
CORNER: A Completeness Reasoner
for SPARQL Queries Over RDF Data Sources

Fariz Darari(B), Radityo Eko Prasojo, and Werner Nutt

Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
{fariz.darari,radityoeko.prasojo}@stud-inf.unibz.it, nutt@inf.unibz.it

Abstract. With the increased availability of data on the Semantic Web,
the question whether data sources offer data of appropriate quality for a
given purpose becomes an issue. With CORNER, we specifically address
the data quality aspect of completeness. CORNER supports SPARQL
BGP queries and can take RDFS ontologies into account in its analysis.
If a query can only be answered completely by a combination of sources,
CORNER rewrites the original query into one with SPARQL SERVICE

calls, which assigns each query part to a suitable source, and executes
it over those sources. CORNER builds upon previous work by Darari
et al. [1] and is implemented using standard Semantic Web frameworks.

Keywords: Data quality · Data completeness · Query completeness ·
SPARQL

1 Introduction

In recent years, large amounts of data have been made available on the Semantic
Web, which can be accessed by posing queries to SPARQL endpoints. As more
data become available, quality of data becomes an issue since data in different
sources may be suitable for different usages. In particular, data completeness
may vary among data sources. Consequently, users who pose a query to different
sources may get answers with different degrees of completeness. The question is
how to support users in choosing sources over which their queries can retrieve
complete answers.

For relational databases, Levy [2] proposed a format for statements about
data completeness and studied how to assess the completeness of a query in
the presence of such statements. Razniewski and Nutt [3] introduced a general
reasoning technique for this problem and provided a comprehensive complexity
analysis. Darari et al. [1] developed a framework for completeness reasoning tech-
niques on the Semantic Web. The framework enables one to provide descriptions
as to which parts of a data source are complete, called completeness statements,
and to perform checks whether a given query over such a data source returns a
complete result, called query completeness checks. The framework supports basic
graph pattern (BGP) queries [4] and can take into account RDFS ontologies fea-
turing subclass, subproperty, domain and range. Moreover, if a query can be
c© Springer International Publishing Switzerland 2014
V. Presutti et al. (Eds.): ESWC Satellite Events 2014, LNCS 8798, pp. 310–314, 2014.
DOI: 10.1007/978-3-319-11955-7 40



CORNER: A Completeness Reasoner for the Semantic Web 311

ensured to be complete over a combination of data sources, the framework tells
one how to produce a federated rewriting of the query that contains SERVICE
calls [4], with query parts that are to be sent to the relevant data sources.

We have implemented the reasoning techniques of Darari et al. [1] using
standard Semantic Web frameworks that can process RDF data and SPARQL
queries, and reason with RDFS ontologies in a system called CORNER. More-
over, we have built a Web-based demo to show the functionalities of CORNER,
which can be accessed at http://corner.inf.unibz.it/. While our implementation
is based on Apache Jena1, the approach would also be applicable to other Seman-
tic Web frameworks like OpenRDF Sesame2. As a demo for our system, we show
various aspects of completeness reasoning in the domain of movies, using the
LinkedMDB3 and DBpedia4 data sources, which are RDF versions of IMDb and
Wikipedia, respectively. Interestingly, IMDb already contains assertions in Eng-
lish about the completeness of cast and crew of movies5, which are currently still
not reflected in its RDF counterpart, LinkedMDB.

2 Motivating Examples

Suppose a moviegoer is interested in finding all movies starring Quentin
Tarantino. This information need can be expressed by the SPARQL BGP query:6

SELECT * WHERE { ?m actor Tarantino }

In our demo, CORNER has meta-information about parts of LinkedMDB and
DBpedia that are complete. Completeness statements can be represented in two
ways: a human-readable abstract syntax, or an RDF syntax, which implements
the abstract syntax. Both were developed in [1] and are accepted by CORNER.
Abstract completeness statements have the form Compl(P1|P2), consisting of
two parts: the pattern P1 and the condition P2. The completeness statement
specifies that the source contains all data with the pattern shape, provided that
in addition they satisfy the condition. To express that a source is complete for
“all movies starring Tarantino”, we write in the abstract syntax

Compl(?m actor Tarantino | true).

We attach this statement to LinkedMDB but not to DBpedia, since some infor-
mation that Tarantino was starred in some movies is actually missing in DBpe-
dia. CORNER then analyzes the query and the statement, and concludes that
the query over LinkedMDB can be answered completely, while it cannot give
such a guarantee for DBpedia.

We imagine that such statements could be part of the meta-information about
a data source like the ones provided by VoID descriptions7. In fact, completeness
1 http://jena.apache.org/
2 http://www.openrdf.org/
3 http://linkedmdb.org/
4 http://dbpedia.org/
5 As an instance, the page at http://www.imdb.com/title/tt0105236/fullcredits about

Reservoir Dogs is stated to contain all cast and crew of the movie.
6 For simplicity, we omit namespaces.
7 http://www.w3.org/TR/void/

http://corner.inf.unibz.it/
http://jena.apache.org/
http://www.openrdf.org/
http://linkedmdb.org/
http://dbpedia.org/
http://www.imdb.com/title/tt0105236/fullcredits
http://www.w3.org/TR/void/


312 F. Darari et al.

statements in RDF syntax can be embedded into VoID descriptions. Alterna-
tively, there could be query hubs that contain such metadata about sources,
propose sources suitable for a given query and execute the query over those
sources. CORNER demonstrates the second possibility.

Suppose now our moviegoer would also like to see the budget and box-office
gross of the movies. This is expressed by the SPARQL BGP query:

SELECT *

WHERE { ?m actor Tarantino . ?m budget ?b . ?m gross ?g }

Suppose we also have a statement asserting that DBpedia is complete for “the
budget and gross of movies starring Tarantino”, or in the abstract syntax:

Compl(?m budget ?b . ?m gross ?g | ?m actor Tarantino )

Note that by the condition, we can express that DBpedia has complete data
about budget and box-office gross of movies starring Tarantino, even if in DBpe-
dia Tarantino may not be listed as actor of all such movies. Now, none of the two
sources alone is sufficient to answer this new query completely. Suppose as well
that we have mappings using the RDFS predicates subclass and subproperty
that associate terms in DBpedia to their LinkedMDB counterparts, if they exist,
and vice versa. In this situation, CORNER can rewrite the original query in
such a way, using SPARQL SERVICE calls, that each source contributes parts
of a query for which they are complete. In our example, CORNER sends the
subquery asking for movies starring Tarantino to LinkedMDB and the subquery
asking for the budget and box-office gross to DBpedia:

SELECT *

WHERE {

SERVICE <http://linkedmdb.org/sparql> { ?m actor Tarantino }

SERVICE <http://dbpedia.org/sparql> { ?m budget ?b . ?m gross ?g } }

3 System Architecture

As shown in Fig. 1, CORNER consists of two main components, built on top of
the Linked Data layer.

The first component is the user interface (UI), which is developed using
the Google Web Toolkit (GWT)8. The UI provides users with the possibility
to specify what queries they want to check for completeness as well as which
completeness statements over which data sources and which RDFS ontologies
they want to use for the checking. The second component is the reasoner, the
backend of CORNER. The reasoner is implemented using Apache Jena9. The
backend performs the completeness reasoning, that is, the query completeness
checking based on the inputs. The RDFS reasoner is needed since CORNER
takes into account RDFS ontologies. If a query can be ensured to be complete,
CORNER rewrites the query into a complete federated version and executes it
over Linked Data. For this, the SPARQL engine is necessary. The query results
along with the completeness information are given back to the users via the UI.
8 http://www.gwtproject.org/
9 http://jena.apache.org/

http://www.gwtproject.org/
http://jena.apache.org/


CORNER: A Completeness Reasoner for the Semantic Web 313

Fig. 1. CORNER Architecture

The processes inside the backend are controlled by the CORNER business
logic, which implements the completeness reasoning technique in [1] consisting of
the following steps. From the query Q, CORNER generates an initial RDF graph
Gi

Q that represents the information needed for answering the query. Moreover,
every completeness statement C is translated into a SPARQL CONSTRUCT query
QC . Application of all the queries QC to the graph Gi

Q results in a graph Ga
Q,

which is a subgraph of Gi
Q and represents the parts of the query for which data

are complete. By evaluating Q over Ga
Q, CORNER tests whether the complete

data are sufficient to answer Q. Finally, if Q can be answered completely, based
on the data sources information of the completeness statements that contribute
to generate Ga

Q, CORNER distributes the query parts of Q to their suitable,
complete data sources.

4 Demo Description

From the CORNER homepage, users may add RDFS ontologies, data sources,
completeness statements of a specific data source, and queries, in addition to
those already there. There is a panel in CORNER for each type of information.
There are also the options to upload and download CORNER completeness state-
ments in RDF in order to embed them into VoID descriptions of data sources.
When adding a new completeness statement, users see a pop-up window where
they can specify patterns, conditions, the data source where the statement holds,
the author and a description of the completeness statement. When checking the
completeness of a query, CORNER displays a pop-up window comprising com-
pleteness information about the query, the query results, the debugging infor-
mation, the ontologies used in the reasoning, a federated rewriting of the query,
and the author information for each completeness statement.

Figure 2 shows the example of the query about budget and box-office gross
of movies starring Quentin Tarantino, mentioned above. We first specify the
SPARQL query in the query panel of the Web UI. Then, in the ontology panel, we
specify which ontologies we want to use. In this case, we only need to activate the
mapping ontology for LinkedMDB and DBpedia. After that, in the completeness
statements panel, we select the statements about data sources to be used for
query completeness checking. The figure shows the two completeness statements
we mentioned above.



314 F. Darari et al.

Fig. 2. CORNER Homepage

To start completeness reasoning, the user has to click the execution button
at the bottom of the UI. Now, CORNER returns to the user the query results
and information stating that the completeness of the query can be guaranteed.
CORNER also provides debugging information about the completeness reason-
ing and the federated rewriting of the query that was executed over the data
sources.

Acknowledgments. This work has been partially supported by the project “MAGIC:
Managing Completeness of Data” funded by the province of Bozen-Bolzano, and the
European Master’s Program in Computational Logic (EMCL).

References

1. Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness statements about
RDF data sources and their use for query answering. In: Alani, H., et al. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 66–83. Springer, Heidelberg (2013)

2. Levy, A.Y.: Obtaining complete answers from incomplete databases. In: PVLDB
(1996)

3. Razniewski, S., Nutt, W.: Completeness of queries over incomplete databases. In:
PVLDB (2011)

4. Harris, S., Seaborne, A.: SPARQL 1.1 query language. Technical report, W3C (2013)


	CORNER: A Completeness Reasoner for SPARQL Queries Over RDF Data Sources
	1 Introduction
	2 Motivating Examples
	3 System Architecture
	4 Demo Description
	References


