as queries whose length is greater
than one (as illustrated by our motivating scenario).

5.2 SP-Indexing

We describe here how to optimize completeness entailment check with SP-
statements. Recall our generic algorithm to check completeness entailment: In

6 We do not allow the subject to be a variable as it is not practically reasonable (e.g.,
complete for all the entities and values of predicate child).



Enabling Fine-grained RDF Data Completeness Assessment 11

the cruc operator within the epg operator (Line 5 of Algorithm 1), we have to
compute TC(P̃ ∪ G), that is, evaluate all CONSTRUCT queries of the completeness
statements in C over the graph P̃ ∪ G. This may be problematic if there are
a large number of completeness statements in C. Thus, we want to avoid such
costly TC applications. Given that completeness statements are of the form SP-
statements, we may instead look for the statements having the same subject and
predicate of the triple patterns in the BGP. The crucial part of the BGP P wrt.
C and G are the triple patterns with the matching subject and predicate of the
completeness statements.

Proposition 3. Given a BGP P , a graph G, and a set C of SP-statements, it
is the case that
crucC,G(P ) = { (s, p, o) ∈ P | there exists a statement Compl({ (s, p, ?v) }) ∈ C }.

From the above proposition, to get the crucial part, we only have to find
an SP-statement with the same subject and predicate for each triple pattern of
the BGP. In practice, we can facilitate this search using a standard hashmap,
providing constant-time performance, also for other basic operations such as add
and delete. The hashmap provides a mapping from the concatenation of the
subject and the predicate of a statement to the statement itself. To illustrate,
the hashmap of the completeness statements in our motivating scenario is as
follows: { a99-crew 7→ C1, tony-child 7→ C2, ted-child 7→ C3 }.

6 Experimental Evaluation

Now that we have an indexing technique for SP-statements, we want to see the
performance of completeness check. To do so, we perform experimental evalua-
tions with a realistic scenario, where we compare the runtime of completeness
entailment when query completeness can be guaranteed (i.e., the success case),
completeness entailment when query completeness cannot be guaranteed (i.e.,
the failure case), and query evaluation.

Experimental Setup. Our reasoning algorithm and indexing modules are imple-
mented in Java using the Apache Jena library.7 We use Jena-TDB as the triple
store of our experiment. The SP-indexing is implemented using the standard
Java hashmap, where the keys are strings, constructed from the concatenation of
the subject and predicate of completeness statements, and the values are Java
objects representing completeness statements. All experiments are done on a
standard laptop with a 2.4 GHz Intel Core i5 and 8 GB of memory.

To perform the experiment, we need three ingredients: a graph, completeness
statements, and queries. For the graph, we use the direct-statement fragment of
the Wikidata graph, which does not include qualifiers nor references and consists
of 100 mio triples.8 The completeness statements and queries of this experiment
are constructed based on the following pattern queries:

7 https://jena.apache.org/
8 http://tools.wmflabs.org/wikidata-exports/rdf/index.php?content=dump_

download.php&dump=20151130



12 Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner Nutt

1. Give all mothers of mothers of mothers.
P1 = { (?v ,P25 , ?w), (?w ,P25 , ?x ), (?x ,P25 , ?y) }

2. Give the crew of a thing, the astronaut missions of that crew, and the oper-
ator of the missions.
P2 = { (?v ,P1029 , ?w), (?w ,P450 , ?x ), (?x ,P137 , ?y) }

3. Give the administrative divisions of a thing, the administrative divisions of
those divisions, and their area.
P3 = { (?v ,P150 , ?w), (?w ,P150 , ?x ), (?x ,P2046 , ?y) }

To generate queries, we simply evaluate each pattern query over the graph,
and instantiate the variable ?v of each pattern query with the corresponding
mappings from the evaluation. We record 5200 queries instantiated from P1, 57
queries from P2, and 475 queries from P3. Each pattern query has a different
average number of query results: the instantiations of P1 give 1 result, those
of P2 give 4 results, and those of P3 give 108 results on average.

To generate completeness statements, from each generated query, we itera-
tively evaluate each triple pattern from left to right, and construct SP-statements
from the instantiated subject and the predicate of the triple patterns. This way,
we guarantee that all the queries can be answered completely. We generate in
total around 1.7 mio statements, with 30072 statements for P1, 484 statements
for P2, and 1682263 statements for P3. Such a large number of completeness
statements would make completeness checks without indexing very slow: Per-
forming just a single application of the TC operator with all these statements,
which occurs in the cruc operator of the algorithm without SP-indexing, took
about 20 minutes. Note that in a completeness check, there might be many TC
applications.

Now we describe how to observe the behavior when queries cannot be guaran-
teed to be complete, that is, the failure case. In this case, we drop randomly 20%
of the completeness statements for each pattern query. To make up the state-
ments we drop, we add dummy statements with the number equal to the number
of dropped statements. This way, we ensure the same number of completeness
statements for both the success and failure case.

For each query pattern, we measure the runtime of completeness check for
both the success case and the failure case, and then query evaluation for the
success case.9 We take 40 sample queries for each pattern query, repeat each run
10 times, and report the median of these runs.

Experimental Results. The experimental results are shown in Figure 2. Note that
the runtime is in log scale. We can see that in all cases, the runtime increases
with the first pattern query having the lowest runtime, and the third pattern
query having the highest runtime. This is likely due to the increased number of
query results. We observe that in all pattern queries, completeness check when
queries are guaranteed to be complete is slower than those whose completeness
cannot be guaranteed. We suspect that this is because in the former case, variable

9 We do not measure query evaluation time for failure case since query evaluation is
independent of the completeness of the query.



Enabling Fine-grained RDF Data Completeness Assessment 13

1 2 3

102

103

104

Pattern Query

R
u
n
ti

m
e

in
µ

s

Success Case Failure Case Query Evaluation

Fig. 2. Experiment Results of Completeness Entailment

instantiations have to be performed much more than in the latter case. In the
latter case, as also described in Subsection 4.2, as soon as we find a saturated
BGP not contained in the graph, we stop the loop in the algorithm and return
false, meaning that the query completeness cannot be guaranteed.

In absolute scale, completeness check runs relatively fast, with 796 µs for P1,
5264 µs for P2, and 35130 µs for P3 in success case; and 485 µs for P1, 903
µs for P2, and 1209 µs for P3 in failure case. Note that as mentioned before,
completeness check without indexing is not feasible at all here, as there are a
large number of completeness statements, making the TC application very slow
(i.e., 20 minutes for a single application). For all pattern queries, however, query
evaluation runs faster than completeness checking. This is because completeness
checking may involve several query evaluations during the instantiation process
with the epg operator.

To conclude, we have observed that completeness checking with a large num-
ber of SP-statements can be done reasonably fast, even for large datasets, by the
employment of indexing. Also, we observe a clear positive correlation between
the number of query results and the runtime of completeness checking. Last,
performing completeness check when a query is complete is slower than that
when a query cannot be guaranteed to be complete.

7 COOL-WD: A Completeness Tool for Wikidata

In this section, we introduce COOL-WD, a COmpleteness toOL for WikiData.
The tool implements our completeness framework with SP-statements and fo-
cuses to provide completeness information for direct statements of Wikidata.
While our implementation is based on Apache Jena, our approach can be ap-
plied also via other Semantic Web frameworks like Sesame.10 Our tool is inspired
by real, natural language completeness statements on Wikipedia, where com-

10 http://rdf4j.org/



14 Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner Nutt

Fig. 3. COOL-WD Architecture

pleteness statements are given in a crowdsourced way.11 The tool is available at
http://cool-wd.inf.unibz.it/.

7.1 System Architecture

As shown in Figure 3, COOL-WD consists of three main components: user in-
terface (UI), COOL-WD engine, and Wikidata-backend.

The first component is the UI, developed using GWT.12 The UI provides
the front-end interface for COOL-WD users, enabling them to search for Wiki-
data entities, look at facts about them enriched with completeness information,
add/remove completeness statements, and check the completeness of a Wikidata
query.

The second component is the engine, responsible for storing completeness
statements using SQLite and performing completeness checks. We use optimiza-
tion techniques as described in Subsection 4.2 and SP-indexing as described in
Section 5 to improve the performance of completeness checks.

The last component is the Wikidata-backend. It consists of two subcompo-
nents: Wikidata API and Wikidata SPARQL endpoint. The API is used for
the suggestions feature in searching for Wikidata entities, while the Wikidata
SPARQL endpoint serves as the source of Wikidata facts to which completeness
statements are given, and of query evaluation.

7.2 Tool Usage

Here, we describe how one can use COOL-WD. From the landing page, the user
is provided with a search bar for Wikidata entities. The search bar features auto-
complete search suggestions, matching user keywords with the English labels of
Wikidata entities. Clicking on a search suggestion gives the users the entity page,
consisting of Wikidata facts about the entity with its completeness information.

11 https://en.wikipedia.org/wiki/Template:Complete_list
12 http://www.gwtproject.org/



Enabling Fine-grained RDF Data Completeness Assessment 15

Fig. 4. The COOL-WD page of Apollo 11. Complete property values are with check-
marks.

An example is shown in Figure 4, which is the Apollo 11 page with the com-
plete crew. Complete properties are distinguished by the checkmark symbol. To
add a completeness statement, a user simply clicks a question mark next to
the respective properties of an entity. Additionally, it is possible to add prove-
nance information about authors, timestamps, and references of the statement.
Suppose the user would also like to add completeness statements for the astro-
naut missions of Neil Armstrong, Buzz Aldrin, and Michael Collins. Therefore,
she may perform an analogous operation: go to the entity pages, and click the
question mark next to the respective properties. We also have a feature to see
all stored completeness statements over Wikidata filtered by properties on the
aggregation page.

If a user would like to evaluate a query and check its completeness, she has to
go to the query page. Suppose she wants to know the crew of Apollo 11 and their
astronaut missions. The user then specifies her query, and executes it. Instead
of having only query answers, she can also see the completeness information of
the answers.

8 Related Work

Data completeness concerns the breadth, depth, and scope of information [6].
In the relational databases, Motro [7] and Levy [8] were among the first to
investigate data completeness. Motro developed a sound technique to check query
completeness based on database views, while Levy introduced the notion of
local completeness statements to denote which parts of a database are complete.
Razniewski and Nutt [9] further extended their results by reducing completeness
reasoning to containment checking, for which many algorithms are known, and
characterizing the complexity of reasoning for different classes of queries. In
terms of their terminology, our completeness entailment problem is one of QC-
QC entailment under bag semantics, for which so far it was only known that it is
in ΠP

3 [10]. In [4], Razniewski et al. proposed completeness patterns and defined



16 Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner Nutt

a pattern algebra to check the completeness of queries. The work incorporated
database instances, yet provided only a sound algorithm for completeness check.

We now move on to the Semantic Web. Fürber and Hepp [11] distinguished
three types of completeness: ontology completeness, concerning which ontology
classes and properties are represented; population completeness, referring to
whether all objects of the real-world are represented; and property completeness,
measuring the missing values of a specific property. In our work, SP-statements
can be used to state the property completeness of an entity. Mendes et al. [12]
proposed Sieve, a framework for expressing quality assessment and fusion meth-
ods, where completeness is also considered. With Sieve, users can specify how to
compute quality scores and express a quality preference specifying which char-
acteristics of data indicate higher quality. In the context of crowdsourcing, Chu
et al. [13] developed KATARA, a hybrid data cleaning system, which not only
cleans data, but may also add new facts to increase the completeness of the
KB; whereas Acosta et al. [14] developed HARE, a hybrid SPARQL engine to
enhance answer completeness.

Galárraga et al. [15] proposed a rule mining system that is able to operate
under the Open-World Assumption (OWA) by simulating negative examples
using the Partial Completeness Assumption (PCA). The PCA assumes that if
the dataset knows some r-attribute of x, then it knows all r-attributes of x. This
heuristic was also employed by Dong et al. [16] to develop Knowledge Vault, a
Web-scale system for probabilistic knowledge fusion. In their paper, they used
the term Local Closed-World Assumption (LCWA).

9 Discussion

We discuss here various aspects of our work: sources of completeness statements,
completeness statements with provenance, and no-value information.

Sources of Completeness Statements. As demonstrated by COOL-WD, one way
to provide completeness statements is via crowdsourcing. For domain-specific
data like biology and archeology, domain experts may be a suitable source of
completeness statements. An automated way to add completeness statements
can also be leveraged by using NLP techniques to extract natural language com-
pleteness statements already available on the Web: around 13000 Wikipedia
pages contain the keywords “complete list of” and “list is complete”, while IMDb
provides complete cast information with the keywords “verified as complete” for
some movies like Reservoir Dogs.13

Completeness Statements with Provenance. Just as data can be wrong, com-
pleteness statements can be wrong, too. Moreover, as data may change over
time, completeness statements can be out-of-date. As a possible solution, one
can add provenance information. Adding information about the author and ref-
erence of completeness statements may be useful to check the correctness of the

13 http://www.imdb.com/title/tt0105236/fullcredits



Enabling Fine-grained RDF Data Completeness Assessment 17

statements, while attaching timestamps would provide timeliness information to
the statements.

No-Value Information. Completeness statements can also be used to represent
the non-existence of information. For example, in our motivating scenario, there
is the completeness statement about the children of Ted with no corresponding
data in the graph. In this case, we basically say that Ted has no children. As
a consequence of having no-value information, we can be complete for queries
despite having the empty answer. Such a feature is similar to that proposed
in [17]. The only difference is that here we need to pair completeness statements
with a graph that has no corresponding data captured by the statements, while
in that work, no-value statements are used to directly say that some parts of
data do not exist.

10 Conclusions and Future Work

The availability of an enormous amount of RDF data calls for better data quality
management. In this work, we focus on the data quality aspect of completeness.
We develop a technique to check query completeness based on RDF data with its
completeness information. To increase the practical benefits of our framework,
we identify a practically relevant fragment of completeness information upon
which an indexing can be implemented to optimize completeness check, and
develop COOL-WD, a completeness management tool for Wikidata.

For future work, we would like to investigate indexing techniques for more
general cases. One challenge here is that how to index the arbitrary structure
of completeness statements. Another plan is to develop a technique to extract
completeness statements on the Web. To do so, we in particular want to detect if
a Web page contains completeness statements in natural language, and transform
them into RDF-based completeness statements. Last, we also want to increase
the expressivity of queries, say, to also handle negations. Queries with negations
are especially interesting since negation naturally needs complete information to
work correctly.

Acknowledgments

We would like to thank Sebastian Rudolph for his feedback on an earlier version of this

paper. The research was supported by the projects “CANDy: Completeness-Aware

Querying and Navigation on the Web of Data” and “TaDaQua - Tangible Data Qual-

ity with Object Signatures” of the Free University of Bozen-Bolzano, and “MAGIC:

Managing Completeness of Data” of the province of Bozen-Bolzano.

References

1. Patrick J. Hayes and Peter F. Patel-Schneider, editors. RDF 1.1 Semantics. W3C
Recommendation, 25 February 2014.



18 Fariz Darari, Simon Razniewski, Radityo Eko Prasojo, Werner Nutt

2. Denny Vrandecic and Markus Krötzsch. Wikidata: A Free Collaborative Knowl-
edgebase. Commun. ACM, 57(10):78–85, 2014.

3. Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon Razniewski. Completeness
Statements about RDF Data Sources and Their Use for Query Answering. In
ISWC 2013, pages 66–83. Springer Berlin Heidelberg, 2013.

4. Simon Razniewski, Flip Korn, Werner Nutt, and Divesh Srivastava. Identifying
the Extent of Completeness of Query Answers over Partially Complete Databases.
In ACM SIGMOD 2015, pages 561–576, 2015.

5. Steve Harris and Andy Seaborne, editors. SPARQL 1.1 Query Language. W3C
Recommendation, 21 March 2013.

6. Richard Y. Wang and Diane M. Strong. Beyond Accuracy: What Data Quality
Means to Data Consumers. J. of Management Information Systems, 12(4):5–33,
1996.

7. Amihai Motro. Integrity = Validity + Completeness. ACM Trans. Database Syst.,
14(4), 1989.

8. Alon Y. Levy. Obtaining Complete Answers from Incomplete Databases. In VLDB
1996, pages 402–412, 1996.

9. Simon Razniewski and Werner Nutt. Completeness of Queries over Incomplete
Databases. PVLDB, 4(11):749–760, 2011.

10. Simon Razniewski and Werner Nutt. Assessing Query Completeness over Incom-
plete Databases. In VLDB Journal (submitted).

11. Christian Fürber and Martin Hepp. SWIQA - a Semantic Web Information Quality
Assessment Framework. In ECIS 2011, 2011.

12. Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer. Sieve: Linked Data
Quality Assessment and Fusion. In EDBT/ICDT Workshops, pages 116–123, 2012.

13. Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. KATARA: A data cleaning system powered by knowledge bases and
crowdsourcing. In ACM SIGMOD 2015, pages 1247–1261, 2015.

14. Maribel Acosta, Elena Simperl, Fabian Flöck, and Maria-Esther Vidal. HARE: A
hybrid SPARQL engine to enhance query answers via crowdsourcing. In K-CAP
2015, pages 11:1–11:8, 2015.

15. Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek.
AMIE: Association Rule Mining under Incomplete Evidence in Ontological Knowl-
edge Bases. In WWW 2013, pages 413–422, 2013.

16. Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: a web-scale
approach to probabilistic knowledge fusion. In ACM SIGKDD 2014, pages 601–
610, 2014.

17. Fariz Darari, Radityo Eko Prasojo, and Werner Nutt. Expressing No-Value Infor-
mation in RDF. In ISWC Posters and Demos, 2015.


