
Databases under the Partial Closed-world Assumption:
A Survey

Simon Razniewski
Free University of Bozen-Bolzano

Dominikanerplatz 3
39100 Bozen, Italy

razniewski@inf.unibz.it

Werner Nutt
Free University of Bozen-Bolzano

Dominikanerplatz 3
39100 Bozen, Italy
nutt@inf.unibz.it

ABSTRACT
Databases are traditionally considered either under the closed-
world or the open-world assumption. In some scenarios how-
ever a middle ground, the partial closed-world assumption,
is needed, which has received less attention so far.

In this survey we review foundational and work on the
partial closed-world assumption and then discuss work done
in our group in recent years on various aspects of reasoning
over databases under this assumption.

We first discuss the conceptual foundations of this assump-
tion. We then list the main decision problems and the known
results. Finally, we discuss implementational approaches and
extensions.

1. INTRODUCTION
Data completeness is an important aspect of data quality.

Traditionally, it is assumed that a database reflects exactly
the state of affairs in an application domain, that is, a fact
that is true in the real world is stored in the database, and a
fact that is missing in the database does not hold in the real
world. This is known as the closed-world assumption (CWA).
Later approaches have discussed the meaning of databases
that are missing facts that hold in the real world and thus
are incomplete. This is called the open-world assumption
(OWA) [16, 7].

A middle view, which we call the partial closed-world as-
sumption (PCWA), has received less attention until recently.
Under the PCWA, some parts of the database are assumed
to be closed (complete), while others are assumed to be open
(possibly incomplete). So far, the former parts were specified
using completeness statements, while the latter parts are the
complement of the complete parts.

Example. As an example, consider a problem arising in the
management of school data in the province of Bolzano, Italy,
which motivated the technical work reported here. The IT
department of the provincial school administration runs a
database for storing school data, which is maintained in a de-

Copyright c© by the paper’s authors. Copying permitted only for
private and academic purposes.
In: G. Specht, H. Gamper, F. Klan (eds.): Proceedings of the 26th GI-
Workshop on Foundations of Databases (Grundlagen von Datenbanken),
21.10.2014 - 24.10.2014, Bozen, Italy, published at http://ceur-ws.org.

centralized manner, as each school is responsible for its own
data. Since there are numerous schools in this province, the
overall database is notoriously incomplete. However, peri-
odically the statistics department of the province queries the
school database to generate statistical reports. These statistics
are the basis for administrative decisions such as the opening
and closing of classes, the assignment of teachers to schools
and others. It is therefore important that these statistics are
correct. Therefore, the IT department is interested in finding
out which data has to be complete in order to guarantee cor-
rectness of the statistics, and on which basis the guarantees
can be given.

Broadly, we investigated the following research questions:

1. How to describe complete parts of a database?

2. How to find out, whether a query answer over a par-
tially closed database is complete?

3. If a query answer is not complete, how to find out which
kind of data can be missing, and which similar queries
are complete?

Work Overview. The first work on the PCWA is from
Motro [10]. He used queries to describe complete parts and
introduced the problem of inferring the completeness of other
queries (QC) from such completeness statements. Later work
by Halevy [8] introduced tuple-generating dependencies or
table completeness (TC) statements for specification of com-
plete parts. A detailed complexity study of TC-QC entailment
was done by Razniewski and Nutt [13].

Later work by Razniewski and Nutt has focussed on databases
with null values [12] and geographic databases [14].

There has also been work on RDF data [3]. Savkovic
et al. [18, 17] have focussed on implementation techniques,
leveraging especially on logic programming.

Also the derivation of completeness from data-aware busi-
ness process descriptions has been discussed [15].

Current work is focussing on reasoning wrt. database in-
stances and on queries with negation [4].

Outline. This paper is structured as follows. In Section 2,
we discuss conceptual foundations, in particular the par-
tial closed-world assumption. In Section 3 we present main
reasoning problems in this framework and known results.
Section 4 discusses implementation techniques. Section 5
presents extension and Section 6 discusses current work and
open problems.



2. CONCEPTUAL FOUNDATIONS

2.1 Standard Definitions
In the following, we fix our notation for standard concepts

from database theory. We assume a set of relation symbols
Σ, the signature. A database instance D is a finite set of ground
atoms with relation symbols from Σ. For a relation symbol
R ∈ Σ we write R(D) to denote the interpretation of R in D, that
is, the set of atoms in D with relation symbol R. A condition
G is a set of atoms using relations from Σ and possibly the
comparison predicates < and ≤. As common, we write a
condition as a sequence of atoms, separated by commas. A
condition is safe if each of its variables occurs in a relational
atom. A conjunctive query is written in the form Q(s̄) :−B,
where B is a safe condition, s̄ is a vector of terms, and every
variable in s̄ occurs in B. We often refer to the entire query
by the symbol Q. As usual, we call Q(s̄) the head, B the
body, the variables in s̄ the distinguished variables, and the
remaining variables in B the nondistinguished variables of Q.
We generically use the symbol L for the subcondition of B
containing the relational atoms and M for the subcondition
containing the comparisons. If B contains no comparisons,
then Q is a relational conjunctive query.

The result of evaluating Q over a database instance D is
denoted as Q(D). Containment and equivalence of queries
are defined as usual. A conjunctive query is minimal if no
relational atom can be removed from its body without leading
to a non-equivalent query.

2.2 Running Example
For our examples throughout the paper, we will use a dras-

tically simplified extract taken from the schema of the Bolzano
school database, containing the following two tables:

- student(name, level, code),
- person(name, gender).

The table student contains records about students, that is,
their names and the level and code of the class we are in.
The table person contains records about persons (students,
teachers, etc.), that is, their names and genders.

2.3 Completeness
Open and closed world semantics were first discussed by

Reiter in [16], where he formalized earlier work on negation
as failure [2] from a database point of view. The closed-world
assumption corresponds to the assumption that the whole
database is complete, while the open-world assumption cor-
responds to the assumption that nothing is known about the
completeness of the database.

Partial Database. The first and very basic concept is that
of a partially complete database or partial database [10]. A
database can only be incomplete with respect to another
database that is considered to be complete. So we model a
partial database as a pair of database instances: one instance
that describes the complete state, and another instance that
describes the actual, possibly incomplete state. Formally, a
partial database is a pairD = (Di,Da) of two database instances
Di and Da such that Da

⊆ Di. In the style of [8], we call Di

the ideal database, and Da the available database. The require-
ment that Da is included in Di formalizes the intuition that
the available database contains no more information than the
ideal one.

Example 1. Consider a partial database DS for a school with
two students, Hans and Maria, and one teacher, Carlo, as follows:

Di
S = {student(Hans, 3, A), student(Maria, 5, C),

person(Hans, male), person(Maria, female),
person(Carlo, male) },

Da
S = Di

S \ { person(Carlo, male), student(Maria, 5, C) },

that is, the available database misses the facts that Maria is a student
and that Carlo is a person.

Next, we define statements to express that parts of the in-
formation in Da are complete with regard to the ideal database
Di. We distinguish query completeness and table complete-
ness statements.

Query Completeness. For a query Q, the query completeness
statement Compl(Q) says that Q can be answered completely
over the available database. Formally, Compl(Q) is satisfied by
a partial database D, denoted as D |= Compl(Q), if Q(Da) =
Q(Di).

Example 2. Consider the above defined partial databaseDS and
the query

Q1(n) :− student(n, l, c), person(n, ’male’),

asking for all male students. Over both, the available database Da
S

and the ideal database Di
S, this query returns exactly Hans. Thus,

DS satisfies the query completeness statement for Q1, that is,

DS |= Compl(Q1).

Abiteboul et al. [1] introduced the notion of certain and
possible answers over databases under the open-world as-
sumption. Query completeness can also be seen as a relation
between certain and possible answers: A query over a par-
tially complete database is complete, if the certain and the
possible answers coincide.

Table completeness. A table completeness (TC) statement
allows one to say that a certain part of a relation is com-
plete, without requiring the completeness of other parts of
the database [8]. It has two components, a relation R and
a condition G. Intuitively, it says that all tuples of the ideal
relation R that satisfy condition G in the ideal database are
also present in the available relation R.

Formally, let R(s̄) be an R-atom and let G be a condition
such that R(s̄),G is safe. We remark that G can contain re-
lational and built-in atoms and that we do not make any
safety assumptions about G alone. Then Compl(R(s̄); G) is a
table completeness statement. It has an associated query, which
is defined as QR(s̄);G(s̄) :−R(s̄),G. The statement is satisfied
by D = (Di,Da), written D |= Compl(R(s̄); G), if QR(s̄);G(Di) ⊆
R(Da). Note that the ideal instance D̂ is used to determine
those tuples in the ideal version R(Di) that satisfy G and that
the statement is satisfied if these tuples are present in the
available version R(Da). In the sequel, we will denote a TC
statement generically as C and refer to the associated query
simply as QC.

If we introduce different schemas Σi and Σa for the ideal
and the available database, respectively, we can view the
TC statement C = Compl(R(s̄); G) equivalently as the TGD (=
tuple-generating dependency) δC : Ri(s̄),Gi

→ Ra(s̄) from Σi to



Σa. It is straightforward to see that a partial database satisfies
the TC statement C if and only if it satisfies the TGD δC.

The view of TC statements is especially useful for imple-
mentations.

Example 3. In the partial database DS defined above, we can
observe that in the available relation person, the teacher Carlo is
missing, while all students are present. Thus, person is complete
for all students. The available relation student contains Hans, who
is the only male student. Thus, student is complete for all male
persons. Formally, these two observations can be written as table
completeness statements:

C1 = Compl(person(n, g); student(n, l, c)),
C2 = Compl(student(n, l, c); person(n, ’male’)),

which, as seen, are satisfied by the partial databaseDS.

One can prove that table completeness cannot be expressed
by query completeness statements, because the latter require
completeness of the relevant parts of all the tables that ap-
pear in the statement, while the former only talks about the
completeness of a single table.

Example 4. As an illustration, consider the table completeness
statement C1 that states that person is complete for all students. The
corresponding query QC1 that asks for all persons that are students
is

QC1 (n, g) :− person(n, g), student(n, l, c).

Evaluating QC1 over Di
S gives the result {Hans, Maria }. However,

evaluating it over Da
S returns only {Hans }. Thus, DS does not

satisfy the completeness of the query QC1 although it satisfies the
table completeness statement C1.

Reasoning. As usual, a set S1 of TC- or QC-statements en-
tails another setS2 (we writeS1 |= S2) if every partial database
that satisfies all elements ofS1 also satisfies all elements ofS2.

Example 5. Consider the query Q(n) :− student(n, 7, c),
person(n,′male′) that asks for all male students in level 7. The
TC statements C1 and C2 entail completeness of this query, because
we ensure that all persons that are students and all male students
are in the database. Note that these are not the minimal precon-
ditions, as it would be enough to only have male persons in the
database who are student in level 7, and students in level 7, who
are male persons.

While TC statements are a natural way to describe com-
pleteness of available data (“These parts of the data are com-
plete”), QC statements capture requirements for data qual-
ity (“For these queries we need complete answers”). Thus,
checking whether a set of TC statements entails a set of
QC statements (TC-QC entailment) is the practically most
relevant inference. Checking TC-TC entailment is useful
when managing sets of TC statements. Moreover, as we
will show later on, TC-QC entailment for aggregate queries
with count and sum can be reduced to TC-TC entailment for
non-aggregate queries. If completeness guarantees are given
in terms of query completeness, also QC-QC entailment is of
interest.

3. CHARACTERIZATIONS AND DECISION
PROCEDURES

Motro [10] introduced the notion of partially incomplete
and incorrect databases as databases that can both miss facts
that hold in the real world or contain facts that do not hold
there. He described partial completeness in terms of query
completeness (QC) statements, which express that the answer
of a query is complete. The query completeness statements
express that to some parts of the database the closed-world
assumption applies, while for the rest of the database, the
open-world assumption applies. He studied how the com-
pleteness of a given query can be deduced from the com-
pleteness of other queries, which is QC-QC entailment. His
solution was based on rewriting queries using views: to infer
that a given query is complete whenever a set of other queries
are complete, he would search for a conjunctive rewriting in
terms of the complete queries. This solution is correct, but
not complete, as later results on query determinacy show:
the given query may be complete although no conjunctive
rewriting exists.

While Levy et al. could show that rewritability of conjunc-
tive queries as conjunctive queries is decidable [9], general
rewritability of conjunctive queries by conjunctive queries is
still open: An extensive discussion on that issue was pub-
lished in 2005 by Segoufin and Vianu where it is shown that
it is possible that conjunctive queries can be rewritten using
other conjunctive queries, but the rewriting is not a conjunc-
tive query [19]. They also introduced the notion of query
determinacy, which for conjunctive queries implies second
order rewritability. The decidability of query determinacy
for conjunctive queries is an open problem to date.

Halevy [8] suggested local completeness statements, which
we, for a better distinction from the QC statements, call table
completeness (TC) statements, as an alternate formalism for
expressing partial completeness of an incomplete database.
These statements allow one to express completeness of parts
of relations independent from the completeness of other parts
of the database. The main problem he addressed was how to
derive query completeness from table completeness (TC-QC).
He reduced TC-QC to the problem of queries independent
of updates (QIU) [5]. However, this reduction introduces
negation, and thus, except for trivial cases, generates QIU
instances for which no decision procedures are known. As
a consequence, the decidability of TC-QC remained largely
open. Moreover, he demonstrated that by taking into ac-
count the concrete database instance and exploiting the key
constraints over it, additional queries can be shown to be
complete.

Razniewski and Nutt provided decision procedures for TC-
QC in [13]. They showed that for queries under bag semantics
and for minimal queries under set semantics, weakest precon-
ditions for query completeness can be expressed in terms of
table completeness statements, which allow to reduce TC-QC
entailment to TC-TC entailment.

For the problem of TC-TC entailment, they showed that it
is equivalent to query containment.

For QC-QC entailment, they showed that the problem is
decidable for queries under bag semantics.

For aggregate queries, they showed that for the aggregate
functions SUM and COUNT, TC-QC has the same complexity
as TC-QC for nonaggregate queries under bag semantics. For
the aggregate functions MIN and MAX, they showed that



Problem Work by Results

QC-QC Motro 1989 Query rewritability is a sufficient
condition for QC-QCs

Razniewski/Nutt
2011

QC-QCb is equivalent to query
containment

TC-TC Razniewski/Nutt
2011

TC-TC is equivalent to query
containment

TC-QC
Levy 1996 Decision procedure for trivial cases

Razniewski/Nutt
2011

TC-QCb is equivalent to TC-TC,
TC-QCs is equivalent to TC-TC up

to asymmetric cases
Razniewski/Nutt

2012
Decision procedures for TC-QCs

over databases with nulls

Table 1: Main results

TC-QC has the same complexity as TC-QC for nonaggregate
queries under set semantics.

For reasoning wrt. a database instance, they showed that
TC-QC becomes computationally harder than without an in-
stance, while QC-QC surprisingly becomes solvable, whereas
without an instance, decidability is open.

In [12], Nutt and Razniewski discussed TC-QC entailment
reasoning over databases that contain null values. Null val-
ues as used in SQL are ambiguous, as they can indicate either
that no attribute value exists or that a value exists, but is un-
known. Nutt and Razniewski studied completeness reason-
ing for both interpretations, and showed that when allowing
both interpretations at the same time, it becomes necessary to
syntactically distinguish between different kinds of null val-
ues. They presented an encoding for doing that in standard
SQL databases. With this technique, any SQL DBMS evalu-
ates complete queries correctly with respect to the different
meanings that null values can carry.

The main results are summarized in Table 1.

4. IMPLEMENTATION TECHNIQUES
Systems for reasoning can be developed from scratch, how-

ever it may be useful to implement them using existing tech-
nology as far as possible. So far, it was investigated how
completeness reasoning can be reduced to answer set pro-
gramming, in particular using the DLV system.

The MAGIK system developed by Savkovic et al. [18]
demonstrates how to use meta-information about the com-
pleteness of a database to assess the quality of the answers
returned by a query. The system holds table-completeness
(TC) statements, by which one can express that a table is par-
tially complete, that is, it contains all facts about some aspect
of the domain.

Given a query, MAGIK determines from such meta-
information whether the database contains sufficient data
for the query answer to be complete (TC-QC entailment).
If, according to the TC statements, the database content is
not sufficient for a complete answer, MAGIK explains which
further TC statements are needed to guarantee completeness.

MAGIK extends and complements theoretical work on
modeling and reasoning about data completeness by provid-
ing the first implementation of a reasoner. The reasoner op-
erates by translating completeness reasoning tasks into logic
programs, which are executed by an answer set engine.

In [17], Savkovic et al. present an extension to MAGIK

that computes for a query that may be incomplete, complete
approximations from above and from below. With this exten-
sion, they show how to reformulate the original query in such
a way that answers are guaranteed to be complete. If there
exists a more general complete query, there is a unique most
specific one, which is found. If there exists a more specific
complete query, there may even be infinitely many. In this
case, the least specific specializations whose size is bounded
by a threshold provided by the user is found. Generalizations
are computed by a fixpoint iteration, employing an answer set
programming engine. Specializations are found leveraging
unification from logic programming.

5. EXTENSIONS AND APPLICATIONS SCE-
NARIOS

Complete generalizations and specializations. When a
query is not guaranteed to be complete, it may be interesting
to know which similar queries are complete. For instance,
when a query for all students in level 5 is not complete, it
may still be the case that the query for students in classes 5b
and 5c is complete. Such information is especially interesting
for interaction with a completeness reasoning system. In [11],
Savkovic et al. defined the notion of most general complete
specialization and the most specific comple generalization,
and discussed techniques to find those.

Completeness over Business Processes. In many appli-
cations, data is managed via well documented processes. If
information about such processes exists, one can draw con-
clusions about completeness as well. In [15], Razniewski et
al. presented a formalization of so-called quality-aware pro-
cesses that create data in the real world and store it in the
company’s information system possibly at a later point. They
then showed how one can check the completeness of database
queries in a certain state of the process or after the execution
of a sequence of actions, by leveraging on query contain-
ment, a well-studied problem in database theory. Finally,
they showed how the results can be extended to the more
expressive formalism of colored Petri nets.

Spatial Data. Volunteered geographical information sys-
tems are gaining popularity. The most established one is
OpenStreetMap (OSM), but also classical commercial map
services such as Google Maps now allow users to take part in



the content creation.
Assessing the quality of spatial information is essential for

making informed decisions based on the data, and particu-
larly challenging when the data is provided in a decentral-
ized, crowd-based manner. In [14], Razniewski and Nutt
showed how information about the completeness of features
in certain regions can be used to annotate query answers with
completeness information. They provided a characterization
of the necessary reasoning and show that when taking into
account the available database, more completeness can be de-
rived. OSM already contains some completeness statements,
which are originally intended for coordination among the ed-
itors of the map. A contribution was also to show that these
statements are not only useful for the producers of the data
but also for the consumers.

RDF Data. With thousands of RDF data sources today avail-
able on the Web, covering disparate and possibly overlapping
knowledge domains, the problem of providing high-level de-
scriptions (in the form of metadata) of their content becomes
crucial. In [3], Darari et al. discussed reasoning about the
completeness of semantic web data sources. They showed
how the previous theory can be adapted for RDF data sources,
what peculiarities the SPARQL query language offers and
how completeness statements themselves can be expressed
in RDF.

They also discussed the foundation for the expression of
completeness statements about RDF data sources. This al-
lows to complement with qualitative descriptions about com-
pleteness the existing proposals like VOID that mainly deal
with quantitative descriptions. The second aspect of their
work is to show that completeness statements can be useful
for the semantic web in practice. On the theoretical side,
they provide a formalization of completeness for RDF data
sources and techniques to reason about the completeness of
query answers. From the practical side, completeness state-
ments can be easily embedded in current descriptions of data
sources and thus readily used. The results on RDF data have
been implemented by Darari et al. in a demo system called
CORNER [6].

6. CURRENT WORK
In this section we list problems that our group is currently

working on.

6.1 SPARQL Queries with Negation
RDF data is often treated as incomplete, following the

Open-World Assumption. On the other hand, SPARQL, the
standard query language over RDF, usually follows the Closed-
World Assumption, assuming RDF data to be complete. What
then happens is the semantic gap between RDF and SPARQL.
In current work, Darari et al. [4] address how to close the se-
mantic gap between RDF and SPARQL, in terms of certain an-
swers and possible answers using completeness statements.
Table 2 shows current results for the relations between query
answers, certain answers and possible answers for queries
with negation. The queries are assumed to be of the form
Q(s̄) :−P+,¬P−, where P+ is the positive part and P− is the
negative part. Then we use letters C and N to indicate which
parts are complete. E.g. Q(s̄) :−N,¬C indicates that the pos-
itive part is not complete and the negative part is complete.
As the table shows, depending on the complete parts, the

Completeness
P Pattern

Relationship between
Certain Answers, Query

Answers, and Possible Answers
Q :−C CA = QA = PA
Q :−N CA = QA ⊆ PA = inf

Q :−N,¬N ∅ = CA ⊆ QA ⊆ PA = inf
Q :−C,¬C CA = QA = PA
Q :−N,¬C CA = QA ⊆ PA = inf
Q :−C,¬N ∅ = CA ⊆ QA = PA

Table 2: Relation between query result, certain answers and
possible answers for queries with negation. The arguments
of Q are irrelevant and therefore omitted.

query answer may either be equal to the possible answers, to
the certain answers, both, or none.

Note that the above results hold for conjunctive queries in
general, and thus do not only apply to SPARQL but also to
other query languages with negation, such as SQL.

6.2 Instance Reasoning
Another line of current work concerns completeness rea-

soning wrt. a database instance. We are currently looking into
completeness statements which are simpler than TC state-
ments in the sense that we do not contain any joins. For
such statements, reasoning is still exponential in the size of
the database schema, but experimental results suggest that in
use cases, the reasoning is feasible. A challenge is however
to develop a procedure which is algorithmically complete.

7. ACKNOWLEDGEMENT
We thank our collaborators Fariz Darari, Flip Korn, Paramita

Mirza, Marco Montali, Sergey Paramonov, Giuseppe Pirró,
Radityo Eko Prasojo, Ognjen Savkovic and Divesh Srivas-
tava.

This work has been partially supported by the project
“MAGIC: Managing Completeness of Data” funded by the
province of Bozen-Bolzano.

8. REFERENCES
[1] S. Abiteboul, P.C. Kanellakis, and G. Grahne. On the

representation and querying of sets of possible worlds.
In Proc. SIGMOD, pages 34–48, 1987.

[2] Keith L Clark. Negation as failure. In Logic and data
bases, pages 293–322. Springer, 1978.

[3] Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon
Razniewski. Completeness statements about RDF data
sources and their use for query answering. In
International Semantic Web Conference (1), pages 66–83,
2013.

[4] Fariz Darari, Simon Razniewski, and Werner Nutt.
Bridging the semantic gap between RDF and SPARQL
using completeness statements. ISWC, 2013.

[5] Ch. Elkan. Independence of logic database queries and
updates. In Proc. PODS, pages 154–160, 1990.

[6] Radityo Eko Prasojo Fariz Darari and Werner Nutt.
CORNER: A completeness reasoner for the semantic
web (poster). ESWC, 2013.

[7] T. Imieliński and W. Lipski, Jr. Incomplete information
in relational databases. J. ACM, 31:761–791, 1984.



[8] Alon Y. Levy. Obtaining complete answers from
incomplete databases. In Proceedings of the International
Conference on Very Large Data Bases, pages 402–412, 1996.

[9] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv,
and Divesh Srivastava. Answering queries using views.
In PODS, pages 95–104, 1995.

[10] A. Motro. Integrity = Validity + Completeness. ACM
TODS, 14(4):480–502, 1989.

[11] Werner Nutt, Sergey Paramonov, and Ognjen Savkovic.
An ASP approach to query completeness reasoning.
TPLP, 13(4-5-Online-Supplement), 2013.

[12] Werner Nutt and Simon Razniewski. Completeness of
queries over SQL databases. In CIKM, pages 902–911,
2012.

[13] S. Razniewski and W. Nutt. Completeness of queries
over incomplete databases. In VLDB, 2011.

[14] S. Razniewski and W. Nutt. Assessing the completeness

of geographical data (short paper). In BNCOD, 2013.
[15] Simon Razniewski, Marco Montali, and Werner Nutt.

Verification of query completeness over processes. In
BPM, pages 155–170, 2013.

[16] Raymond Reiter. On closed world data bases. In Logic
and Data Bases, pages 55–76, 1977.

[17] Ognjen Savkovic, Paramita Mirza, Sergey Paramonov,
and Werner Nutt. Magik: managing completeness of
data. In CIKM, pages 2725–2727, 2012.

[18] Ognjen Savkovic, Paramita Mirza, Alex Tomasi, and
Werner Nutt. Complete approximations of incomplete
queries. PVLDB, 6(12):1378–1381, 2013.

[19] L. Segoufin and V. Vianu. Views and queries:
Determinacy and rewriting. In Proc. PODS, pages
49–60, 2005.


