
Incomplete Databases:
Missing Records and Missing Values

Werner Nutt, Simon Razniewski, and Gil Vegliach

Free University of Bozen-Bolzano, Dominikanerplatz 3, 39100 Bozen, Italy
{nutt,razniewski}@inf.unibz.it, gil.vegliach@gmail.com

Abstract. Data completeness is an essential aspect of data quality as in many
scenarios it is crucial to guarantee the completeness of query answers. Data might
be incomplete in two ways: records may be missing as a whole, or attribute values
of a record may be absent, indicated by a null. We extend previous work by two
of the authors [10] that dealt only with the first aspect, to cover both missing
records and missing attribute values. To this end, we refine the formalization of
incomplete databases and identify the important special case where values of key
attributes are always known. We show that in the presence of nulls, completeness
of queries can be defined in several ways. We also generalize a previous approach
stating completeness of parts of a database, using so-called table completeness
statements. With this formalization in place, we define the main inferences for
completeness reasoning over incomplete databases and present first results.

1 Introduction

Data quality deals with the question how well data serves its purpose. Aspects of data
quality concern accuracy, currency, correctness, and similar issues. In settings such as
manual data insertion or data integration, completeness of data plays a key role. A ques-
tion whether data is complete enough for its aims and what might be potentially miss-
ing. In particular, in relational databases incompleteness comes in two flavors: records
(rows) in tables might be missing entirely or attribute values might be null .

Consider as a driving example the management of school data in the province of
Bolzano, Italy, which motivated the technical work reported here. The schools in the
province are largely autonomous in their administration: although the provincial IT
department runs a central database for administering data about pupils, teachers and
the like, the schools might choose to what extent to use this system. This freedom
leads to many kinds of incompleteness of the underlying database, especially when
data submission is optional: for example, when statistics about schools are collected,
missing records and null values of attributes might have two meanings, either facts that
do not hold in reality, or not submitted data.

The IT department already has some information about how the schools use the
central database, but not yet a systematic approach to use it. They would like to have a
generic technique to tell whether their database is complete enough to answer a certain
query, and furthermore what data is needed for the query to be answered completely.

We believe similar problems also occur in other application domains and identify the
following research questions:

H. Yu et al. (Eds.): DASFAA Workshops 2012, LNCS 7240, pp. 298–310, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Incomplete Databases: Missing Records and Missing Values 299

1. How can one describe completeness of parts of a possibly incomplete database?
2. How can one characterize the completeness of query answers?
3. How can one infer completeness of query answers from such completeness

descriptions?

There has been some previous work by two of the authors [9,10] on these questions,
which only considered incompleteness in the form of missing records. In practice how-
ever, incompleteness in the form of null values is at least as important.

A problem with SQL nulls is their ambiguity, as they may mean both that an attribute
value exists but is unknown, and that no value applies to that attribute. The established
models of null values in database research, such as Codd, v-, and c-tables [6], usually
avoid this ambiguity by concentrating on the aspect of unknown values. In this work,
we consider the ambiguous standard SQL null values [2], because those are the ones
commonly used in practice. We will show later that some ambiguity can be resolved,
when meta information about database completeness is present.

In this paper, we define a formal framework to study problems that arise when rea-
soning about the completeness of query answers over databases with null values and
potentially missing records. We proceed as follows: in section 2 we introduce two exam-
ple scenarios, in section 3 we formalize incomplete databases, query completeness, and
table completeness, in section 4 we show how canonical table completeness statements
link table and query completeness, in section 5 we introduce the reasoning problems
and we present preliminary results for some of them, in section 6 we discuss related
work and with section 7 we conclude this paper.

2 Example Scenarios

We define two scenarios that display incompleteness in the form of missing records and
of null values. The scenarios differ in that in the first the values of the key attributes are
known while in the second some key values are unknown. As we will see later on, in
the first case completeness of queries can be detected more easily than in the second.

A School Database. We consider a school database that contains, inter alia, the follow-
ing two tables, where key attributes are underlined:

– student (sid, name, level, code, hometown)
– class (level, code, formTeacher, viceFormTeacher, profile).

The student table stores for each student their unique student ID, their name, the level
and the code of the student’s class, such as ‘3’ ‘A’, and the student’s hometown. The
class table stores for each class its level and code, the ID of its form teacher and its
vice form teacher, and the profile of the class, such as ‘science’ or ‘commerce’. The
attributes level and code uniquely determine a class while the student ID uniquely
determines a student.

Student tuples could be missing because students enroll by submitting a paper form,
while the data are only later entered into the electronic database. Similarly, the forma-
tion of classes is decided during an administrative meeting, yet this information is not
always immediately recorded in the database.

300 W. Nutt, S. Razniewski, and G. Vegliach

Values for the attributes level and code of the student table may be null because
(i) students are assigned to classes only some time after their enrollment, and (ii) the de-
cision may not be recorded immediately. For similar reasons, the value of the attributes
formTeacher, viceFormTeacher, or profile of the class table could be null .

In contrast, the keys of tuples can never be null . To insert a student record into the
database, it is necessary to assign a student ID. Similarly, to insert a class it is necessary
to specify its level and code.

Over this school database, some queries will return the same answer over an instance
with nulls and where records are missing as they would over an ideal complete instance.
For instance, if all classes have been entered, we can tell the number of classes, even if
the form teachers have not yet been entered. Similarly, if each type of profile has been
entered once, we know the complete spectrum of profiles, even if the profile of some
specific class record is null or if the class record is missing altogether.

We will sketch later on how to formalize such facts and how to reason about them.

An Integrated Business Database. We consider a company that wants to integrate data
about business contacts from different departments into one database. We assume that
so far the sales, purchase and research department maintained their own databases with
different schemas and custom IDs.

In the integrated database, contacts are identified by their name, address, and city.
Even if the original databases were complete, records can be missing because a busi-
ness contact is kept by another department than those three and values can be missing
because the integrated schema contains attributes not present in one of the original
databases. Also key values can be missing, because information that makes up the key
was missing in one of the original databases.

3 Formalization

3.1 Standard Definitions

In the following we summarize the standard formalization of relational databases and
conjunctive queries (cf.[1]). The latter model the widely-used single-block SQL queries.
We extend this formalization to take into account SQL-style null values and the seman-
tics of queries over databases with nulls, following the approach in [5].

We assume a set of relation symbols Σ, the schema, and an infinite set of constants
dom, including the rational numbers. A term is a constant or a variable.

A relational atom is an expression R(t̄), where R is a relation symbol and t̄ is a
vector of terms. A comparison is an atom with one of the predicates <, ≤, =, or �.
A condition G is a set of relational and comparison atoms. We write a condition as a
sequence of atoms, separated by commas. A condition is safe if each of its variables
occurs in a relational atom. We generically use the symbol L for the subcondition of G
containing the relational atoms and M for the subcondition containing the comparisons.
A conjunctive query is written in the form Q(s̄) :− B, where B is a safe condition, s̄ is
a vector of terms, and every variable in s̄ occurs in B. As usual, we call Q(s̄) the head
and B the body of Q. A variable in B is called a join variable if it occurs at least twice
in B. We often refer to the entire query by the symbol Q.

Incomplete Databases: Missing Records and Missing Values 301

A database instance D is a finite set of relational ground atoms, that is, atoms without
variables, which may contain the special constant null. For a relation symbol R ∈ Σ we
write R(D) to denote the set of R-records in D, that is, the set of atoms in D with relation
symbol R.

An assignment α for the query Q is a mapping that maps the variables of Q to el-
ements of dom ∪ { null }. If A is an atom, then αA is the (ground) atom obtained by
replacing every variable x in A with the constant α(x). We say that α satisfies the con-
dition G = L,M over the instance D if (i) α maps all join variables of G to constants
� null, (ii) αA ∈ D for every relational atom A ∈ L, and (iii) α satisfies all comparisons

in M. Note that part (i) captures the semantics of nulls in SQL, where an equality or
comparison involving null has the truth value “unknown” and thus does not contribute
to a query result.

In SQL, a query Q(s̄) :− B can be evaluated under two semantics. Under bag seman-
tics, which is the default, applying Q to D results in the multiset Qb(D) = {|α(s̄) |
α satisfies B |}, which contains as many tuples, including duplicates, as there are satisfy-
ing assignments for the body of Q. Under set semantics, which is enforced by adding the
keyword DISTINCT, Q returns Qs(D), the set version of Qb(D), obtained by dropping
duplicates.

As usual, we say that a query Q is set contained (bag contained) in a query Q′,
if Qs(D) ⊆ Q′s(D) (Qb(D) ⊆ Q′b(D)) for all database instances D. For both seman-
tics, there is a rich body of literature on algorithms and complexity of containment for
conjunctive queries (cd. [1]). The problem has also been studied over databases with
SQL-style null values [5].

3.2 Incomplete Databases

A database can be incomplete only with respect to a comparison database, considered
to be complete. Consequently, we model an incomplete database in the style of Levy [7]
as a pair D = (Di,Da) of database instances: Di, the ideal state, with complete infor-
mation, and Da, the available state, with possibly incomplete information. We require
that Da contains no more information than Di and formalize this by the concept of
dominance. An atom R(s̄) is dominated by an atom R(t̄), written R(s̄) � R(t̄), if R(s̄) is
the same as R(t̄), except that it may have more nulls. Now, for D to be an incomplete
database, the instance Da must be dominated by the the instance Di, written Da � Di,
in the sense that every atom in Da is dominated by some atom in Di.

We say that D = (Di,Da) satisfies the principle of unique dominance when the
dominance can be established without using any tuple in the ideal database twice, that
is, if R(s̄1) � R(t̄) and R(s̄2) � R(t̄) implies R(s̄1) = R(s̄2) for all R(s̄1), R(s̄2) ∈ Da

and R(t̄) ∈ Di. For instance, unique dominance is satisfied by an incomplete database
where a key is defined for each relation and no key attribute is null . Then every record
in the available database is dominated by the record with the same unique identifier in
the ideal database.

In data integration, however, key values may uniquely identify records in each of
the source databases, but may fail to identify the entities in the integrated database.
In such a case, two records from two distinct sources may represent the same entity,
but may erroneously be mapped to two records in the integrated database, which are

302 W. Nutt, S. Razniewski, and G. Vegliach

then dominated by a single record in the ideal database. In such a scenario, unique
dominance does not hold.

Example 1. Table 1 shows an incomplete database in the Bolzano school scenario. In-
formation present in the ideal but missing in the available database is written in italics.
For example, the student Diego is missing entirely and for class 1B we do not know the
form teacher and the vice form teacher. Note that we also have null values in the ideal
database, which express, first, that class 2A has no vice form teacher and, second, that
Andrea is registered as an external student not belonging to any class.

Table 1. An incomplete school database

Di Da

class student class student

(1, A, 101, 103, science) (702, Paul, 1, A, Bolzano) (1, A, 101, null , science) (702, Paul, 1, A, null)
(1, B, 104, 109, commerce) (781, Maria, 1, A, Merano) (1, B, null , null , commerce) (781, Maria, 1, B, null)

(2, A, 102, null , science) (739, Andrea, null , null , Brunico) (2, A, null , null , null) (739, Andrea, null , null , Brunico)
(754, Diego, 2, A, Bolzano) —

In the school example, unique dominance did hold. We now give an example from
the business scenario where unique dominance is not satisfied.

Example 2. The sales, purchase, and research department of a company maintain data-
bases with business contacts, each with a different schema, as shown in Table 2.

Table 2. Contact databases of the three departments

Sales Purchase Research
customer(name, street, city) supplier(name, city) partner(name, city, long_term)

(Johnson Corp., North St., Boston) (Smith Inc., Detroit) (Johnson Corp., Boston, no)

In addition to Johnson Corp. and Smith Inc., the company is also in contact with
Miller & Co., through its human resources department. Thus, each of the three should
appear once in the integrated database, shown in Table 3. However, due to a failure
in entity resolution, Johnson Corp. shows up twice, while Miller Inc. is missing com-
pletely. Moreover, some attribute values are null , as the corresponding information was
missing in the original sources (information missing in Da is in italics).

Table 3. Incomplete integrated contact database

Di Da

contact(name, street, city, long_term) contact(name, street, city, long_term)
(Johnson Corp., North St., Boston, no) (Johnson Corp., North St., Boston, null)

(Johnson Corp., null , Boston, no)
(Smith Inc., Main St., Detroit, yes) (Smith Inc., null , Detroit, null)

(Miller & Co., Central Rd., New York, no) —

Incomplete Databases: Missing Records and Missing Values 303

Observe that Johnson Corp. appears twice in the available database, coming from
the sales department and the research department, but only once in the ideal database.
Hence, unique dominance is not satisfied in this example.

3.3 Query Completeness

We now want to define formally when a query Q is complete over an incomplete
database D = (Di,Da). Considering bag and set semantics and the concept of domi-
nance, there are three meaningful definitions:

Bag Completeness: The query returns the same bag of answers over the available and
over the ideal database, that is, Qb(Da) = Qb(Di);

Set Completeness: The query returns the same set of answers over the available and
over the ideal database, that is, Qs(Da) = Qs(Di);

Set Completeness Modulo Redundancy: The query returns all the answers from the
ideal database also over the available one, and every (additional) tuple over the
available database is dominated by some tuple over the ideal database, thus being
redundant, that is, Qs(Di) ⊆ Qs(Da) and Qs(Da) � Qs(Di).

If for a query Q, an incomplete database D satisfies query completeness in one of
those cases, we writeD |= Compl(Q). When the meaning is not clear from the context,
we add ·s, ·b, or ·sred as superscript to the statement. We call these expressions query
completeness statements or for short QC statements.

Example 3. In the school scenario, consider the query Qlev1() :− student(s, n, 1, c, h).
Note that under bag semantics, Qlev1 returns a copy of the empty tuple for each stu-
dent at class level 1 and thus reports the number of such students. Since Qlev1 returns
the empty tuple twice over both the ideal and the available database, it is bag complete.

Consider also the query Qsci(n) :− student(s, n, l, c, h), class(l, c, f T, vFT, science),
which asks for the names of all students in science classes. As ‘Diego’ is returned over
the ideal, but not over the available database, Qsci is neither bag nor set complete.

Clearly, Complb(Q) entails Compls(Q). Also, Compls(Q) entails Complsred(Q). How-
ever, in general, the converse does not hold as we show next.

Example 4. In the business scenario, the query QBo(n, lt) :− contact(n, s,Boston, lt) asks
for the name and long term status of contacts from Boston. Over the ideal database it
returns Qs

Bo(Di) = { (Johnson Corp., no) }, while over the available database it returns
Qs

Bo(Da) = { (Johnson Corp., no), (Johnson Corp., null) }. Thus, QBo is not set complete
over this incomplete database. However, as the additionally returned tuple is dominated
by the record returned over the ideal database, QBo is set complete modulo redundancy.

3.4 Table Completeness

In addition to the completeness of queries, which can be expressed by QC statements,
we want to state the completenes of parts of an incomplete database. To this end, we
generalize the table completeness (TC) statements introduced in [10]. A TC statement
says that a specific fragment of a relation is complete without requiring other parts of

304 W. Nutt, S. Razniewski, and G. Vegliach

the database to be complete. The challenge is to come up with a formalization that is
both intuitive and allows one to infer query completeness from table completeness.

A TC statement, written Compl(R(s̄); P; G), has three components: (i) a relational
atom R(s̄), (ii) a set of numbers P ⊆ { 1, . . . , arity(R) }, and (iii) a condition G such that
R(s̄),G is safe. The numbers in P are interpreted as attribute positions of R. For instance,
if R is the table student, then { 2, 5 }would refer to the attributes name and hometown.
Intuitively, such a TC statement says that if we take the ideal records R(t̄) ∈ R(Di),
satisfying the conditions t̄ = s̄ and G over Di, and project these records onto P, then
these projections are also present in πP(R(Da)), the projection of R onto P over the
available database. Clearly, we obtain two different semantics, depending on whether
the projection returns a bag or a set of records.

Example 5. Taking into account that profile is the 5th attribute of the table class in
the school database, the TC statement Cprf = Compl(class(l, c, f T, vFT, p); {5}; true)
says, under set semantics, that all class profiles are present in the available database. In
our example, Cprf holds as both ‘science’ and ‘commerce’ are in the available database.
The TC statement CoutBZ = Compl(student(id, n, l, c, h); { }; h � Bolzano) has an
empty set of positions and thus talks about empty tuples. Interpreted under bag se-
mantics, it says that there are as many students from outside Bolzano in the available
database as there are in the ideal database. In our example, CoutBZ does not hold under
bag semantics, as two such students can be found in the ideal, but only one in the avail-
able database. It holds under set semantics, though, as both ideal and available database
contain at least one student from outside Bolzano.

To make this formal, we associate to the TC statement C = Compl(R(s̄); P; G) the
query QC(s̄) :−R(s̄),G, which returns the R-records t̄ satisfying t̄ = s̄ and G. This query
will be evaluated under set semantics over Di, as we are only interested in the R-records
as such, not how many times they can be derived using G. Recall that evaluation of QC

under set semantics is indicated by the superscript ·s. Similarly, we use the operators
πb

P and πs
P to distinguish between projection on P under bag and set semantics. We now

define thatD = (Di,Da) satisfies C under bag or set semantics, respectively, if

π�P(Qs
C(Di)) ⊆ π�P(R(Da)),

where � ∈ { b, s }. The inclusion ⊆ is bag inclusion if � = b and set inclusion if � = s.
To indicate whether a TC statement is to be interpreted under bag or set semantics,
we write Complb and Compls, when necessary. In the special case that P comprises all
attributes of R, which was the case studied in [10], we can drop the projection and need
not distinguish between bag and set semantics, as C is satisfied byD if Qs

C(Di) ⊆ R(Da).
The next example shows that table completeness statements can also resolve the

inherent ambiguity of null values found in an available database.

Example 6. Consider the record student(739,Andrea, null, null,Brunico) in our avail-
able school database, with null values for class level and code. Without further infor-
mation, we do not know whether level and code are missing or whether the student is an
external student not assigned to any class. If we knew, however, that our partial database
satisfied Compl(student(id, n, l, c, h); {1, 2, 3, 4, 5}; true), that is, the student table is
complete, we could conclude that the nulls can only have the meaning that no level and
code apply to the student, and hence he is an external.

Incomplete Databases: Missing Records and Missing Values 305

4 Canonical Table Completeness Statements

The overall goal of reasoning about completeness is to infer QC statements from infor-
mation about the content of a database, expressed by TC statements.

In previous work on completeness reasoning for databases without nulls [10], a pow-
erful approach consisted in translating a completeness statement about a query Q into a
set CQ of so-called canonical TC statements for Q that, intuitively, express which parts
of which tables should be complete to guarantee completeness of Q.

Canonical TC statements were then used to reduce the problem of deciding whether
an arbitrary set of TC statements C entails the QC statement Compl(Q) (called TC-
QC reasoning) to checking whether C entails the canonical TC statements CQ, which
is a special case of deciding entailment between sets of TC statements (called TC-TC
reasoning). TC-TC reasoning was then reduced to the well-studied query containment.

In this section we report on approach to generalize this work to the richer setting
accommodating nulls.

4.1 Definition of Canonical TC Statements

We first want to single out those attributes of relations that must be complete in the
available database so that we can answer a query Q completely. These should be the
attributes that occur in selections, in joins, and that are output by Q.

Let Q :− A1, . . . , An,M be a query with relational atoms A j and a set of comparisons
M. A term t occurring in Q is essential if (i) t is a constant or (ii) t is a variable occur-
ring more than once in Q. Intuitively, essential terms are those that express a selection
condition, a join condition, or that appear in the head of Q. A position p in the relational
atom Ai is essential if the term occurring at position p in Ai is essential in Q. The set of
essential positions of Ai in Q is denoted as EPos(Ai,Q).

The canonical completeness statement CAi for Ai has the form

Compl(Ai; EPos(Ai,Q); A1, . . . , Ai−1, Ai+1, . . . , An,M).

Intuitively, a canonical statement CR(s̄) states that the projection on the essential posi-
tions of R(s̄) is complete for those tuples t̄ in R that satisfy t̄ = s̄ and the condition
composed by all the other atoms in the query. The set of all canonical completeness
statements for a query Q is denoted as CQ. As other TC statements, a canonical state-
ment can be interpreted with respect to set and bag projection, which is indicated by the
superscripts ·s and ·b as in Cs

Ai
and Cb

Q.

4.2 Properties of Canonical TC Statements

Canonical statements are a link between QC and TC statements.

Theorem 1. Let Q be a conjunctive query,D an incomplete database. Then we have:

1. IfD |= Cs
Q, thenD |= Complsred(Q);

2. IfD satisfies unique dominance, thenD |= Cb
Q if and only ifD |= Complb(Q).

306 W. Nutt, S. Razniewski, and G. Vegliach

The theorem says that canonical statements under set semantics are a sufficient
condition for set completeness modulo redundancy. Moreover, in the presence of unique
dominance, canonical statements under bag semantics completely characterize bag com-
pleteness of a query. The proof is omitted due to space constraints.

As a corollary we note that we can find sufficient conditions for TC-QC entailment
in terms of TC-TC entailment. We do not know whether the converse holds, too.

Corollary 1. Let C be a set of TC statements and Q be a conjunctive query. Then
1. Cs |= Cs

Q ⇒ Cs |= Complsred(Q);

2. Cb |= Cb
Q ⇔ Cb |= Complb(Q).

The next corollary is a trivial consequence of Theorem 1.1 and is stated explicitly as a
contrast to Theorem 2 below.

Corollary 2. LetD be a partial database that satisfies all possible TC-statements and
let Q be a conjunctive query. ThenD |= Complsred(Q).

We next show that the assumption about unique dominance above cannot be dropped.

Theorem 2. There exist an incomplete database D without unique dominance and a
conjunctive query Q such that
1. D is complete for all possible TC statements, both under bag and set semantics;
2. Q is neither bag nor set complete overD.

Proof. Let D consist of Di = {R(a, b) } and Da = {R(a, b),R(a, null) }. Unique dom-
inance does not hold due to the record R(a, null). Clearly, D satisfies all possible TC
statements under any semantics, since all records from the ideal database are also in the
available database. Consider the query Q(y) :−R(x, y) that projects R on the second ar-
gument. Then Qb(Di) = { b }, while Qb(Da) = { b, null }, which implies that Q is neither
bag nor set complete overD.

Theorem 2 shows that without unique dominance the unexpected situation can arise that
all tables of a database are complete, according to the TC statements, yet some query
is bag and set incomplete. Intuitively, a reason for this is that TC statements assert
that a query result over the ideal database is included in a projection over the available
database, while bag and set completeness require equalities to hold. Such equalities,
however, may fail to hold because records in the available database may contain nulls
where there are constants in the corresponding records in the ideal database.

The interplay of bag semantics and unique dominance can prevent this. Several
copies of the same record in the result of a conjunctive query can be obtained from
several combinations of records in the database. If the canonical TC statements hold
under bag semantics, then for each such combination of records in the ideal database,
there must be a corresponding combination in the available database. Morover, unique
dominance ensures that two different combinations in the available database correspond
to different combinations in the ideal database. This can be seen as the intuition behind
Theorem 1.2.

The next theorem shows that the situation is different for TC statements under set
semantics and set completeness of a query.

Incomplete Databases: Missing Records and Missing Values 307

Theorem 3. There exist a conjunctive query Q and an incomplete database D with
unique dominance such that
1. D satisfies Cs

Q, the canonical TC statements for Q under set semantics;
2. D does not satisfy Compls(Q), that is, set completeness of Q.

Proof. Consider the query Q(y) :−R(x, y), which projects R onto the second position.
As Q has only the atom A = R(x, y), there is a single canonical TC statement for Q,
namely, CA = Compl(R(x, y); { 2 }; true).

Next, consider the partial databaseD consisting of Di = {R(1, a), R(2, a) } and Da =

{R(1, a), R(2, null) }. Clearly,D satisfies the principle of unique dominance. We easily
check thatD satisfies CA, as πs

{2}(QCA (Di)) = { a } ⊆ { a, null } = πs
{2}(R(Da)). However,

Qs(Di) = { a } � { a, null } = Qs(Da). Hence, Q is not set complete overD.

5 Reasoning Problems and Preliminary Results

In this section we present the four central reasoning problems involving query com-
pleteness (QC) and table completeness (TC) and some preliminary results on them.

Problem 1: QC Characterization. Given a conjunctive query Q and a set of TC state-
ments C, is C characterizing Compl�(Q), that is, do we have D |= C if and only if
D |= Compl�(Q) for all incomplete databasesD?

Preliminary Results. For bag completeness, the canonical TC statements under bag se-
mantics are characterizing according to Theorem 1.2. An arbitrary set C is therefore
characterizing for Complb(Q) if it is equivalent to Cb

Q. We have shown that in general
for set completeness and set completeness modulo redundancy, query completeness
cannot be characterized by a set of TC statements. An intuition is that for a tuple in the
result of a such query there can be several derivations and for the two set semantics, just
one of the many possible derivations is needed, which cannot be expressed by our TC
statements, since a special kind of existential quantification would be needed.

The next problem is to find whether some canonical completeness statements can ensure
query completeness.

Problem 2: TC-QC Entailment. Given a query Q, when and under which semantics do
the canonical TC statements imply query completeness?

Preliminary Results. From Theorem 1.2 we know that the canonical statements under
bag semantics entail bag completeness if we allow only incomplete databases satisfy-
ing unique dominance. It can be shown that under set semantics, they do not. Since
query completeness under bag semantics entails query completeness under set seman-
tics, the canonical statements under bag semantics entail QC under the two set seman-
tics, provided we have unique dominance. According to Theorem 1.1, in the general
case, canonical statements under set semantics entail set completeness modulo redun-
dancy but, according to Theorem 3, may not entail set completeness proper. What holds
for other combinations is an open question

308 W. Nutt, S. Razniewski, and G. Vegliach

If there are some TC statements that entail completeness of Q, a follow-up question is
whether there exists a most general set of TC statements that entail completeness of Q,
meaning a set that requires as little database completeness as possible.

Problem 3: Weakest Preconditions for TC-QC Entailment. Given a query Q, does there
exist a set of TC statements C0 such that C0 |= Compl�(Q), � ∈ { s, b, sred }, such that
C |= C0 for any other set C with this property?

Preliminary Results. For queries under bag semantics, it follows again from Theo-
rem 1.2 that the canonical statements under bag semantics fulfil this requirement in
the presence of unique dominance. For the two set semantics the problem is still open.

Finally, the most important problem is to decide whether a query can be answered com-
pletely, given knowledge about the completeness of parts of an incomplete database.

Problem 4: Deciding TC-QC Entailment. Given a query Q and a set of TC statements
C, how can once check that whenever an incomplete database satisfies C it also satisfies
Compl�(Q), � ∈ { s, b, sred }.
Preliminary Results. For queries under bag semantics, TC-QC can be reduced to TC-
TC entailement by Corollary 2. However, we do not know yet how to decide this. There
are indications that it can be reduced to query containment under a combination of bag
and set semantics over databases with null values.

For queries under set semantics modulo redundancy, the entailment C |= Cs
Q is a

sufficient condition. This problem, again, can be mapped to a problem of query con-
tainment under set semantics over databases with null values as a sufficient condition.
It is open whether these sufficient conditions are also necessary.

6 Related Work

Motro [8] investigated query completeness as an aspect of query integrity. He intro-
duced the notion of partially incomplete and incorrect databases as databases that can
both miss facts that hold in the real world and contain facts that do not hold there. He
described partial completeness in terms of query completeness (QC) statements under
set semantics. To infer completeness of a given query from a set of queries known to be
complete, he would search for a conjunctive rewriting of the given query in terms of the
complete queries. This solution is correct, but not complete, as later results on query
determinacy show [11].

Halevy [7] suggested local completeness statements, which we call table complete-
ness (TC) statements, as an alternate formalism for asserting partial completeness of an
incomplete database. The main problem he addressed was how to derive query com-
pleteness from table completeness (TC-QC reasoning). However, his approach led only
to a decision procedure applicable to trivial cases.

Fan and Geerts [3] discussed the problem of query completeness in the presence of
master data. Their work is not directly comparable to the one presented here because
in addition to the different setting it always considers a database instance. In follow-
up work, they considered incomplete data also in the form of missing but constrained
attribute values [4], which they represented by c-tables [6].

Incomplete Databases: Missing Records and Missing Values 309

Recently, Razniewski and Nutt picked up Levy’s problem of TC-QC entailment over
databases that can miss records [9,10]. They showed that TC-QC entailment is decid-
able for all languages of positive conjunctive queries used for formulating TC and QC
statements and analysed the complexity of the problem in detail, finding combined com-
plexities ranging from PTIME to ΠP

2 .

7 Conclusion

We have introduced the concept of incomplete databases with missing tuples and miss-
ing values, represented by SQL-style nulls and identified as an important special case
the one where unique record identifiers are always known, which leads to a property
called unique dominance.

We introduced three different ways to define query completeness (QC) over an in-
complete database, which are based on bag and set semantics of queries and take into
account partiality of information in records with nulls.

We generalised Levy’s approach to describing complete parts of tables by table com-
pleteness (TC) statements to TC statements that describe completeness of projections
of parts of tables. Depending on whether projections are performed under set or bag
semantics, we defined two diffent semantics for these generalized TC statements.

We also generalized the canonical TC statements for queries from our previous work
in such a way that they capture those projections of tables that are needed to answer
a query. First results show how such generalized canonical TC statements can be used
infer query completeness from other TC statements.

Finally, we have defined and discussed four reasoning problems: (1) finding a set of
TC statements that characterize query completeness, (2) checking whether canonical
TC statements under some semantic entail query completeness, (3) finding TC state-
ments that are weakest preconditions query completeness, and (4) checking TC-QC
entailment. For some of the problems we presented results while for others we sketched
possible approaches.

In future work we aim to answer the open questions. Furthermore, we want to in-
vestigate the impact of schema constraints (keys, foreign keys, finite domains) on com-
pleteness reasoning.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley (1995)
2. Codd, E.F.: Understanding relations (installment #7). FDT – Bulletin of ACM SIGMOD 7(3),

23–28 (1975)
3. Fan, W., Geerts, F.: Relative information completeness. In: PODS, pp. 97–106 (2009)
4. Fan, W., Geerts, F.: Capturing missing tuples and missing values. In: PODS, pp. 169–178

(2010)
5. Farré, C., Nutt, W., Teniente, E., Urpí, T.: Containment of Conjunctive Queries over

Databases with Null Values. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS,
vol. 4353, pp. 389–403. Springer, Heidelberg (2006)

6. Imieliński, T., Lipski Jr., W.: Incomplete information in relational databases. J. ACM 31,
761–791 (1984)

310 W. Nutt, S. Razniewski, and G. Vegliach

7. Levy, A.: Obtaining complete answers from incomplete databases. In: Proc. VLDB, pp. 402–
412 (1996)

8. Motro, A.: Integrity = Validity + Completeness. ACM TODS 14(4), 480–502 (1989)
9. Razniewski, S., Nutt, W.: Checking query completeness over incomplete data. In: LID (2011)

10. Razniewski, S., Nutt, W.: Completeness of queries over incomplete databases. In: VLDB
(2011)

11. Segoufin, L., Vianu, V.: Views and queries: Determinacy and rewriting. In: Proc. PODS, pp.
49–60 (2005)

	Incomplete Databases: Missing Records and Missing Values
	Introduction
	Example Scenarios
	Formalization
	Standard Definitions
	Incomplete Databases
	Query Completeness
	Table Completeness

	Canonical Table Completeness Statements
	Definition of Canonical TC Statements
	Properties of Canonical TC Statements

	Reasoning Problems and Preliminary Results
	Related Work
	Conclusion
	References

