
Completeness Statements about RDF Data Sources and
Their Use for Query Answering

Fariz Darari, Werner Nutt, Giuseppe Pirrò, Simon Razniewski

Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
fariz.darari@stud-inf.unibz.it, {nutt,pirro,razniewski}@inf.unibz.it

Abstract. With thousands of RDF data sources available on the Web covering
disparate and possibly overlapping knowledge domains, the problem of provid-
ing high-level descriptions (in the form of metadata) of their content becomes
crucial. In this paper we introduce a theoretical framework for describing data
sources in terms of their completeness. We show how existing data sources can
be described with completeness statements expressed in RDF. We then focus on
the problem of the completeness of query answering over plain and RDFS data
sources augmented with completeness statements. Finally, we present an exten-
sion of the completeness framework for federated data sources.

1 Introduction

The Resource Description Framework (RDF) [9] is the standard data model for the
publishing and interlinking of data on the Web. It enables the making of statements
about resources in the form of triples including a subject, a predicate and an object.
Ontology languages such as RDF Schema (RDFS) and OWL provide the necessary
underpinning for the creation of vocabularies to structure knowledge domains. RDF
is now a reality; efforts like the Linked Open Data project [8] give a glimpse of the
magnitude of RDF data today available online. The common path to access such huge
amount of structured data is via SPARQL endpoints, that is, network locations that can
be queried upon by using the SPARQL query language [5].

With thousands of RDF data sources covering possibly overlapping knowledge do-
mains, the problem of providing high-level descriptions (in the form of metadata) of
their content becomes crucial. Such descriptions will connect data publishers and con-
sumers; publishers will advertise “what” is there inside a data source so that specialized
applications can be created for data source discovering, cataloging, selection and so
forth. Proposals like the VoID [1] vocabulary touched this aspect. With VoID it is pos-
sible to provide statistics about how many instances a particular class has, information
about its SPARQL endpoint and links with other data sources, among the other things.
However, VoID mainly focuses on providing quantitative information. We claim that
toward comprehensive descriptions of data sources, qualitative information is crucial.

Related Work. Data quality is about the “fitness for use” of data and encompasses sev-
eral dimensions such as accuracy, correctness and completeness. Fürber and Hepp [4]
investigated data quality problems for RDF data originating from relational databases,

while Wang et al. [19] focused on data cleansing. The problem of assessing complete-
ness of Linked Data sources was discussed by Harth and Speiser [6]; here, complete-
ness is defined in terms of authoritativeness of data sources, which is a purely syntactic
property. Polleres et al. [16] defined a rule language where the need for completeness in-
formation emerges. Hartig et al. [7] discussed an approach to get more complete results
of SPARQL queries over the Web of Linked Data. Their approach is based on traversing
RDF links to discover relevant data during query execution. Still, the completeness of
query answers cannot be guaranteed. In the relational databases world, completeness
was first investigated by Motro [12] who provided a formalization of completeness of
databases and queries. Halevy [11] studied the problem of how statements of com-
pleteness about a database related to query completeness. Recently, Razniewski and
Nutt [17] provided a general solution to this problem, including a comprehensive study
of the complexity of reasoning.

Indeed, the semantics of completeness is crucial also for RDF data sources dis-
tributed on the Web, where each data source is generally considered incomplete. To the
best of our knowledge, the problem of formalizing the semantics of RDF data sources
in terms of their completeness is open. Also from the more pragmatic point of view,
there exist no comprehensive solutions enabling the characterization of data source in
terms of completeness. As an example, with VoID it is not possible to express that, for
instance, the data source IMDb is complete for all movies directed by Tarantino. Hav-
ing the possibility to provide in a declarative and machine-readable way (in RDF), such
kind of completeness statements paves the way toward a new generation of services
for retrieving and consuming data. In this latter respect, the semantics of completeness
statements interpreted by a reasoning engine can guarantee the completeness of query
answering. We present a comprehensive application scenario in Section 2.

Contributions. This paper lays the foundation for the expression of completeness state-
ments about RDF data sources. It can complement, with qualitative descriptions, exist-
ing proposals like VoID that mainly deal with quantitative descriptions. We develop a
formalism and show its feasibility. The second goal of this paper is to show how com-
pleteness statements can be useful in practice. In this respect, we focus on the problem
of query completeness. We believe that our research has both a theoretical and prac-
tical impact. On the theoretical side, we provide a formalization of completeness for
RDF data sources and techniques to reason about the completeness of query answers
in various settings, from plain RDF to federated data sources. From the practical side,
completeness statements can be easily embedded in current descriptions of data sources
and thus readily used. Finally, we want to point out that our completeness framework
has been implemented in the CoRNER system, which is available for download1.

Outline. In Section 2 we discuss a real world scenario and provide a high level overview
of the completeness framework. Section 3 after providing some background introduces
a formalization of the completeness problem for RDF data sources. This section also
describes how completeness statements can be represented in RDF. In Section 4 we
discuss how completeness statements can be used in query answering when considering
a single data source at a time. In Section 5 we challenge query completeness in federated
data sources. Section 6 contains a discussion and Section 7 the conclusions.

1 http://rdfcorner.wordpress.com/

2 Motivating Scenario

In this section we motivate the need of formalizing and expressing completeness state-
ments in a machine-readable way. Moreover we show how completeness statement are
useful for query answering. We start our discussion with a real data source available on
the Web. Fig. 1 shows a screenshot taken from the IMDb website. The page is about
the movie Reservoir Dogs; in particular it lists the cast and crew of the movie. For
instance, it says that Tarantino was not only the director and writer of the movie but
also the character Mr. Brown. As it can be noted, the data source includes a “complete-
ness statement”, which says that the page is complete for all cast and crew members
of the movie. The availability of such statement increases the potential value of the
data source. In particular, users who were looking for information about the cast of this
movie and found this page can prefer it to other pages since, assuming the truth of the
statement, all they need is here.

Completeness
statement about the
IMDB data source

Quentin Tarantino
was the character

Mr. Brown

……………
……………

……………

http://www.imdb.com/title/tt0105236/fullcredits?ref_=tt_ov_st_sm#cast

Fig. 1. A completeness statement in IMDb as of 7 May 2013. It says that the source is complete
for the cast and crew of the movie Reservoir Dogs.

The problem with such kind of statements, expressed in natural language, is that
they cannot be automatically processed, thus hindering their applicability, for instance,
in query answering. Indeed, the interpretation of the statement “verified as complete”
is left to the user. On the other hand, a reasoning and querying engine when requested
to provide information about the cast and crew members of Reservoir Dogs could have
leveraged such statement and inform the user about the completeness of the results.

Other examples of Web data sources that already provide completeness statements
are OpenStreetMap2 and Wikipedia, which has, for instance, a complete list of works
attributed to Vermeer and works by Shakespeare or a complete list of Olympic medalists
in archery from 1900 to 2012. If such statements were exploited by machines, one
would expect that there would be an incentive to publish them.
Machine-readable statements. In the RDF and Linked Data context with generally
incomplete and possibly overlapping data sources and where “anyone can say anything

2 http://wiki.openstreetmap.org/wiki/Hall_of_Fame/Streets_complete

about any topic and publish it anywhere” [9] having the possibility to express com-
pleteness statements becomes an essential aspect. The machine-readable nature of RDF
enables to deal with the problems discussed in the example about IMDb; complete-
ness statements can be represented in RDF. As an example, the high-level description
of a data source like DBpedia could include, for instance, the fact that it is complete
for all of Quentin Tarantino’s movies. Fig. 2 shows how the data source DBpedia can
be complemented with completeness statements expressed in our formalism. Here we
give a high level presentation of the completeness framework; details on the theoretical
framework supporting it are given in Section 3.

dv:dbpdataset rdf:type void:Dataset .

dv:dbpdataset rdfs:comment "This document provides completeness statements
about the dbpedia.org datasource" .

dv:dbpdataset c:hasComplStmt dv:st1.
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
 c:predicate rdf:type;
 c:object schema:Movie].
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
 c:predicate schema:director;
 c:object dbp:Tarantino].
dv:st1 rdfs:comment "This completeness statement indicates that
dbpedia.org is complete for all movies directed by Tarantino".

@prefix c: <http://inf.unibz.it/ontologies/completeness#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix schema: <http://schema.org/> .
@prefix spin: <http://spinrdf.org/sp#> .
@prefix dbp: <http://dbpedia.org/resource/> .
@prefix void: <http://rdfs.org/ns/void#> .
@prefix dv: <http://dbpedia.org/void/> .

Fig. 2. An example of completeness statement about dbpedia.org

A simple statement can be thought of as a SPARQL Basic Graph Pattern (BGP).
The BGP (?m rdf:type schema:Movie).(?m schema:director dbp:Tarantino), for
instance, expresses the fact that dbpedia.org is complete for all movies directed by
Tarantino. In the figure, this information is represented by using an ad-hoc completeness
vocabulary (see Section 3.2) with some properties taken from the SPIN3 vocabulary.

Query Completeness. The availability of completeness statements about data sources
is useful in different tasks, including data integration, data source discovery and query
answering. In this paper we will focus on how to leverage completeness statements
for query answering. The research question we address is how to assess whether avail-
able data sources with different degree of completeness can ensure the completeness of
query answers. Consider the scenario depicted in Fig. 3 where the data sources DBpe-
dia and LinkedMDB are described in terms of their completeness. The Web user Syd
wants to pose the query Q to the SPARQL endpoints of these two data sources asking
for all movies directed by Tarantino in which Tarantino also starred. By leveraging the
completeness statements, the query engines at the two endpoints could tell Syd whether
the answer to his query is complete or not. For instance, although DBpedia is complete
for all of Tarantino’s movies (see Fig. 2) nothing can be said about his participation as

3 http://spinrdf.org/sp.html#sp-variables

an actor in these movies (which is required in the query). Indeed, at the time of writ-
ing this paper, DBpedia is actually incomplete; this is because in the description of the
movie Reservoir Dogs the fact is missing that Tarantino was the character Mr. Brown
(and from Fig. 1 we know that this is the case). On the other hand, LinkedMDB, the
RDF counterpart of IMDb, can provide a complete answer. Indeed, with our framework
it is possible to express in RDF the completeness statement available in natural lan-
guage in Fig. 1. This statement has then been used by the CoRNER reasoning engine,
implementing our formal framework, to state the completeness of the query.

DBPedia is complete
for all Tarantino's movies

lv:lmdbdataset rdf:type void:Dataset.
lv:lmdbdataset c:hasComplStmt lv:st1.

lv:st1 c:hasCondition [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie].
lv:st1 c:hasCondition [c:subject [spin:varName "m"];
c:predicate schema:director; c:object dbp:Tarantino].

dv:dbpdataset rdf:type void:Dataset.

dv:dbpdataset c:hasComplStmt dv:st1.
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie].
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate schema:director;c:object dbp:Tarantino].

SELECT ?m
WHERE {?m rdf:type schema:Movie.
?m schema:director dbp:Tarantino.
?m schema:actor dbp:Tarantino}

Select all the movies for which
Tarantino is the director and also an actor

LinkedMDB is complete for all Tarantino's movies
and also movies for which he is an actor

The answer is
incomplete

The answer is
complete

SPARQL
endpoint

@prefix c: <http://inf.unibz.it/ontologies/completeness#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix spin: <http://spinrdf.org/sp#>
@prefix void: <http://rdfs.org/ns/void#>
@prefix dv: <http://dbpedia.org/void/>
@prefix lv: <http://linkedmdb.org/void/>
@prefix dbp: <http://dbpedia.org/resource/>
@prefix schema: <http://schema.org>

Q

lv:lmdbdataset c:hasComplStmt lv:st2.
lv:st2 c:hasPattern [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie].
lv:st2 c:hasPattern [c:subject [spin:varName "m"];
c:predicate schema:director;c:object dbp:Tarantino].

lv:st1 c:hasPattern [c:subject[spin:varName "m"];
c:predicate schema:actor; c:object[spin:varName "a"]].

Endpoint IRI
DBPe

Endpoint IRI
LMDBe

SPARQL
endpoint

Fig. 3. Completeness statements and their usage for query answering

In this specific case, LinkedMDB can guarantee the completeness of the query an-
swer because it contains all the actors in Tarantino’s movies (represented by the state-
ment lv:st1) in addition to the Tarantino’s movies themselves (represented by the state-
ment lv:st2). Note that the statement lv:st1 includes two parts: (i) the pattern, which
is expressed via the BGP (?m, schema:actor, ?a) and (ii) the conditions, that is, the
BGP (?m, rdf:type, schema:Movie).(?m, schema:director, dbp:Tarantino). In-
deed, a completeness statement allows one to say that a certain part (i.e., with respect
to some conditions) of data is complete, or in other words, it can be used to state that a
data source contains all triples in a pattern P1 that satisfy a condition P2. The detailed
explanation and the semantics of completeness statements can be found in Section 3.

Application Scenarios. Completeness statements are particularly useful for data col-
lections such as works of an artist, cities in countries, election results, census data and
so forth. Completeness statements have wide applicability. Source selection: as an ex-
ample for address verification, one needs a complete set of street names; for Hamburg,
Dresden, and other cities in Germany, OpenStreetMap can be used because complete-
ness is asserted. Search Optimization: a user wants to look for movies by Tarantino in
2008. By having completeness statements in IMDb about these movies, a search engine
could stop after finding this specific source without the need to consult other sources.

3 Formal Framework

In the following, we remind the reader of RDF and SPARQL, formalize our framework
and show how completeness information can be expressed in RDF.

RDF and SPARQL. We assume that there are three pairwise disjoint infinite sets I
(IRIs), L (literals) and V (variables). We collectively refer to IRIs and literals as RDF
terms or simply terms. A tuple (s, p, o) ∈ I×I×(I∪L) is called an RDF triple (or a triple),
where s is the subject, p the predicate and o the object of the triple. An RDF graph or
data source consists of a finite set of triples [9]. For simplicity, we omit namespaces for
the abstract representation of RDF graphs.

The standard query language for RDF is SPARQL. The basic building blocks of a
SPARQL query are triple patterns, which resemble RDF triples, except that in each po-
sition also variables are allowed. SPARQL queries include basic graph patterns (BGP),
built using the AND operator, and more sophisticated operators, including OPT, FILTER,
UNION and so forth. In this paper we consider the operators AND and OPT. Moreover, we
also consider the result modifier DISTINCT. Evaluating a graph pattern P over an RDF
graph G results in a set of mappings from the variables in P to terms, denoted as ~P�G.
Further information about SPARQL can be found in [14].

SPARQL queries come as SELECT, ASK, or CONSTRUCT queries. A SELECT query has
the abstract form (W, P), where P is a graph pattern and W is a subset of the variables in
P. A SELECT query Q = (W, P) is evaluated over a graph G by restricting the mappings
in ~P�G to the variables in W. The result is denoted as ~Q�G. Syntactically, an ASK query
is a special case of a SELECT query where W is empty. For an ASK query Q, we write
also ~Q�G = true if ~Q�G , ∅, and ~Q�G = false otherwise. A CONSTRUCT query
has the abstract form (P1, P2), where P1 is a BGP and P2 is a graph pattern. In this
paper, we only use CONSTRUCT queries where also P2 is a BGP. The result of evaluating
Q = (P1, P2) over G is the graph ~Q�G, that is obtained by instantiating the pattern P1
with all the mappings in ~P2�G.

Later on, we will distinguish between three classes of queries: (i) Basic queries,
that is, queries (W, P) where P is a BGP and which return bags of mappings (as it is the
default in SPARQL), (ii) DISTINCT queries, that is, queries (W, P)d where P is a BGP
and which return sets of mappings, and (iii) OPT queries, that is, queries (W, P) without
projection (W = var(P)) where P is a graph pattern with OPT.

3.1 Completeness Statements and Query Completeness
We are interested in formalizing when a query is complete over a potentially incomplete
data source and in describing which parts of such a source are complete. When talking
about the completeness of a source, one implicitly compares the information available
in the source with what holds in the world and therefore should ideally be also present
in the source. In this paper, we only consider sources that may miss information, but do
not contain wrong information.

Definition 1 (Incomplete Data Source). We identify data sources with RDF graphs.
Then, adapting a notion introduced by Motro in [12], we define an incomplete data
source as a pair G = (Ga,Gi) of two graphs, where Ga ⊆ Gi. We call Ga the available
graph and Gi the ideal graph.

Example 2 (Incomplete Data Source). Consider the DBpedia data source and suppose
that the only movies directed by Tarantino are Reservoir Dogs, Pulp Fiction, and Kill
Bill, and that Tarantino was starred exactly in the movies Desperado, Reservoir Dogs,
and Pulp Fiction. For the sake of example, suppose also the fact that he was starred
in Reservoir Dogs is missing in DBpedia4. Using Definition 1, we can formalize the
incompleteness of the DBpedia data source Gdbp as:

Ga
dbp = {(reservoirDogs, director, tarantino), (pulpFiction, director, tarantino),

(killBill, director, tarantino), (desperado, actor, tarantino),
(pulpFiction, actor, tarantino), (desperado, type,Movie),
(reservoirDogs, type,Movie), (pulpFiction, type,Movie), (killBill, type,Movie)}

Gi
dbp = Ga

dbp ∪ { (reservoirDogs, actor, tarantino) }

We now introduce completeness statements, which are used to denote the partial
completeness of a data source, that is, they describe for which parts the ideal and avail-
able graph coincide.

Definition 3 (Completeness Statement). A completeness statement Compl(P1 | P2) in-
cludes: P1 a non-empty BGP and P2 a BGP. We call P1 the pattern and P2 the condition
of the completeness statement.

For example, we express that a source is complete for all pairs of triples that say
“?m is a movie and ?m is directed by Tarantino” using the statement

Cdir = Compl((?m, type,Movie), (?m, director, tarantino) | ∅), (1)

whose pattern matches all such pairs and whose condition is empty. To express that a
source is complete for all triples about actors in movies directed by Tarantino, we use

Cact = Compl((?m, actor, ?a) | (?m, director, tarantino), (?m, type,Movie)), (2)

whose pattern matches triples about actors and the condition restricts the actors to
movies directed by Tarantino. The condition in Cact means that the data source does not
necessarily contain triples of the form (?m, director, tarantino) and (?m, type,Movie).
Moving the condition to the pattern imposes that the data source contains the triples.

We now define when a completeness statement is satisfied by an incomplete data
source. To a statement C = Compl(P1 | P2), we associate the CONSTRUCT query QC =

(P1, P1 ∪ P2). Note that, given a graph G, the query QC returns those instantiations of
the pattern P1 that are present in G together with an instantiation of the condition. For
example, the query QCact returns all the acting information of Tarantino movies in G.

Definition 4 (Satisfaction of Completeness Statements). For an incomplete data source
G = (Ga,Gi), the statement C is satisfied by G, written G |= C, if ~QC�Gi ⊆ Ga holds.

To see that the statement Cdir is satisfied byGdbp, observe that the query QCdir returns
over Gi

dbp all triples with the predicate actor and all type triples for Tarantino movies,

4 as it was the case on 7 May 2013

and that all these triples are also in Ga
dbp. However, Cact is not satisfied by Gdbp, because

QCact returns over Gi
dbp the triple (reservoirDogs, actor, tarantino), which is not in Ga

dbp.

When querying a potentially incomplete data source, we would like to know whether
at least the answer to our query is complete. For instance, when querying DBpedia for
movies starring Tarantino, it would be interesting to know whether we really get all
such movies, that is, whether our query is complete over DBpedia. We next formalize
query completeness with respect to incomplete data sources.

Definition 5 (Query Completeness). Let Q be a SELECT query. To express that Q is
complete, we write Compl(Q). An incomplete data source G = (Ga,Gi) satisfies the
expression Compl(Q), if Q returns the same result over Ga as it does over Gi, that is
~Q�Ga = ~Q�Gi . In this case we write G |= Compl(Q).

Example 6 (Query Completeness). Consider the incomplete data source Gdbp and the
two queries Qdir, asking for all movies directed by Tarantino, and Qdir+act, asking for
all movies, both directed by and starring Tarantino:

Qdir = ({ ?m }, { (?m, type,Movie), (?m, director, tarantino) })
Qdir+act = ({ ?m }, { (?m, type,Movie), (?m, director, tarantino), (?m, actor, tarantino) }).

Then, it holds that Qdir is complete over Gdbp while Qdir+act is not. Later on, we show
how to deduce query completeness from completeness statements.

3.2 RDF Representation of Completeness Statements

Practically, completeness statements should be compliant with the existing ways of
giving metadata about data sources, for instance, by enriching the VoID description [1].
Therefore, it is essential to express completeness statements in RDF itself. Suppose we
want to express that LinkedMDB satisfies the statement:

Cact = Compl((?m, actor, ?a) | (?m, type,Movie), (?m, director, tarantino)).

Then, we need a vocabulary to say that this is a statement about LinkedMDB, which
triple patterns make up its pattern, and which its condition. We also need the vocabulary
to represent the constituents of the triple patterns, namely subject, predicate, and object
of a pattern. Therefore, we introduce the property names whose meaning is intuitive:

hasComplStmt, hasPattern, hasCondition, subject, predicate, object

If the constituent of a triple pattern is a term (an IRI or a literal), then it can be specified
directly in RDF. Since this is not possible for variables, we represent a variable by a
resource that has a literal value for the property varName. Now, we can represent Cact in
RDF as the resource lv:st1 described in Figure 3.

More generally, consider a completeness statement Compl(P1 | P2), where P1 =

{ t1, . . . , tn } and P2 = { tn+1, . . . , tm } and each ti, 1 ≤ i ≤ m, is a triple pattern. Then the
statement is represented using a resource for the statement and a resource for each of the
ti that is linked to the statement resource by the property hasPattern or hasCondition,
respectively. The constituents of each ti are linked to ti’s resource in the same way via
subject, predicate, and object. All resources can be either IRIs or blank nodes.

4 Completeness Reasoning over a Single Data Source

In this section, we show how completeness statements can be used to judge whether a
query will return a complete answer or not. We first focus on completeness statements
that hold on a single data source, while completeness statements in the federated setting
are discussed in Section 5.

Problem Definition. Let C be a set of completeness statements and Q be a SELECT
query. We say that C entails the completeness of Q, written C |= Compl(Q), if any
incomplete data source that satisfies C also satisfies Compl(Q).

Example 7 Consider Cdir from (1). Whenever an incomplete data source G satisfies
Cdir, then Ga contains all triples about movies directed by Tarantino, which is ex-
actly the information needed to answer query Qdir from Example 6. Thus, {Cdir } |=

Compl(Qdir). This may not be enough to completely answer Qdir+act, thus {Cdir } 6|=

Compl(Qdir+act). We will now see how this intuitive reasoning can be formalized.

4.1 Completeness Entailment for Basic Queries

To characterize completeness entailment, we use the fact that completeness statements
have a correspondence in CONSTRUCT queries. For any set C of completeness statements
we define the operator TC that maps graphs to graphs:

TC(G) =
⋃
C∈C

QC(G)

Notice that for any graph G, the pair (TC(G),G) is an incomplete data source satisfying
C and TC(G) is the smallest set (wrt. set inclusion) for which this holds.

Example 8 (Completeness Entailment). Consider the set of completeness statements
Cdir,act = {Cdir,Cact } and the query Qdir+act. Recall that the query has the form Qdir+act =

({ ?m }, Pdir+act), where Pdir+act = { (?m, type,Movie), (?m, director, tarantino),
(?m, actor, tarantino) }. We want to check whether these statements entail the complete-
ness of Qdir+act, that is, whether Cdir,act |= Compl(Qdir+act) holds. Suppose that G =

(Ga,Gi) satisfies Cdir,act. Suppose also that Qdir+act returns a mapping µ = { ?m 7→ m′ }
over Gi for some term m′. Then Gi contains µPdir+act, the instantiation by µ of the BGP
of our query, consisting of the three triples (m′, type,Movie), (m′, director, tarantino),
and (m′, actor, tarantino).

The CONSTRUCT query QCdir , corresponding to our first completeness statement, re-
turns over µPdir+act the two triples (m′, type,Movie) and (m′, director, tarantino), while
the CONSTRUCT query QCact , corresponding to the second completeness statement, returns
the triple (m′, actor, tarantino). Thus, all triples in µPdir+act have been reconstructed by
TCdir,act from µPdir+act.

Now, we have µPdir+act = TCdir,act (µPdir+act) ⊆ TCdir,act (G
i) ⊆ Ga, where the last

inclusion holds due to G |= Cdir,act. Therefore, our query Qdir+act returns the mapping
µ also over Ga. Since µ and G were arbitrary, this shows that Cdir,act |= Compl(Qdir+act)
holds.

In summary, in Example 8 we have reasoned about a set of completeness statements
C and a query Q = (W, P). We have considered a generic mapping µ, defined on the
variables of P, and applied it to P, thus obtaining a graph µP. Then we have verified
that µP = TC(µP). From this, we could conclude that for every incomplete data source
G = (Ga,Gi) we have that ~Q�Ga = ~Q�Gi . Next, we make this approach formal.

Definition 9 (Prototypical Graph). Let (W, P) be a query. The freeze mapping ĩd is
defined as mapping each variable v in P to a new IRI ṽ. Instantiating the graph pattern
P with ĩd yields the RDF graph P̃ := ĩd P, which we call the prototypical graph of P.

Now we can generalize the reasoning from above to a generic completeness check.

Theorem 10 (Completeness of Basic Queries). Let C be a set of completeness state-
ments and let Q = (W, P) be a basic query. Then

C |= Compl(Q) if and only if P̃ = TC(P̃).

Proof. (Sketch) “⇒” If P̃ , TC(P̃), then the pair (TC(P̃), P̃) is a counterexample for the
entailment. It satisfies C, but does not satisfy Compl(Q) because the freeze mapping ĩd
cannot be retrieved by P over the available graph TC(P̃).

“⇐” If all triples of the pattern P̃ are preserved by TC, then this serves as a proof
that in any incomplete data source all triples that are used to compute a mapping in the
ideal graph are also present in the available graph.

Queries with DISTINCT. Basic queries return bags of answers (i.e., they may contain
duplicates), while DISTINCT eliminates duplicates. For a query Q involving DISTINCT,
the difference to the characterization in Theorem 10 is that instead of retrieving the full
pattern P̃ after applying TC, we only check whether sufficient parts of P̃ are preserved
that still allow to retrieve the freeze mapping on the distinguished variables of Q.

4.2 Completeness of Queries with the OPT Operator

One interesting feature of SPARQL is the OPT (“optional”) operator. With OPT one can
specify that parts of a query are only evaluated if an evaluation is possible, similarly
to an outer join in SQL. For example, when querying for movies, one can also ask
for the prizes they won, if any. The OPT operator is used substantially in practice [15].
Intuitively, the mappings for a pattern (P1 OPT P2) are computed as the union of all the
bindings of P1 together with the bindings for P2 that are valid extensions, and including
those bindings of P1 that have no binding for P2 that is a valid extension. For a formal
definition of the semantics of queries with the OPT operator, see [10]. Completeness
entailment for queries with OPT differs from that of queries without.

Example 11 (Completeness with OPT). Consider the following query with OPT Qmaw =

((?m, type,Movie) OPT (?m, award, ?aw)), asking for all movies and if available, also
their awards. Consider also Caw = Compl((?m, type,Movie), (?m, award, ?aw) | ∅), the
completeness statement that expresses that all movies that have an award are complete
and all awards of movies are complete. If the query Qmaw used AND instead of OPT, then
its completeness could be entailed by Caw. However with OPT in Qmaw, more complete-
ness is required: Also those movies have to be complete that do not have an award.
Thus, Caw alone does not entail the completeness of Qmaw.

If one uses OPT without restrictions, unintuitive queries may result. Pérez et al. have
introduced the class of so-called well-designed graph patterns that avoid anomalies
that may otherwise occur [14]. Formally, a graph pattern P is well-designed if for ev-
ery subpattern P′ = (P1 OPT P2) of P and for every variable ?X occurring in P, the
following condition holds: if ?X occurs both inside P2 and outside P′, then it also oc-
curs in P1. We restrict ourselves in the following to OPT queries with well-designed
patterns, which we call well-designed queries. Graph patterns with OPT have a hierar-
chical structure that can be made explicit by so-called pattern trees. A pattern tree T
is a pair (T,P), where (i) T = (N, E, r) is a tree with node set N, edge set E, and root
r ∈ N, and (ii) P is a labeling function that associates to each node n ∈ N a BGP P(n).
We construct for each pattern P a corresponding pattern tree T . Any OPT-pattern can
be translated into a pattern tree and vice versa [10]. As an example, consider a pat-
tern ((P1 OPT P2) OPT(P3 OPT P4)), where P1 to P4 are BGPs. Its corresponding pattern
tree would have a root node labeled with P1, two child nodes labeled with P2 and P3,
respectively, and the P3 node would have another child labeled with P4.

Patterns and pattern trees can contain redundant triples. Letelier et al. [10] have
shown that for every pattern tree T one can construct in polynomial time an equiva-
lent well-designed pattern tree T NR without redundant triples, which is called the NR-
normal form of T . For every node n in T we define the branch pattern Pn of n as the
union of the labels of all nodes on the path from n to the root of T . Then the branch
query Qn of n has the form (Wn, Pn), where Wn = var(Pn).

Theorem 12 (Completeness of OPT-Queries). Let C be a set of completeness state-
ments. Let Q = (W, P) be a well-designed OPT-query and T be an equivalent pattern
tree in NR-normal form. Then

C |= Compl(Q) iff C |= Compl(Qn) for all branch queries Qn of T .

Technically, this theorem allows to reduce completeness checking for an OPT query to
linearly many completeness checks for basic queries.

4.3 Completeness Entailment under RDFS Semantics

RDFS (RDF Schema) is a simple ontology language that is widely used for RDF
data [3]. RDFS information can allow additional inference about data and needs to
be taken into account during completeness entailment.

Example 13 (RDF vs. RDFS). Consider the query Qfilm = ({ ?m }, { (?m, type, film) }),
asking for all films, and the completeness statement Cmovie = Compl((?m, type,movie) |
∅) saying that we are complete for all movies. A priori, we cannot conclude that Cmovie
entails the completeness of Qfilm, because we do not know about the relationship be-
tween films and movies. When considering the RDFS statements (film, subclass,movie)
and (movie, subclass, film) saying that all movies and films are equivalent, we can con-
clude that {Cmovie} |= Compl(Qfilm).

In the following, we rely on ρDF, which formalizes the core of RDFS [13]. The ρDF
vocabulary contains the terms subproperty, subclass, domain, range and type. A schema
graph S is a set of triples built using any of the ρDF terms, except type, as predicates.

We assume that schema information is not lost in incomplete data sources. Hence,
for incomplete data sources it is possible to extract their ρDF schema into a separate
graph. The closure of a graph G, that is, clS (G) wrt. a schema S is the set of all triples
that are entailed. The computation of this closure can be reduced to the computation
of the closure of a single graph that contains both schema and non-schema triples as
clS (G) = cl(S ∪ G). We now say that a set C of completeness statements entails the
completeness of a query Q wrt. a ρDF schema graph S , if for all incomplete data sources
(Ga,Gi) it holds that if (clS (Ga), clS (Gi)) satisfies C then it also satisfies Compl(Q).

Therefore, the main difference to the previous entailment procedures is that the
closure is computed to obtain entailed triples before and after the completeness operator
TC is applied. For a set of completeness statements C and a schema graph S , let T S

C
denote the function composition clS ◦ TC ◦ clS . Then the following holds.

Theorem 14 (Completeness under RDFS). Let C be a set of completeness statements,
Q = (W, P) a basic query, and S a schema graph. Then

C |=S Compl(Q) if and only if P̃ ⊆ T S
C (P̃).

5 Completeness Reasoning over Federated Data Sources

Data on the Web is intrinsically distributed. Hence, the single-source query mechanism
provided by SPARQL has been extended to deal with multiple data sources. In particu-
lar, the recent SPARQL 1.1 specification introduces the notion of query federation [18].
A federated query is a SPARQL query that is evaluated across several data sources, the
SPARQL endpoints of which can be specified in the query.

So far, we have studied the problem of querying a single data source augmented with
completeness statements. The federated scenario calls for an extension of the complete-
ness framework discussed in Section 4. Indeed, the completeness statements available
about each data source involved in the evaluation of a federated query must be con-
sidered to check the completeness of the federated query. This section discusses this
aspect and presents an approach to check whether the completeness of a non-federated
query (i.e., a query without SERVICE operators) can be ensured with respect to the com-
pleteness statements on each data source. We also study the problem of rewriting a
non-federated query into a federated version in the case in which the query is complete.

Federated SPARQL Queries. Before introducing the extension of the completeness
framework, we formalize the notion of federated SPARQL queries. A federated query
is a SPARQL query executed over a federated graph. Formally speaking, a federated
graph is a family of RDF graphs Ḡ = (G j) j∈J where J is a set of IRIs. A federated
SPARQL query (as for the case of a non-federated query) can be a SELECT or an ASK
query [2]. In what follows, we focus on the conjunctive fragment (i.e., the AND fragment)
of SPARQL with the inclusion of the SERVICE operator. Non-federated SPARQL queries
are evaluated over graphs. In the federated scenario, queries are evaluated over a pair
(i, Ḡ), where the first component is an IRI associated to the initial SPARQL endpoint,
and the second component is a federated graph. The semantics of graph patterns with

AND and SERVICE operators is defined as follows:

~t�(i,Ḡ) = ~t�Gi

~P1 AND P2�(i,Ḡ) = ~P1�(i,Ḡ) Z ~P2�(i,Ḡ)

~(SERVICE j P)�(i,Ḡ) = ~P�(j,Ḡ)

where t ranges over all triple patterns and P, P1, P2 range over all graph patterns with
AND and SERVICE operators. We denote federated queries as Q̄.

5.1 Federated Completeness Reasoning Framework

We now extend our completeness reasoning framework to the federated setting. We
assume from now on that the set of IRIs J is fixed and all indices are drawn from J.

Definition 15 (Incomplete Federated Data Source) An incomplete federated data source
(or incomplete FDS, for short) is a pair Ḡ = (Ḡa,Gi), consisting of an available feder-
ated graph Ḡa = (Ga

j) j∈J and an ideal graph Gi, such that Ga
j ⊆ Gi for all j ∈ J.

This captures the intuition that the ideal graph represents all the facts that hold in
the world, while each source contains a part of those facts. Note that the graphs of the
sources may overlap, as is the case on the Web. Next, we adapt completeness statements
so that they talk about a specific source.

Definition 16 (Indexed Completeness Statements) An indexed completeness statement
is a pair (C, k) where C is a completeness statement and k ∈ J is an IRI. An indexed
completeness statement is satisfied by an incomplete FDS if it is satisfied by the incom-
plete data source corresponding to the index, that is,

((Ga
j) j∈J ,Gi) |=fed (C, k) iff (Ga

k ,G
i) |= C.

This definition is naturally extended to sets C̄ of indexed completeness statements.

We associate to each federated query, federated graph, incomplete FDSs, and set of
indexed completeness statements a non-federated version, the flattening.

Definition 17 (Flattening) The flattening Q̄ fl of a federated query Q̄ is obtained from
Q̄ by replacing recursively each occurrence of a service call (SERVICE j P) with the
pattern P. The flattening Ḡ fl of a federated graph Ḡ = (G j) j∈J is the union of the
individual graphs, that is, Ḡ fl =

⋃
j∈J G j. The flattening Ḡ fl of an incomplete FDS

Ḡ = (Ḡa,Gi) is the incomplete data source Ḡ fl = ((Ḡa) fl,Gi) whose available graph
is the flattening of the available federated graph of Ḡ. The flattening C̄ fl of a set C̄ of
indexed completeness statements is the set C̄ fl

= {C | (C, k) ∈ C̄ }, where we ignore the
indices.

Note that the notion of federated entailment is different from the entailment between
a set of completeness statements and a query defined in Section 4 in the sense that we
now have to deal with indexed completeness statements.

Definition 18 (Federated Completeness and Entailment) A federated query Q̄ is com-
plete over an incomplete FDS Ḡ = (Ḡa,Gi), written Ḡ |=fed Compl(Q̄), if ~Q̄�(j0,Ḡa) =

~Q̄ fl�Gi for any IRI j0 ∈ J, that is, the evaluation of Q̄ over the available federated
graph returns the same result as evaluating the flattening of Q̄ over the ideal graph.
If C̄ is an indexed set of completeness statements, then C̄ entails Compl(Q̄), written
C̄ |=fed Compl(Q̄), if Ḡ |=fed C̄ implies Ḡ |=fed Compl(Q̄) for all incomplete FDSs Ḡ.

If Q is a basic query, then we say that Q is complete over Ḡ if Q is complete over
the flattening of Ḡ, that is, Ḡ |=fed Compl(Q) iff Ḡ fl |= Compl(Q). This means that Q is
complete if evaluated over the union of all sources in the federation.

Proposition 19 (Completeness of Basic Queries) Let C̄ be a set of indexed complete-
ness statement and Q be a basic query. Then

C̄ |=fed Compl(Q) iff C̄ fl
|= Compl(Q)

This means that we can check the completeness of a basic query with the criterion
in Theorem 10 in Section 4.1. A federated query Q̄ is a federated version of a basic
query Q if Q̄ fl = Q. In other words, by dropping the service calls from Q̄ we obtain Q.

Theorem 20. (Smart Rewriting) Let C̄ be a set of indexed completeness statement and
Q be a basic query such that C̄ |=fed Compl(Q). Then:

1. One can compute a federated version Q̄ of Q such that C̄ |=fed Compl(Q̄).

2. Moreover, whenever (Ḡa,Gi) |=fed C̄, then

~Q�⋃ j∈J Ga
j

= ~Q̄�(j0,Ḡa) for any j0 ∈ J.

To retrieve all answers for an arbitrary query, we have to evaluate each triple pattern
over the union of all sources. For a complete query, the federated version evaluates
each triple pattern only over a single source. Therefore, the evaluation of the federated
version is in general much more efficient.

Example 21 (Federated Data Sources). Consider the two data sources shown in Fig. 3
plus an additional data source named FB (= Facebook) with the completeness state-
ment Cfb = Compl({ (?m, likes, ?l) } | { (?m, type,Movie), (?m, director, tarantino) }) and
the query: Qfb = ({ ?m, ?l }, { (?m, type,Movie), (?m, director, tarantino), (?m, likes, ?l) })
that asks for the number of likes of Tarantino’s movies.

In order to answer this query efficiently over the three data sources, whose endpoints
are reachable at the IRIs DBPe, LMDBe and FBe, we compute a federated version Q̄fb. The
completeness statements in Fig. 3 plus Cfb entail wrt. “|=fed” the completeness of the
query Qfb (see Definition 18). By Theorem 20 we can compute a complete federated
version Q̄fb, which in this case is Q̄fb = ({ ?m, ?l }, { (SERVICE LMDBe {(?m, type,Movie),
(?m, director, tarantino)}) }) AND (SERVICE FBe {(?m, likes, ?l)}), whose answer is complete.

6 Discussion

We now discuss some aspects underlying the completeness framework.
Availability of Completeness Statements. At the core of the proposed framework lies
the availability of completeness statements. We have discussed in Section 2 how exist-
ing data sources like IMDb already incorporate such statements (Figure 1) and how they
can be made machine-readable with our framework. The availability of completeness
statements rests on the assumption that a domain “expert” has the necessary background
knowledge to provide such statements.

We believe that it is in the interest of data providers to annotate their data sources
with completeness statements in order to increase their value. Indeed, users can be more
inclined to prefer data sources including “completeness marks” to other data sources.
Moreover, in the era of crowdsourcing the availability of independent “ratings” from
users regarding the completeness of data can also contribute (like in Wikipedia and
OpenStreetMap), in a bottom up manner, to the description of the completeness of data
sources. For instance, when looking up information about Stanley Kubrick in DBpedia,
as a by-product users can provide feedback as to whether all of Kubrick’s movies are
present. One can also imagine approaches based on gamification.
Maintenance. If edits of a source are logged, log items could be automatically trans-
lated into updates of statements. For non-authoritative sources, temporal guards can
be used; e.g., instead of saying “complete for all movies by Tarantino”, one would say
“complete for movies by Tarantino in 2010”.
Complexity. All completeness checks presented in this paper are NP-complete. The
hardness holds because classical conjunctive query containment can be encoded into
completeness checking [17]; the NP upper bound follows because all completeness
checks require conjunctive query evaluation at their core. In practice, we expect these
checks to be fast, since queries and completeness statements are likely to be small. After
all, this is the same complexity as the one of query evaluation and query optimization
of basic queries, as implemented in practical database management systems.
Vocabulary Heterogeneity. In practice, a query may use a vocabulary different from
that of some data sources. In this work, we assume the presence of a global schema.
Indeed, one could use the schema.org vocabulary for queries, since it has already
been mapped to other vocabularies (e.g., DBpedia).
The CoRNER Implementation. To show the feasibility of our proposal, we developed
the CoRNER system. It implements the completeness entailment procedure for basic and
DISTINCT queries with ρDF. The system is implemented in Java and uses the Apache
Jena library. It is downloadable at http://rdfcorner.wordpress.com.

7 Concluding Remarks and Future Work
The availability of distributed and potentially overlapping RDF data sources calls for
mechanisms to provide qualitative characterizations of their content. In this respect,
we have identified completeness as one important dimension. The motivation underly-
ing this work stems from the fact that although completeness information is present in
some available data sources (e.g., IMDb discussed in Section 2) it is neither formally

represented nor automatically processed. We have introduced a formal framework for
the declarative specification of completeness statements about RDF data sources and
underlined how the framework can complement existing initiatives like VoID. Then, we
studied “how” completeness statements can be used in the problem of completeness of
query answering. In this respect we considered queries over single and federated data
sources and showed how to assess query completeness. We believe that our research can
be the starting point of further investigation of the problem of completeness of informa-
tion on the Web. Considering other application scenarios of completeness statements
like data source integration and selection is in our research agenda.

References

1. K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing linked datasets with the
VoID vocabulary. Technical report, W3C, 2011.

2. M. Arenas, C. Gutierrez, and J. Pérez. On the semantics of SPARQL. In Semantic Web
Information Management, pages 281–307. Springer-Verlag Berlin Heidelberg, 2010.

3. D. Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF Schema. Tech-
nical report, W3C, 2004.

4. C. Fürber and M. Hepp. Using SPARQL and SPIN for data quality management on the
Semantic Web. In BIS, pages 35–46, 2010.

5. S. Harris and A. Seaborne. SPARQL 1.1 query language. Technical report, W3C, 2013.
6. A. Harth and S. Speiser. On completeness classes for query evaluation on linked data. In

AAAI, 2012.
7. O. Hartig, C. Bizer, and J. C. Freytag. Executing SPARQL queries over the web of linked

data. In International Semantic Web Conference, pages 293–309, 2009.
8. T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space. Synthesis

Lectures on the Semantic Web. Morgan & Claypool Publishers, 2011.
9. G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and abstract

syntax. Technical report, W3C, 2004.
10. A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static analysis and optimization of semantic

web queries. In PODS, pages 89–100, 2012.
11. A.Y. Levy. Obtaining complete answers from incomplete databases. In Proc. VLDB, pages

402–412, 1996.
12. A. Motro. Integrity = Validity + Completeness. ACM TODS, 14(4):480–502, 1989.
13. S. Muñoz, J. Pérez, and C. Gutierrez. Simple and efficient minimal RDFS. J. Web Sem.,

7(3):220–234, 2009.
14. J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM TODS,

34(3):16, 2009.
15. F. Picalausa and S. Vansummeren. What are real SPARQL queries like? In SWIM, 2011.
16. A. Polleres, C. Feier, and A. Harth. Rules with contextually scoped negation. In ESWC,

pages 332–347. 2006.
17. S. Razniewski and W. Nutt. Completeness of queries over incomplete databases. PVLDB,

4(11):749–760, 2011.
18. A. Seaborne, A. Polleres, L. Feigenbaum, and G. T. Williams. SPARQL 1.1 federated query.

Technical report, W3C, 2013.
19. H. J. Hamilton X. Wang and Y. Bither. An ontology-based approach to data cleaning. De-

partment of Computer Science, University of Regina, 2005.

